Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Computational Techniques
2.2.1. Development of Models Using ANN
2.2.2. Sensitivity Analysis
2.2.3. Genetic Algorithm and Multi-Objective Optimization
2.2.4. Scheme of the Computational Arrangement
3. Design of Hybrid Composites
3.1. Modelling Using ANN
3.2. Sensitivity Analysis
3.3. Surface Plots
3.4. Multi-Objective Optimization of Tribo-Mechanical Properties
4. Conclusions
- -
- The correlations of the different input variables with the tribo-mechanical behavior were revealed efficiently by the created ANN models.
- -
- The ANN models can be used as objective functions for the GA-driven multi-objective optimization of the properties, towards their simultaneous improvement.
- -
- A set of non-dominated optimal solutions on the variations in the different micro/nano particles on the different combinations of the mechanical and tribological properties can be generated from the optimization studies.
- -
- The solutions can be explicitly observed to propose plans to design the hybrid UHMPWE composites.
- -
- Further, the multi-objective optimization can be carried out on considering the constraints on the total amount of the reinforcement particles to reduce the amount of required particles.
- -
- This kind of computational design of materials paves the way for experimental trials to understand the tribo-mechanical behavior of hybrid UHMWPE composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UHMWPE | Ultra-high molecular weight polyethylene |
ANN | Artificial Neural Network |
GA | Genetic Algorithm |
TJR | Total joint replacement |
SW or MWCNT | Single or multiwalled carbon nanotube |
GO | Graphene oxide |
CF | Carbon fiber |
HAP | Hydroxyapatite |
CoF | Coefficient of friction |
SWR | Specific wear rate |
UTS | Ultimate tensile strength |
E | Young’s modulus |
H | Hardness |
OD | Outer diameter |
wt% | Weight percentage |
References
- Macuvele, D.L.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C 2017, 76, 1248–1262. [Google Scholar] [CrossRef]
- Affatato, S.; Ruggiero, A.; Merola, M. Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos. Part B Eng. 2015, 83, 276–283. [Google Scholar] [CrossRef]
- Ghalme, S.G.; Mankar, A.; Bhalerao, Y. Biomaterials in Hip Joint Replacement. Int. J. Mater. Sci. Eng. 2016, 4, 113–125. [Google Scholar] [CrossRef]
- Gohil, S.V.; Suhail, S.; Rose, J.; Vella, T.; Nair, L.S. Polymers and Composites for Orthopedic Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Cunha, M.; Bevis, M.J.; Sousa, R.A.; Reis, R.L. Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Compos. Sci. Technol. 2003, 63, 389–402. [Google Scholar]
- Partridge, S.; Tipper, J.L.; Al-Hajjar, M.; Isaac, G.H.; Fisher, J.; Williams, S. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1456–1462. [Google Scholar] [CrossRef]
- Kelly, J.M. Ultra-high molecular weight polyethylene. J. Macromol. Sci. Polym. Rev. 2002, 42, 355–371. [Google Scholar] [CrossRef]
- Luthra, J.S.; AL-Habsi, S.; AL-Ghanami, S.; Ghosh, S.; AL-Muzahemi, K. Understanding Painful Hip in Young Adults: A Review Article. Hip Pelvis 2019, 31, 129. [Google Scholar] [CrossRef]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.; Perinchief, R.S.; Estok, I.I.D.M.; Jasty, M.; Harris, W.H. Larger diameter femoral heads used in conjunction with a highly cross-linked ultra-high molecular weight polyethylene: A new concept. J. Arthroplasty 2001, 16 (Suppl. S1), 24–30. [Google Scholar] [CrossRef]
- Senatov, F.S.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Sudarchikov, V.A. Fractographic analysis of composites based on ultra high molecular weight polyethylene. Compos. Part B Eng. 2014, 56, 869–875. [Google Scholar] [CrossRef]
