Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Computational Techniques
2.2.1. Development of Models Using ANN
2.2.2. Sensitivity Analysis
2.2.3. Genetic Algorithm and Multi-Objective Optimization
2.2.4. Scheme of the Computational Arrangement
3. Design of Hybrid Composites
3.1. Modelling Using ANN
3.2. Sensitivity Analysis
3.3. Surface Plots
3.4. Multi-Objective Optimization of Tribo-Mechanical Properties
4. Conclusions
- -
- The correlations of the different input variables with the tribo-mechanical behavior were revealed efficiently by the created ANN models.
- -
- The ANN models can be used as objective functions for the GA-driven multi-objective optimization of the properties, towards their simultaneous improvement.
- -
- A set of non-dominated optimal solutions on the variations in the different micro/nano particles on the different combinations of the mechanical and tribological properties can be generated from the optimization studies.
- -
- The solutions can be explicitly observed to propose plans to design the hybrid UHMPWE composites.
- -
- Further, the multi-objective optimization can be carried out on considering the constraints on the total amount of the reinforcement particles to reduce the amount of required particles.
- -
- This kind of computational design of materials paves the way for experimental trials to understand the tribo-mechanical behavior of hybrid UHMWPE composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UHMWPE | Ultra-high molecular weight polyethylene |
ANN | Artificial Neural Network |
GA | Genetic Algorithm |
TJR | Total joint replacement |
SW or MWCNT | Single or multiwalled carbon nanotube |
GO | Graphene oxide |
CF | Carbon fiber |
HAP | Hydroxyapatite |
CoF | Coefficient of friction |
SWR | Specific wear rate |
UTS | Ultimate tensile strength |
E | Young’s modulus |
H | Hardness |
OD | Outer diameter |
wt% | Weight percentage |
References
- Macuvele, D.L.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C 2017, 76, 1248–1262. [Google Scholar] [CrossRef]
- Affatato, S.; Ruggiero, A.; Merola, M. Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos. Part B Eng. 2015, 83, 276–283. [Google Scholar] [CrossRef]
- Ghalme, S.G.; Mankar, A.; Bhalerao, Y. Biomaterials in Hip Joint Replacement. Int. J. Mater. Sci. Eng. 2016, 4, 113–125. [Google Scholar] [CrossRef]
- Gohil, S.V.; Suhail, S.; Rose, J.; Vella, T.; Nair, L.S. Polymers and Composites for Orthopedic Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Cunha, M.; Bevis, M.J.; Sousa, R.A.; Reis, R.L. Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Compos. Sci. Technol. 2003, 63, 389–402. [Google Scholar]
- Partridge, S.; Tipper, J.L.; Al-Hajjar, M.; Isaac, G.H.; Fisher, J.; Williams, S. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1456–1462. [Google Scholar] [CrossRef]
- Kelly, J.M. Ultra-high molecular weight polyethylene. J. Macromol. Sci. Polym. Rev. 2002, 42, 355–371. [Google Scholar] [CrossRef]
- Luthra, J.S.; AL-Habsi, S.; AL-Ghanami, S.; Ghosh, S.; AL-Muzahemi, K. Understanding Painful Hip in Young Adults: A Review Article. Hip Pelvis 2019, 31, 129. [Google Scholar] [CrossRef]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.; Perinchief, R.S.; Estok, I.I.D.M.; Jasty, M.; Harris, W.H. Larger diameter femoral heads used in conjunction with a highly cross-linked ultra-high molecular weight polyethylene: A new concept. J. Arthroplasty 2001, 16 (Suppl. S1), 24–30. [Google Scholar] [CrossRef]
