Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles
Abstract
1. Introduction
2. Experimental
2.1. Synthesis of Oxide Nanopowders
2.2. Methods of Nuclear Reactions and Deuterium Probes
3. Results and Discussion
3.1. Number of Oxygen Vacancies in a Defect
3.2. Spatial Distribution of Defects Ti6 in Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Vykhodets, V.B.; Kurennykh, T.E. Characterization of the defect structure of oxide nanoparticles with the use of deuterium probes. RSC Adv. 2020, 10, 3837–3843. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Nambissan, P. Evidence of oxygen and Ti vacancy induced ferromagnetism in post-annealed undoped anatase TiO2 nanocrystals: A spectroscopic analysis. J. Solid State Chem. 2019, 275, 174–180. [Google Scholar] [CrossRef]
- Mikhalev, K.N.; Germov, A.Y.; Ermakov, A.E.; Uimin, M.A.; Buzlukov, A.L.; Samatov, O.M. Crystal structure and magnetic properties of Al2O3 nanoparticles by 27Al NMR data. Phys. Solid State 2017, 59, 514–519. [Google Scholar] [CrossRef]
- Qin, X.B.; Zhang, P.; Liang, L.H.; Zhao, B.Z.; Yu, R.S.; Wang, B.Y.; Wu, W.M. Vacancy identification in Co+doped rutile TiO2crystal with positron annihilation spectroscopy. J. Physics: Conf. Ser. 2011, 262, 012051. [Google Scholar] [CrossRef]
- Bouzerar, G.; Ziman, T. Model for Vacancy-Inducedd0d0Ferromagnetism in Oxide Compounds. Phys. Rev. Lett. 2006, 96, 207602–207605. [Google Scholar] [CrossRef]
- Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306. [Google Scholar] [CrossRef]
- Grosh, S.; Khan, G.G.; Mandal, K.; Samanta, A.; Nambissan, M.G. Evolution of Vacancy-Type Defects, Phase Transition, and Intrinsic Ferromagnetism during Annealing of Nanocrystalline TiO2 Studied by Positron Annihilation Spectroscopy. J. Phys. Chem. C 2013, 117, 8458–8467. [Google Scholar] [CrossRef]
- Sudakar, C.; Kharela, P.; Suryanarayanan, R.; Thakurc, J.S.; Naikd, V.M.; Naika, R.; Lawesa, G. Room temperature ferromagnetism in vacuum-annealed TiO2 thin films. J. Magn. Magn. Mater. 2008, 320, L31–L36. [Google Scholar] [CrossRef]
- Hong, N.H.; Sakai, J.; Poirot, N.; Brizé, V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 2006, 73, 132404. [Google Scholar] [CrossRef]
- Coey, J.M.D. High-temperature ferromagnetism in dilute magnetic oxides. J. Appl. Phys. 2005, 97, 10D313. [Google Scholar] [CrossRef]
- Murakami, H.; Onizuka, N.; Sasaki, J.; Thonghai, N. Ultra-fine particles of amorphous TiO2 studied by means of positron annihilation spectroscopy. J. Mater. Sci. 1998, 33, 5811–5814. [Google Scholar] [CrossRef]
- Gaberle, J.; Shluger, A. The role of surface reduction in the formation of Ti interstitials. RSC Adv. 2019, 9, 12182–12188. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, Y.; Jiang, J.; Rong, Y.; Wang, Y.; Wu, Y.; Pan, C. Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. J. Phys. Chem. C 2012, 116, 22619–22624. [Google Scholar] [CrossRef]
- Xu, N.N.; Li, G.P.; Pan, X.D.; Wang, Y.B.; Chen, J.S.; Bao, L.M. Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2 (001) rutile. Chin. Phys. B 2014, 23, 106101. [Google Scholar] [CrossRef]
- Doeuff, S.; Henry, M.; Sanchez, C.; Livage, J. The gel route to Cr3+-doped TiO2, an ESR study. J. Non-Cryst. Solids 1987, 89, 84–97. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Stamenov, P. Surface magnetism of strontium titanate. J. Phys.: Condens. Matter. 2016, 28, 485001. [Google Scholar] [CrossRef]
- Ermakov, A.E.; Uimin, M.A.; Korolev, A.V.; Volegov, A.S.; Byzov, I.V.; Shchegoleva, N.N.; Minin, A.S. Anomalous Magnetism of the Surface of TiO2 Nanocrystalline Oxides. Fizika Tverdogo Tela 2017, 59, 458–473. [Google Scholar] [CrossRef]
