TBRm: A Time Representation Method for Industrial Knowledge Graph
Abstract
:1. Introduction
2. Related Work
3. Research Methods
3.1. Problem Statement
3.2. Model Structures
- TrasnE [10]:
- 2.
- TransR [14]:
3.3. Training Target
4. Experiment and Discussion
4.1. Dataset
4.2. Experimental Setup
4.3. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huong, T.T.; Bac, T.P.; Long, D.M.; Luong, T.D.; Dan, N.M.; Quang, L.A.; Cong, L.T.; Thang, B.D.; Tran, K.P. Detecting cyberattacks using anomaly detection in industrial control systems: A federated learning approach. Comput. Ind. 2021, 132, 103509. [Google Scholar] [CrossRef]
- Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 2016, 104, 33. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, R.; Zhang, J.; Gao, T.; Xiong, R.; Yu, Z.; Huang, T. Spatio-Temporal Recurrent Networks for Event-Based Optical Flow Estimation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; Volume 36, pp. 525–533. [Google Scholar]
- Zhu, C.; Chen, M.; Fan, C.; Cheng, G.; Zhang, Y. Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 4732–4740. [Google Scholar]
- García-Durán, A.; Dumančić, S.; Niepert, M. Learning Sequence Encoders for Temporal Knowledge Graph Completion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 4816–4821. [Google Scholar]
- Manxin, T.; Lidan, S.; Ke, C.; Dawei, J.; Gang, C. A Knowledge Representation Method Based on Entity Time Sensitivity. Softw. Eng. 2020, 23, 1–6. [Google Scholar]
- Nayyeri, M.; Vahdati, S.; Aykul, C.; Lehmann, J. 5* Knowledge Graph Embeddings with Projective Transformations. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 9064–9072. [Google Scholar]
- Zhou, X.; Niu, L.; Zhu, Q.; Zhu, X.; Liu, P.; Tan, J.; Guo, L. Knowledge Graph Embedding by Double Limit Scoring Loss. IEEE Trans. Knowl. Data Eng. 2022, 34, 5825–5839. [Google Scholar] [CrossRef]
- Rossi, A.; Barbosa, D.; Firmani, D.; Matinata, A.; Merialdo, P. Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. ACM Trans. Knowl. Discov. Data 2021, 15, 1–49. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795. [Google Scholar]
- Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; pp. 1112–1119. [Google Scholar]
- Xiong, S.; Huang, W.; Duan, P. Knowledge Graph Embedding via Relation Paths and Dynamic Mapping Matrix. In Advances in Conceptual Modeling. ER 2018. Lecture Notes in Computer Science; Woo, C., Lu, J., Li, Z., Ling, T., Li, G., Lee, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 11158. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI’15), Austin, TX, USA, 25–30 January 2015; pp. 2181–2187. [Google Scholar]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex Embeddings for Simple Link Prediction. In Proceedings of The 33rd International Conference on Machine Learning; PMLR: London, UK, 2016; Volume 48, pp. 2071–2080. [Google Scholar]
- Yang, B.; Yih, W.-T.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and inference in knowledge bases. arXiv 2015, arXiv:1412.6575. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, Orleans, LA, USA, 2–7 February 2018; pp. 1811–1818. [Google Scholar]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional Networks. In The Semantic Web. ESWC 2018. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10843. [Google Scholar]
- Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P. Composition-based Multi-Relational Graph Convolutional Networks. In Proceedings of the International Conference on Learning Representations, Towson, MD, USA, 26–30 April 2020. [Google Scholar]
- Jiang, T.; Liu, T.; Ge, T.; Sha, L.; Chang, B.; Li, S.; Sui, Z. Towards Time-Aware Knowledge Graph Completion. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 1715–1724. [Google Scholar]
- Dasgupta, S.S.; Ray, S.N.; Talukdar, P. HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2001–2011. [Google Scholar]
- Li, Z.; Feng, S.; Shi, J.; Zhou, Y.; Liao, Y.; Yang, Y.; Li, Y.; Yu, N.; Shao, X. Future event prediction based on temporal knowledge graph embedding. Comput. Syst. Sci. Eng. 2023, 44, 2411–2423. [Google Scholar] [CrossRef]
- Available online: https://iottechnews.com/news/2021/sep/07/kaspersky-attacks-on-iot-devices-double-in-a-year/ (accessed on 19 October 2022).
- Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H.S.; Lehmann, J. Temporal knowledge graph embedding model based on additive time series decomposition. arXiv 2019, arXiv:1911.07893. [Google Scholar]
- Leblay, J.; Chekol, M.W. Deriving Validity Time in Knowledge Graph. In Proceedings of the Web Conference 2018 (WWW ’18), International World Wide Web Conferences Steering Committee, Lyon, France, 23–27 April 2018; pp. 1771–1776. [Google Scholar]
- Trivedi, R.; Farajtabar, M.; Biswal, P.; Zha, H. Dyrep: Learning representations over dynamic graphs. arXiv 2018, arXiv:1803.04051. [Google Scholar]
- Bian, R.; Koh, Y.S.; Dobbie, G.; Divoli, A. Network embedding and change modeling in dynamic heterogeneous networks. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 861–864. [Google Scholar]
- Han, Z.; Chen, P.; Ma, Y.; Tresp, V. xERTE: Explainable reasoning on temporal knowledge graphs for forecasting future links. arXiv 2020, arXiv:2012.15537. [Google Scholar]
- Zuo, Y.; Fang, Q.; Qian, S.; Zhang, X.; Xu, C. Representation Learning of Knowledge Graphs with Entity Attributes and Multimedia Descriptions. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018; pp. 1–5. [Google Scholar]
- Trivedi, R.; Dai, H.; Wang, Y.; Song, L. Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In Proceedings of the 34th International Conference on Machine Learning—Volume 70 (ICML’17), JMLR.org, Sydney, Australia, 6–11 August 2017; pp. 3462–3471. [Google Scholar]
- Jin, W.; Jiang, H.; Qu, M.; Chen, T.; Zhang, C.; Szekely, P.; Ren, X. Recurrent Event Network: Global Structure Inference Over Temporal Knowledge Graph. 2019. Available online: https://openreview.net/forum?id=SyeyF0VtDr (accessed on 18 September 2022).
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res.-Proc. Track 2010, 9, 249–256. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Sevick, M.A.; Zickmund, S.; Korytkowski, M.; Piraino, B.; Sereika, S.; Mihalko, S.; Snetselaar, L.; Stumbo, P.; Hausmann, L.; Ren, D.; et al. Design, feasibility, and acceptability of an intervention using personal digital assistant-based self-monitoring in managing type 2 diabetes. Contemp. Clin. Trials 2008, 29, 396–409. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; Zhang, D.; Yang, G.; Tao, J.; Che, F.; Liu, T. Tucker decomposition-based temporal knowledge graph completion. Knowl.-Based Syst. 2022, 238, 107841. [Google Scholar] [CrossRef]
- Cai, B.; Xiang, Y.; Gao, L.; Zhang, H.; Li, Y.; Li, J. Temporal Knowledge Graph Completion: A Survey. arXiv 2022, arXiv:2201.08236. [Google Scholar]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [Google Scholar] [CrossRef]
- Lei, Z.; Haq, A.U.; Zeb, A.; Suzauddola, M.; Zhang, D. Is the suggested food your desired? Multi-modal recipe recommendation with demand-based knowledge graph. Expert Syst. Appl. 2021, 186, 115708. [Google Scholar] [CrossRef]
- Tareq, I.; Elbagoury, B.M.; El-Regaily, S.; El-Horbaty, E.-S.M. Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT. Appl. Sci. 2022, 12, 9572. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Yang, Y.; Lian, S.; Guo, F.; Wang, Z. A Survey of Information Extraction Based on Deep Learning. Appl. Sci. 2022, 12, 9691. [Google Scholar] [CrossRef]