- Senatov, F.S.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Sudarchikov, V.A. Fractographic analysis of composites based on ultra high molecular weight polyethylene. Compos. Part B Eng. 2014, 56, 869–875. [Google Scholar] [CrossRef]
- Scholz, M.S.; Blanchfield, J.P.; Bloom, L.D.; Coburn, B.H.; Elkington, M.; Fuller, J.D.; Gilbert, M.E.; Muflahi, S.A.; Pernice, M.F.; Rae, S.I.; et al. The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos. Sci. Technol. 2011, 71, 1791–1803. [Google Scholar] [CrossRef]
- Wood, W.J.; Maguire, R.G.; Zhong, W.H. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process. Compos. Part B Eng. 2011, 42, 584–591. [Google Scholar] [CrossRef]
- Gupta, A.; Tripathi, G.; Lahiri, D.; Balani, K. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites forHard Tissue Replacement. J. Mater. Sci. Technol. 2013, 29, 514–522. [Google Scholar] [CrossRef]
- Salari, M.; Mohseni Taromsari, S.; Bagheri, R.; Faghihi Sani, M.A. Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement. J. Mater. Sci. 2019, 54, 4259–4276. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Affendy, M.G.; Khan, A.; Nasir, R.B.M. Comparative study of wear performance of particulate and fiber-reinforced nano-ZnO/ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Mater. Des. 2014, 63, 805–819. [Google Scholar] [CrossRef]
- Vinoth, A.; Datta, S. Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach. J. Compos. Mater. 2019, 54, 002199831985992. [Google Scholar] [CrossRef]
- Sreekanth, P.S.R.; Kanagaraj, S. Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE. Wear 2015, 334–335, 82–90. [Google Scholar] [CrossRef]
- Fonseca, A.; Kanagaraj, S.; Oliveira, M.S.A.; Simões, J.A.O. Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Milling. Defect Diffus. Forum 2011, 312–315, 1238–1243. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale 2012, 4, 3833–3842. [Google Scholar] [CrossRef] [Green Version]
- Chukov, D.I.; Stepashkin, A.A.; Maksimkin, A.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Kuskov, K.V.; Bugakov, V.I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos. Part B Eng. 2015, 76, 79–88. [Google Scholar] [CrossRef]
- Duraccio, D.; Strongone, V.; Malucelli, G.; Auriemma, F.; de Rosa, C.; Mussano, F.D.; Genova, T.; Faga, M.G. The role of alumina-zirconia loading on the mechanical and biological properties of UHMWPE for biomedical applications. Compos. Part B Eng. 2019, 164, 800–808. [Google Scholar] [CrossRef]
- Xiong, D.S.; Lin, J.M.; Fan, D.L. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy. Biomed. Mater. 2006, 1, 175–179. [Google Scholar] [CrossRef]
- Pal, S.; Roy, S.; Bag, S. Hydroxyapatite coating over alumina—Ultra high molecular weight polyethylene composite biomaterials. Trends Biomater. Artif. Organs 2005, 18, 106–109. [Google Scholar]
- Jaggi, H.S.; Kumar, S.; Das, D.; Satapathy, B.K.; Ray, A.R. Morphological correlations to mechanical performance of hydroxyapatite-filled HDPE/UHMWPE composites. J. Appl. Polym. Sci. 2014, 132, 1–10. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Sonjaitham, N.; Tchaikina, M.V.; Sergeev, V.P.; Ivanova, L.R.; Shilko, S.V. Wear-resistant ultrahigh-molecular-weight polyethylene-based nano- and microcomposites for implants. J. Nanotechnol. 2012, 2012, 729756. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater. Chem. Phys. 2019, 236, 121778. [Google Scholar] [CrossRef]
- Shi, G.; Yan, X.; Wang, Q.; Cao, Z.; Min, L.; Ji, L. Hydroxyapatite/ultra-high molecular weight polyethylene nanocomposites fabricated by in situ hydrothermal synthesis for wear-resistance and friction reduction. J. Appl. Polym. Sci. 2020, 137, 49276. [Google Scholar] [CrossRef]