- Ahmed, S.A. Annealing effects on structure and magnetic properties of Mn-doped TiO2. J. Magn. Magn. Mater. 2016, 402, 178–183. [Google Scholar] [CrossRef]
- Sokovnin, S.Y.; Balezin, M.E. Production of nanopowders using nanosecond electron beam. Ferroelectrics 2012, 436, 108–111. [Google Scholar] [CrossRef]
- Kamat, P.V. TiO2 Nanostructures: Recent Physical Chemistry Advances. J. Phys. Chem. C 2012, 116, 11849. [Google Scholar] [CrossRef]
- Akdogan, N.; Nefedov, A.; Zabel, H.; Westerholt, K.; Becker, H.-W.; Somsen, C.; Gök, S.; Bashir, A.; Khaibullin, R.; Tagirov, L. High-temperature ferromagnetism in Co-implanted TiO2 rutile. J. Phys. D Appl. Phys. 2009, 42, 115005. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.S.; Ma, J.; Liu, C.; Ma, Y. Detailed XPS analysis and anomalous variation of chemical state for Mn- and V-doped TiO2 coated on magnetic particles. Ceram. Int. 2017, 43, 16763–16772. [Google Scholar] [CrossRef]
- Cuaila, J.L.S.; Alayo, W.; Avellaneda, C. Ferromagnetism in spin-coated cobalt-doped TiO2 thin films and the role of crystalline phases. J. Magn. Magn. Mater. 2017, 442, 212. [Google Scholar] [CrossRef]
- Li, D.; Li, D.K.; Wu, H.Z.; Liang, F.; Xie, W.; Zou, C.W.; Chao, L.X. Defects related room temperature ferromagnetism in Cu-implanted ZnO nanorod arrays. J. Alloy. Comp. 2014, 591, 80–84. [Google Scholar] [CrossRef]
- Vykhodets, V.; Johnson, K.G.; Kurennykh, T.E.; Beketov, I.V.; Samatov, O.M.; Medvedev, A.I.; Jarvis, E.A.A. Direct Observation of Tunable Surface Structure and Reactivity in TiO2 Nanopowders. Surf. Sci. 2017, 665, 10–19. [Google Scholar] [CrossRef]
- Vykhodets, V.B.; Jarvis, E.A.A.; Kurennykh, T.E.; Beketov, I.V.; Obukhov, S.I.; Samatov, O.M.; Medvedev, A.I.; Davletshin, A.E.; Whyte, T. Inhomogeneous depletion of oxygen ions in oxide nanoparticles. Surf. Sci. 2016, 644, 141–147. [Google Scholar] [CrossRef]
- Vykhodets, V.B.; Jarvis, E.A.A.; Kurennykh, T.E.; Davletshin, A.E.; Obukhov, S.I.; Beketov, I.V.; Samatov, O.M.; Medvedev, A.I. Extreme deviations from stoichiometry in alumina nanopowders. Surf. Sci. 2014, 630, 182–186. [Google Scholar] [CrossRef]
- Uymin, M.A.; Minin, A.S.; Yermakov, A.Y.; Korolyov, A.V.; Balezin, M.Y.; Sokovnin, S.Y.; Konev, A.S.; Konev, S.F.; Molochnikov, L.S.; Gaviko, V.S.; et al. Magnetic properties and structure of TiO2 -Mn (0.73%) nanopowders: The effects of electron irradiation and vacuum annealing. Lett. Mater. 2019, 9, 91–96. [Google Scholar] [CrossRef]
- Jarvis, E.A.A.; Carter, E.A. Metallic Character of the Al2O3(0001)-(√31 × √31)R ± 9° Surface Reconstruction. J. Phys. Chem. B 2001, 105, 4045–4052. [Google Scholar] [CrossRef]
- Jarvis, E.A.A.; Carter, E.A. A nanoscale mechanism of fatigue in ionic solids. Nano Lett. 2006, 6, 505–509. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vykhodets, V.B.; Kurennykh, T.E.; Vykhodets, E.V. Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles. Appl. Sci. 2022, 12, 11963. https://doi.org/10.3390/app122311963
Vykhodets VB, Kurennykh TE, Vykhodets EV. Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles. Applied Sciences. 2022; 12(23):11963. https://doi.org/10.3390/app122311963
Chicago/Turabian StyleVykhodets, Vladimir B., Tatiana E. Kurennykh, and Evgenia V. Vykhodets. 2022. "Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles" Applied Sciences 12, no. 23: 11963. https://doi.org/10.3390/app122311963
APA StyleVykhodets, V. B., Kurennykh, T. E., & Vykhodets, E. V. (2022). Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles. Applied Sciences, 12(23), 11963. https://doi.org/10.3390/app122311963