- Liu, S.; Xu, M.; Qin, Y.; Lukač, N. Knowledge Graph Alignment Network with Node-Level Strong Fusion. Appl. Sci. 2022, 12, 9434. [Google Scholar] [CrossRef]
- Alissa, K.A.; Elkamchouchi, D.H.; Tarmissi, K.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Mohamed, A.; Al Duhayyim, M. Dwarf Mongoose Optimization with Machine-Learning-Driven Ransomware Detection in Internet of Things Environment. Appl. Sci. 2022, 12, 9513. [Google Scholar] [CrossRef]
- Droby, A.; Kurar Barakat, B.; Saabni, R.; Alaasam, R.; Madi, B.; El-Sana, J. Understanding Unsupervised Deep Learning for Text Line Segmentation. Appl. Sci. 2022, 12, 9528. [Google Scholar] [CrossRef]
- Gyrard, A.; Boudaoud, K. Interdisciplinary IoT and Emotion Knowledge Graph-Based Recommendation System to Boost Mental Health. Appl. Sci. 2022, 12, 9712. [Google Scholar] [CrossRef]
- Trappey, A.J.C.; Liang, C.-P.; Lin, H.-J. Using Machine Learning Language Models to Generate Innovation Knowledge Graphs for Patent Mining. Appl. Sci. 2022, 12, 9818. [Google Scholar] [CrossRef]
- Semmler, N. Data-Driven Transfer Optimizations for Big Data in the Industrial Internet of Things; Technical University of Berlin: Berlin, Germany, 2022. [Google Scholar]
- Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning. TechRxiv 2022. preprint. [Google Scholar] [CrossRef]
- Umar, V.S.; Dixit, S.; Aggour, K.S.; Williams, J.W.; Cuddihy, P. On-demand Knowledge Graphs for Standards-Based Power Grid Data Provisioning. In Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2021. Lecture Notes in Computer Science; Fujita, H., Selamat, A., Lin, J.C.W., Ali, M., Eds.; Springer: Cham, Switzerland, 2021; Volume 12799. [Google Scholar] [CrossRef]
- Channam, A.; Swarup, B.R.; Rao, S.G. Extraction of Recipes from Food Images by Using CNN Algorithm. In Proceedings of the 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 11–13 November 2021; pp. 1308–1315. [Google Scholar]
- Chen, K.; Ma, J.; Zhang, Q.; Bai, Y. Multi-modal Navigation Interaction Recommendation with a Driver Demand-Based Knowledge Graph. In Proceedings of the 10th International Joint Conference on Knowledge Graphs (IJCKG’21), Virtual Event Thailand, 6–8 December 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 195–199. [Google Scholar]
- Wang, M.; Wang, H.; Li, B.; Zhao, X.; Wang, X. Summary of Key Technologies of the New Generation of Knowledge Graph. Computer Research and Development: 1–18. Available online: http://kns.cnki.net/kcms/detail/11.1777.TP.20220301.1217.002.html (accessed on 20 October 2022).
- Fang, Z.; Long, Q.; Song, G.; Xie, K. Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery Data Mining (KDD ′21), Virtual Event, Singapore, 14–18 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 364–373. [Google Scholar]
- Feng, L.; Shu, S.; Cao, Y.; Tao, L.; Wei, H.; Xiang, T.; An, B.; Niu, G. Multiple-Instance Learning from Similar and Dissimilar Bags. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ′21), Virtual Event, Singapore, 14–18 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 374–382. [Google Scholar]
- Available online: https://blog.csdn.net/wzg199538/article/details/113847603?spm=1001.2014.3001.5506 (accessed on 13 October 2022).