- Abdelbary, A.Y.S.M. Tribological behavior of fiber-reinforced polymer composites. In Tribology of Polymer Composites: Characterization, Properties, and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 63–94. [Google Scholar]
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Zhang, L.; Zhu, P.; Zhang, G. Design and Characterization of the Surface Porous UHMWPE Composite Reinforced by Graphene Oxide. Polymers 2021, 13, 482. [Google Scholar] [CrossRef]
- Zoo, Y.S.; An, J.W.; Lim, D.P.; Lim, D.S. Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol. Lett. 2004, 16, 305–310. [Google Scholar] [CrossRef]
- Golchin, A.; Wikner, A.; Emami, N. An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts. Tribol. Int. 2016, 95, 156–161. [Google Scholar] [CrossRef]
- Datta, S. Materials Design Using Computational Intelligence Techniques; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Thomas, K.A.; Dey, S.; Sultana, N.; Sarkar, K.; Datta, S. Design of Ti composite with bioactive surface for dental implant. Mater. Manuf. Process. 2020, 35, 643–651. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chattopadhyay, P.P.; Ghosh, S.K.; Datta, S. Incorporation of prior knowledge in neural network model for continuous cooling of steel using genetic algorithm. Appl. Soft Comput. J. 2017, 58, 297–306. [Google Scholar] [CrossRef]
- Vinoth, A.; Datta, S. Optimization of Mechanical Characteristics of UHMWPE Composites Using Computational Intelligence. In Structural Integrity Assessment. Lecture Notes in Mechanical Engineering; Prakash, R., Suresh Kumar, R., Nagesha, A., Sasikala, G., Bhaduri, A., Eds.; Springer: Singapore, 2020; pp. 211–220. [Google Scholar] [CrossRef]
- Vinoth, A.; Nirmal, K.N.; Khedar, R.; Datta, S. Optimizing the Tribological Properties of UHMWPE Nanocomposites—An Artificial Intelligence based approach. In Trends in Mechanical and Biomedical Design; Lecture Notes in Mechanical Engineering; Akinlabi, E., Ramkumar, P., Selvaraj, M., Eds.; Springer: Singapore, 2021; pp. 831–843. [Google Scholar] [CrossRef]
- Kramer, O. Genetic Algorithm Essentials; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ganguly, S.; Patra, A.; Chattopadhyay, P.P.; Datta, S. New training strategies for neural networks with application to quaternary Al-Mg-Sc-Cr alloy design problems. Appl. Soft Comput. J. 2016, 46, 260–266. [Google Scholar] [CrossRef]
- Sultana, N.; Sikdar Dey, S.; Chattopadhyay, P.P.; Datta, S. Informatics based design of prosthetic Ti alloys. Mater. Technol. 2014, 29, B69–B75. [Google Scholar] [CrossRef]
- Sinha, A.; Sikdar Dey, S.; Chattopadhyay, P.P.; Datta, S. Optimization of mechanical property and shape recovery behavior of Ti-(∼49at.%) Ni alloy using artificial neural network and genetic algorithm. Mater. Des. 2013, 46, 227–234. [Google Scholar] [CrossRef]
- Dutta, T.; Dey, S.; Datta, S.; Das, D. Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput. Mater. Sci. 2019, 157, 6–16. [Google Scholar] [CrossRef]
- Bhaumik, S.; Maggirwar, R.; Datta, S.; Pathak, S.D. Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Appl. Surf. Sci. 2018, 449, 277–286. [Google Scholar] [CrossRef]
- Roy, S.; Dey, S.; Khutia, N.; Roy Chowdhury, A.; Datta, S. Design of patient specific dental implant using FE analysis and computational intelligence techniques. Appl. Soft Comput. 2018, 65, 272–279. [Google Scholar] [CrossRef]