- Scholz, M.S.; Blanchfield, J.P.; Bloom, L.D.; Coburn, B.H.; Elkington, M.; Fuller, J.D.; Gilbert, M.E.; Muflahi, S.A.; Pernice, M.F.; Rae, S.I.; et al. The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos. Sci. Technol. 2011, 71, 1791–1803. [Google Scholar] [CrossRef]
- Wood, W.J.; Maguire, R.G.; Zhong, W.H. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process. Compos. Part B Eng. 2011, 42, 584–591. [Google Scholar] [CrossRef]
- Gupta, A.; Tripathi, G.; Lahiri, D.; Balani, K. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites forHard Tissue Replacement. J. Mater. Sci. Technol. 2013, 29, 514–522. [Google Scholar] [CrossRef]
- Salari, M.; Mohseni Taromsari, S.; Bagheri, R.; Faghihi Sani, M.A. Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement. J. Mater. Sci. 2019, 54, 4259–4276. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Affendy, M.G.; Khan, A.; Nasir, R.B.M. Comparative study of wear performance of particulate and fiber-reinforced nano-ZnO/ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Mater. Des. 2014, 63, 805–819. [Google Scholar] [CrossRef]
- Vinoth, A.; Datta, S. Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach. J. Compos. Mater. 2019, 54, 002199831985992. [Google Scholar] [CrossRef]
- Sreekanth, P.S.R.; Kanagaraj, S. Influence of multi walled carbon nanotubes reinforcement and gamma irradiation on the wear behaviour of UHMWPE. Wear 2015, 334–335, 82–90. [Google Scholar] [CrossRef]
- Fonseca, A.; Kanagaraj, S.; Oliveira, M.S.A.; Simões, J.A.O. Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Milling. Defect Diffus. Forum 2011, 312–315, 1238–1243. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale 2012, 4, 3833–3842. [Google Scholar] [CrossRef]
- Chukov, D.I.; Stepashkin, A.A.; Maksimkin, A.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Kuskov, K.V.; Bugakov, V.I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos. Part B Eng. 2015, 76, 79–88. [Google Scholar] [CrossRef]
- Duraccio, D.; Strongone, V.; Malucelli, G.; Auriemma, F.; de Rosa, C.; Mussano, F.D.; Genova, T.; Faga, M.G. The role of alumina-zirconia loading on the mechanical and biological properties of UHMWPE for biomedical applications. Compos. Part B Eng. 2019, 164, 800–808. [Google Scholar] [CrossRef]
- Xiong, D.S.; Lin, J.M.; Fan, D.L. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy. Biomed. Mater. 2006, 1, 175–179. [Google Scholar] [CrossRef]
- Pal, S.; Roy, S.; Bag, S. Hydroxyapatite coating over alumina—Ultra high molecular weight polyethylene composite biomaterials. Trends Biomater. Artif. Organs 2005, 18, 106–109. [Google Scholar]
- Jaggi, H.S.; Kumar, S.; Das, D.; Satapathy, B.K.; Ray, A.R. Morphological correlations to mechanical performance of hydroxyapatite-filled HDPE/UHMWPE composites. J. Appl. Polym. Sci. 2014, 132, 1–10. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Sonjaitham, N.; Tchaikina, M.V.; Sergeev, V.P.; Ivanova, L.R.; Shilko, S.V. Wear-resistant ultrahigh-molecular-weight polyethylene-based nano- and microcomposites for implants. J. Nanotechnol. 2012, 2012, 729756. [Google Scholar] [CrossRef][Green Version]
- Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater. Chem. Phys. 2019, 236, 121778. [Google Scholar] [CrossRef]
- Shi, G.; Yan, X.; Wang, Q.; Cao, Z.; Min, L.; Ji, L. Hydroxyapatite/ultra-high molecular weight polyethylene nanocomposites fabricated by in situ hydrothermal synthesis for wear-resistance and friction reduction. J. Appl. Polym. Sci. 2020, 137, 49276. [Google Scholar] [CrossRef]