- Mangal, A.; Kumar, N. Using big data to enhance the bosch production line performance: A Kaggle challenge. In Proceedings of the IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 2029–2035. [Google Scholar]
- Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C.E.R.T. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. In Proceedings of the Symposium on Network and Distributed System Security (NDSS), San Diego, CA, USA, 23–26 February 2014. [Google Scholar]
- Michael, S.; Florian, E.; Thomas, S.; Felix, C.F.; Hoffmann, J. Mobile-Sandbox: Looking Deeper into Android Applications. In Proceedings of the 28th International ACM Symposium on Applied Computing (SAC), Coimbra, Portugal, 18–22 March 2013. [Google Scholar]
- Feng, W.; Jie, T.; Tracy, X.L. Understanding Dropouts in MOOCs. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, Georgia, 8–12 October 2019; pp. 517–524. [Google Scholar]
Temporal Knowledge Graph Represents Categories | Model Abbreviation | Features |
---|---|---|
Temporal knowledge graph representation model with time constraints | ETA-TransE [22] | On the basis of the TransE model, a time transfer matrix is constructed based on the difference in the time granularity of the application scenario, which can distinguish the impact of the same time on different types of entities. |
ATiSE [23] | The influence of mining time on the evolution of entities. | |
TTransE [24] | On the basis of the TransE model, time information is used to embed and represent time points in the triplet by relationship-time merging. | |
Time series coding temporal knowledge graph representation model | Know-Evolve [25] | By constructing an RNN network to update the embedded representation of the entity after it is affected by time changes. |
RE-NET [26] | Convert the time information into a sequence of events (triples) with time information, and finally use the RGCN network to aggregate the information of entities at the same time. | |
Path reasoning temporal knowledge graph representation model | Chang2vec [27] | Split the time series knowledge graph into multiple static knowledge graphs according to time nodes Spectrum, recalculate the changed node entity representation and update its embedded representation. |
xERTE [28] | The model can visualize the interpretability of reasoning and show the reasoning path. |
#Dataset | BPLP | MOOC-Ub | NFT | IE-IoTD | Edge-IIoTset |
---|---|---|---|---|---|
#Entities | 3024 | 24,100 | 5422 | 12,564 | 108,576 |
#Relation | 145 | 274 | 186 | 245 | 14 |
#Training | 7213 | 19,151 | 7274 | 18,780 | 24,301 |
#Validation | 5327 | 7263 | 4263 | 4072 | 19,281 |
#Test | 3348 | 2854 | 1000 | 2349 | 4820 |
Method | BPLP | MOOC-Ub | ||||||
---|---|---|---|---|---|---|---|---|
MRR | Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | |
TransE | 16.47 | 4.62 | 25.84 | 34.78 | 17.54 | 5.62 | 33.04 | 45.69 |
DistMult | 23.54 | 5.66 | 9.64 | 39.16 | 18.95 | 14.23 | 25.43 | 37.42 |
TTransE | 10.63 | 13.14 | 24.93 | 25.64 | 9.63 | 5.46 | 9.65 | 17.56 |
HyTE | 19.35 | 21.04 | 28.43 | 40.62 | 21.34 | 16.38 | 25.63 | 36.66 |
TA-DistMult | 9.61 | 7.25 | 8.96 | 15.34 | 12.57 | 8.94 | 15.82 | 23.13 |
TBRm | 8.72 | 22.63 | 29.97 | 45.49 | 8.35 | 20.32 | 40.98 | 46.49 |
Method | NFT | IE-IoTD | ||||||
---|---|---|---|---|---|---|---|---|
MRR | Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | |
TransE | 33.67 | 17.26 | 48.87 | 66.31 | 28.42 | 20.52 | 59.67 | 45.87 |
DistMult | 32.53 | 17.64 | 49.63 | 64.41 | 25.68 | 19.43 | 61.36 | 42.94 |
TTransE | 49.57 | 32.98 | 35.65 | 70.69 | 30.26 | 25.20 | 48.47 | 50.64 |
HyTE | 45.39 | 26.35 | 49.63 | 75.64 | 22.63 | 24.12 | 42.13 | 52.12 |
TA-DistMult | 50.26 | 40.28 | 45.61 | 37.38 | 28.92 | 21.10 | 60.74 | 48.67 |
TBRm | 30.04 | 35.99 | 46.97 | 74.32 | 25.39 | 24.59 | 64.79 | 55.19 |
Method | Edge-IIoTset | |||
---|---|---|---|---|
MRR | Hits@1 | Hits@3 | Hits@10 | |
TBRm | 34.68 | 19.62 | 50.73 | 60.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, K.; Zheng, C. TBRm: A Time Representation Method for Industrial Knowledge Graph. Appl. Sci. 2022, 12, 11316. https://doi.org/10.3390/app122211316
Cao K, Zheng C. TBRm: A Time Representation Method for Industrial Knowledge Graph. Applied Sciences. 2022; 12(22):11316. https://doi.org/10.3390/app122211316
Chicago/Turabian StyleCao, Keyan, and Chuang Zheng. 2022. "TBRm: A Time Representation Method for Industrial Knowledge Graph" Applied Sciences 12, no. 22: 11316. https://doi.org/10.3390/app122211316
APA StyleCao, K., & Zheng, C. (2022). TBRm: A Time Representation Method for Industrial Knowledge Graph. Applied Sciences, 12(22), 11316. https://doi.org/10.3390/app122211316