- Ali ABin Abdul Samad, M.; Merah, N. UHMWPE Hybrid Nanocomposites for Improved Tribological Performance Under Dry and Water-Lubricated Sliding Conditions. Tribol. Lett. 2017, 65, 1–10. [Google Scholar] [CrossRef]
- Kanagaraj, S.; Mathew, M.T.; Fonseca, A.; Oliveira, M.S.A.; Simoes, J.A.O.; Rocha, L.A. Tribological characterisation of carbon nanotubes/ultrahigh molecular weight polyethylene composites: The effect of sliding distance. Int. J. Surf. Sci. Eng. 2010, 4, 305. [Google Scholar] [CrossRef]
- Manoj Kumar, R.; Sharma, S.K.; Manoj Kumar, B.V.; Lahiri, D. Effects of carbon nanotube aspect ratio on strengthening and tribological behavior of ultra high molecular weight polyethylene composite. Compos. Part A Appl. Sci. Manuf. 2015, 76, 62–72. [Google Scholar] [CrossRef]
- An, Y.; Tai, Z.; Qi, Y.; Yan, X.; Liu, B.; Xue, Q.; Pei, J. Friction and wear properties of graphene oxide/ultrahigh-molecular-weight polyethylene composites under the lubrication of deionized water and normal saline solution. J. Appl. Polym. Sci. 2014, 131, 1–11. [Google Scholar] [CrossRef]
- Ren, P.G.; Di, Y.Y.; Zhang, Q.; Li, L.; Pang, H.; Li, Z.M. Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: Preparation and properties. Macromol. Mater. Eng. 2012, 297, 437–443. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Tercero, J.E.; Agarwal, A. Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2493–2499. [Google Scholar] [CrossRef]
- Suñer, S.; Gowland, N.; Craven, R.; Joffe, R.; Emami, N.; Tipper, J.L. Ultrahigh molecular weight polyethylene/graphene oxide nanocomposites: Wear characterization and biological response to wear particles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 183–190. [Google Scholar] [CrossRef]
- Chih, A.; Ansón-Casaos, A.; Puértolas, J.A. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol. Int. 2017, 116, 295–302. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Kharitonov, A.P.; Mostovaya, K.S.; Kaloshkin, S.D.; Gorshenkov, M.V.; Senatov, F.S.; Chukov, D.I.; Tcherdyntsev, V.V. Bulk oriented nanocomposites of ultrahigh molecular weight polyethylene reinforced with fluorinated multiwalled carbon nanotubes with nanofibrillar structure. Compos. Part B Eng. 2016, 94, 292–298. [Google Scholar] [CrossRef]
- Bahrami, H.; Ahmad Ramazani, S.A.; Shafiee, M.; Kheradmand, A. Preparation and investigation of tribological properties of ultra-high molecular weight polyethylene (UHMWPE)/graphene oxide. Polym. Adv. Technol. 2016, 27, 1172–1178. [Google Scholar] [CrossRef]
- Bahrami, H.; Ramazani, A.S.A.; Kheradmand, A.; Shafiee, M.; Baniasadi, H. Investigation of Thermomechanical Properties of UHMWPE/Graphene Oxide Nanocomposites Prepared by in situ Ziegler-Natta Polymerization. Adv. Polym. Technol. 2015, 34, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, R.; Liang, L.; Wang, Y. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Compos. Sci. Technol. 2005, 65, 793–797. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Kaloshkin, S.D.; Kaloshkina, M.S.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Ergin, K.S.; Shchetinin, I.V. Ultra-high molecular weight polyethylene reinforced with multi-walled carbon nanotubes: Fabrication method and properties. J. Alloys Compd. 2012, 536 (Suppl. S1), S538–S540. [Google Scholar] [CrossRef]
- Naresh Kumar, N.; Yap, S.L.; Bt Samsudin, F.N.; Khan, M.Z.; Pattela Srinivasa, R.S. Effect of argon plasma treatment on tribological properties of UHMWPE/MWCNT nanocomposites. Polymers 2016, 8, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Z.; Chen, Y.; An, Y.; Yan, X.; Xue, Q. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 2012, 46, 55–63. [Google Scholar] [CrossRef]