- Abdelbary, A.Y.S.M. Tribological behavior of fiber-reinforced polymer composites. In Tribology of Polymer Composites: Characterization, Properties, and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 63–94. [Google Scholar]
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Zhang, L.; Zhu, P.; Zhang, G. Design and Characterization of the Surface Porous UHMWPE Composite Reinforced by Graphene Oxide. Polymers 2021, 13, 482. [Google Scholar] [CrossRef]
- Zoo, Y.S.; An, J.W.; Lim, D.P.; Lim, D.S. Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol. Lett. 2004, 16, 305–310. [Google Scholar] [CrossRef]
- Golchin, A.; Wikner, A.; Emami, N. An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts. Tribol. Int. 2016, 95, 156–161. [Google Scholar] [CrossRef]
- Datta, S. Materials Design Using Computational Intelligence Techniques; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Thomas, K.A.; Dey, S.; Sultana, N.; Sarkar, K.; Datta, S. Design of Ti composite with bioactive surface for dental implant. Mater. Manuf. Process. 2020, 35, 643–651. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chattopadhyay, P.P.; Ghosh, S.K.; Datta, S. Incorporation of prior knowledge in neural network model for continuous cooling of steel using genetic algorithm. Appl. Soft Comput. J. 2017, 58, 297–306. [Google Scholar] [CrossRef]
- Vinoth, A.; Datta, S. Optimization of Mechanical Characteristics of UHMWPE Composites Using Computational Intelligence. In Structural Integrity Assessment. Lecture Notes in Mechanical Engineering; Prakash, R., Suresh Kumar, R., Nagesha, A., Sasikala, G., Bhaduri, A., Eds.; Springer: Singapore, 2020; pp. 211–220. [Google Scholar] [CrossRef]
- Vinoth, A.; Nirmal, K.N.; Khedar, R.; Datta, S. Optimizing the Tribological Properties of UHMWPE Nanocomposites—An Artificial Intelligence based approach. In Trends in Mechanical and Biomedical Design; Lecture Notes in Mechanical Engineering; Akinlabi, E., Ramkumar, P., Selvaraj, M., Eds.; Springer: Singapore, 2021; pp. 831–843. [Google Scholar] [CrossRef]
- Kramer, O. Genetic Algorithm Essentials; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ganguly, S.; Patra, A.; Chattopadhyay, P.P.; Datta, S. New training strategies for neural networks with application to quaternary Al-Mg-Sc-Cr alloy design problems. Appl. Soft Comput. J. 2016, 46, 260–266. [Google Scholar] [CrossRef]
- Sultana, N.; Sikdar Dey, S.; Chattopadhyay, P.P.; Datta, S. Informatics based design of prosthetic Ti alloys. Mater. Technol. 2014, 29, B69–B75. [Google Scholar] [CrossRef]
- Sinha, A.; Sikdar Dey, S.; Chattopadhyay, P.P.; Datta, S. Optimization of mechanical property and shape recovery behavior of Ti-(∼49at.%) Ni alloy using artificial neural network and genetic algorithm. Mater. Des. 2013, 46, 227–234. [Google Scholar] [CrossRef]
- Dutta, T.; Dey, S.; Datta, S.; Das, D. Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput. Mater. Sci. 2019, 157, 6–16. [Google Scholar] [CrossRef]
- Bhaumik, S.; Maggirwar, R.; Datta, S.; Pathak, S.D. Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Appl. Surf. Sci. 2018, 449, 277–286. [Google Scholar] [CrossRef]
- Roy, S.; Dey, S.; Khutia, N.; Roy Chowdhury, A.; Datta, S. Design of patient specific dental implant using FE analysis and computational intelligence techniques. Appl. Soft Comput. 2018, 65, 272–279. [Google Scholar] [CrossRef]
- Ali ABin Abdul Samad, M.; Merah, N. UHMWPE Hybrid Nanocomposites for Improved Tribological Performance Under Dry and Water-Lubricated Sliding Conditions. Tribol. Lett. 2017, 65, 1–10. [Google Scholar] [CrossRef]