- Tenison, N.; Baena, J.C.; Yu, J.; Peng, Z.X. Development of Mixing Methods of UHMWPE/Carbon Nanotubes (CNT) Composites for Use in Artificial Joint. Key Eng. Mater. 2017, 739, 81–86. [Google Scholar] [CrossRef]
- Baena, J.C.; Peng, Z. Dispersion state of multi-walled carbon nanotubes in the UHMWPE matrix: Effects on the tribological and mechanical response. Polym. Test. 2018, 71, 125–136. [Google Scholar] [CrossRef]
- Sreekanth, P.S.R.; Reddy, N.R.; Lahkar, M.; Kanagaraj, S. Biocompatibility studies on MWCNTs reinforced ultra high molecular weight polyethylene nanocomposites. Trends Biomater. Artif. Organs 2013, 27, 1–9. [Google Scholar]
- Wang, Y.; Yin, Z.; Li, H.; Gao, G.; Zhang, X. Friction and wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE) composites containing glass fibers and carbon fibers under dry and water-lubricated conditions. Wear 2017, 380–381, 42–51. [Google Scholar] [CrossRef]
- Lee, J.H.; Kathi, J.; Rhee, K.Y.; Lee, J.H. Wear properties of 3-aminopropyltriethoxysilane-functionalized carbon nanotubes reinforced ultra high molecular weight polyethylene nanocomposites. Polym. Eng. Sci. 2010, 50, 1433–1439. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Senatov, F.S.; Danilov, V.D. Structure and properties of ultra-high molecular weight polyethylene filled with disperse hydroxyapatite. Inorg. Mater. Appl. Res. 2012, 3, 288–295. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhu, Y.Y.; Wang, Q.L.; Ge, S.R. Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite. J. China Univ. Min. Technol. 2008, 18, 606–612. [Google Scholar] [CrossRef]
- Efe, G.; Altınsoy, İ.; Türk, S.; Bindal, C. An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sak. Univ. J. Sci. 2020, 24, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.; He, J.; Bao, X.-J.; Di, Z. Microstructure and mechanical properties of HA/UHMWPE composites. Trans. Mater. Heat Treat. 2011, 2. [Google Scholar]
- Kurt, H.I.; Oduncuoglu, M. Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites. Int. J. Polym. Sci. 2015, 2015, 315710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olden, J.D.; Joy, M.K.; Death, R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Modell. 2004, 178, 389–397. [Google Scholar] [CrossRef]
- Datta, S.; Chattopadhyay, P.P. Soft computing techniques in advancement of structural metals. Int. Mater. Rev. 2013, 58, 475–504. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Pearson-Education: New Delhi, India, 2002; p. 432. [Google Scholar] [CrossRef]
- Macuvele, D.L.; Colla, G.; Cesca, K.; Ribeiro, L.F.; da Costa, C.E.; Nones, J.; Breitenbach, E.R.; Porto, L.M.; Soares, C.; Fiori, M.A.; et al. UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. Mater. Sci. Eng. C 2019, 100, 411–423. [Google Scholar] [CrossRef]
- Vadivel, H.S.; Golchin, A.; Emami, N. Tribological behaviour of carbon filled hybrid UHMWPE composites in water. Tribol. Int. 2018, 124, 169–177. [Google Scholar] [CrossRef]
- Lin, L.; Schlarb, A.K. The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants. Tribol. Int. 2018, 119, 404–410. [Google Scholar] [CrossRef]
Variables | Low | High | Average | Normal Deviation |
---|---|---|---|---|
Input variables (for all properties): | ||||
Molecular weight of UHMWPE (million g/mol) | 1.2 | 9.2 | 4.882 | 1.988 |
MWCNT (wt%) | 0 | 3 | 0.72 | 0.758 |
Fiber length of MWCNT (µm) | 0 | 30 | 8.606 | 13.244 |
Fiber OD of MWCNT (nm) | 0 | 80 | 29.983 | 25.966 |
Graphene (wt%) | 0 | 5 | 0.248 | 0.744 |
Sheet thickness of graphene (nm) | 0 | 20 | 1.35 | 3783 |
Sheet length of graphene (µm) | 0 | 40 | 6.058 | 13.190 |
CF (wt%) | 0 | 20 | 2.529 | 5.081 |
Fiber length of CF (µm) | 0 | 1000 | 106.621 | 308.92 |
Fiber OD of CF (nm) | 0 | 7000 | 689.361 | 1959.33 |
HAP (wt%) | 0 | 70 | 7.393 | 15.401 |
HAP particle size (µm) | 0 | 7.5 | 1.017 | 2.320 |
Input variables (for wear properties): | ||||
Hardness of counteracting material (kgf/mm2) | 67.5 | 1950 | 856.958 | 427.162 |
Method | 0 | 1 | 0.161 | 0.368 |
Speed of sliding (m/s) | 0.004 | 1.667 | 0.415 | 0.427 |
Lubrication | 0 | 2 | 0.851 | 0.886 |
Normal Load (N) | 3.9 | 140 | 38.283 | 29.472 |
Sliding distance (m) | 5 | 10,000 | 959.481 | 1230.49 |
Output variables: | ||||
Young’s modulus (MPa) | 272 | 974 | 617.825 | 194.356 |
Ultimate tensile strength (MPa) | 14.2 | 77 | 32.726 | 10.675 |
Hardness (MPa) | 38 | 120 | 61.568 | 17.884 |
Specific wear rate (mm3/Nm) | 8 × 10−9 | 0.00009 | 1.98 × 10−5 | 1.83 × 10−5 |
Coefficient of friction (CoF) | 0.04 | 0.84 | 0.2036 | 0.203 |
Parameters | Values |
---|---|
Number of populations | 500 |
Number of generations | 500 |
Probability of crossover | 0.95 |
Probability of mutation | 0.05 |
Properties | Molecular Weight (Million gm/mol) | MWCNT | Graphene | Carbon Fiber | HAP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight % | Length of Fiber (µm) | OD of Fiber (nm) | Weight % | Thickness of Sheet (nm) | Length of Sheet (µm) | Weight % | Length of Fiber (µm) | OD of Fiber (nm) | Weight % | Average Particle Size (nm) | ||
E_CoF_SWR | 3 | 0.01–2 | 0.344–3.849 | 1.171–31.15 | 0.011–0.676 | 0.001–1 | 0.01–0.95 | 0.27–8.6 | 5.73–58.6 | 0.035–2.56 | 1.223–15.22 | 0.393–1.575 |
4 | 0.016–1.99 | 0.0878–3.276 | 0.565–38.14 | 0.007–1.369 | 0.003–0.98 | 0.002–0.156 | 0.0003–9.93 | 14.093–56.35 | 0.0102–2.263 | 3.4–13.9 | 0.03–1.56 | |
5 | 0.053–1.997 | 0.598–8.209 | 10.864–21.893 | 0.007–0.96 | 0.91–0.995 | 0.013–0.114 | 1.29–8.51 | 15.72–52.98 | 0.007–0.512 | 6.276–38.62 | 0.141–1.567 | |
6 | 0.017–1.98 | 0.010–4.273 | 1.042–4.181 | 0.002–0.13 | 0.719–0.998 | 0.006–0.095 | 0.14–8.34 | 6.973–27.132 | 0.0001–2.45 | 5.967–25.61 | 0.078–1.551 | |
H_CoF_SWR | 3 | 0.006–0.097 | 0.004–2.837 | 1.491–32 | 0.02–1.995 | 0.011–0.936 | 0.009–2.043 | 0.04–7.71 | 14.022–64.88 | 0.249–3.609 | 0.882–44.23 | 0.004–0.045 |
4 | 0.072–0.09 | 0.282–2.43 | 5.924–7.615 | 0.0407–1.884 | 0.294–0.907 | 0.078–1.43 | 2.91–4.17 | 76.64–90.18 | 1.544–2.32 | 14.32–44.05 | 0.016–0.022 | |
5 | 0.0018–0.097 | 0.025–5.217 | 0.026–5.735 | 0.0024–1.995 | 0.686–0.993 | 0.018–0.306 | 0.47–10.15 | 67.42–97.69 | 2.024–5.752 | 4.111–43.71 | 0.002–0.031 | |
6 | 0.052–0.099 | 0.235–6.676 | 2.977–9.185 | 0.009–1.406 | 0.658–0.964 | 0.014–0.214 | 1.43–7.91 | 54.184–87.17 | 1.672–6.65 | 6.768–42.68 | 0.0006–0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arulraj, V.; Datta, S.; Davim, J.P. Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants. Appl. Sci. 2022, 12, 10408. https://doi.org/10.3390/app122010408
Arulraj V, Datta S, Davim JP. Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants. Applied Sciences. 2022; 12(20):10408. https://doi.org/10.3390/app122010408
Chicago/Turabian StyleArulraj, Vinoth, Shubhabrata Datta, and João Paulo Davim. 2022. "Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants" Applied Sciences 12, no. 20: 10408. https://doi.org/10.3390/app122010408
APA StyleArulraj, V., Datta, S., & Davim, J. P. (2022). Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants. Applied Sciences, 12(20), 10408. https://doi.org/10.3390/app122010408