- Kanagaraj, S.; Mathew, M.T.; Fonseca, A.; Oliveira, M.S.A.; Simoes, J.A.O.; Rocha, L.A. Tribological characterisation of carbon nanotubes/ultrahigh molecular weight polyethylene composites: The effect of sliding distance. Int. J. Surf. Sci. Eng. 2010, 4, 305. [Google Scholar] [CrossRef]
- Manoj Kumar, R.; Sharma, S.K.; Manoj Kumar, B.V.; Lahiri, D. Effects of carbon nanotube aspect ratio on strengthening and tribological behavior of ultra high molecular weight polyethylene composite. Compos. Part A Appl. Sci. Manuf. 2015, 76, 62–72. [Google Scholar] [CrossRef]
- An, Y.; Tai, Z.; Qi, Y.; Yan, X.; Liu, B.; Xue, Q.; Pei, J. Friction and wear properties of graphene oxide/ultrahigh-molecular-weight polyethylene composites under the lubrication of deionized water and normal saline solution. J. Appl. Polym. Sci. 2014, 131, 1–11. [Google Scholar] [CrossRef]
- Ren, P.G.; Di, Y.Y.; Zhang, Q.; Li, L.; Pang, H.; Li, Z.M. Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: Preparation and properties. Macromol. Mater. Eng. 2012, 297, 437–443. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Tercero, J.E.; Agarwal, A. Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2493–2499. [Google Scholar] [CrossRef]
- Suñer, S.; Gowland, N.; Craven, R.; Joffe, R.; Emami, N.; Tipper, J.L. Ultrahigh molecular weight polyethylene/graphene oxide nanocomposites: Wear characterization and biological response to wear particles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 183–190. [Google Scholar] [CrossRef]
- Chih, A.; Ansón-Casaos, A.; Puértolas, J.A. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol. Int. 2017, 116, 295–302. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Kharitonov, A.P.; Mostovaya, K.S.; Kaloshkin, S.D.; Gorshenkov, M.V.; Senatov, F.S.; Chukov, D.I.; Tcherdyntsev, V.V. Bulk oriented nanocomposites of ultrahigh molecular weight polyethylene reinforced with fluorinated multiwalled carbon nanotubes with nanofibrillar structure. Compos. Part B Eng. 2016, 94, 292–298. [Google Scholar] [CrossRef]
- Bahrami, H.; Ahmad Ramazani, S.A.; Shafiee, M.; Kheradmand, A. Preparation and investigation of tribological properties of ultra-high molecular weight polyethylene (UHMWPE)/graphene oxide. Polym. Adv. Technol. 2016, 27, 1172–1178. [Google Scholar] [CrossRef]
- Bahrami, H.; Ramazani, A.S.A.; Kheradmand, A.; Shafiee, M.; Baniasadi, H. Investigation of Thermomechanical Properties of UHMWPE/Graphene Oxide Nanocomposites Prepared by in situ Ziegler-Natta Polymerization. Adv. Polym. Technol. 2015, 34, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, R.; Liang, L.; Wang, Y. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Compos. Sci. Technol. 2005, 65, 793–797. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Kaloshkin, S.D.; Kaloshkina, M.S.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Ergin, K.S.; Shchetinin, I.V. Ultra-high molecular weight polyethylene reinforced with multi-walled carbon nanotubes: Fabrication method and properties. J. Alloys Compd. 2012, 536 (Suppl. S1), S538–S540. [Google Scholar] [CrossRef]
- Naresh Kumar, N.; Yap, S.L.; Bt Samsudin, F.N.; Khan, M.Z.; Pattela Srinivasa, R.S. Effect of argon plasma treatment on tribological properties of UHMWPE/MWCNT nanocomposites. Polymers 2016, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Tai, Z.; Chen, Y.; An, Y.; Yan, X.; Xue, Q. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 2012, 46, 55–63. [Google Scholar] [CrossRef]
- Tenison, N.; Baena, J.C.; Yu, J.; Peng, Z.X. Development of Mixing Methods of UHMWPE/Carbon Nanotubes (CNT) Composites for Use in Artificial Joint. Key Eng. Mater. 2017, 739, 81–86. [Google Scholar] [CrossRef]
- Baena, J.C.; Peng, Z. Dispersion state of multi-walled carbon nanotubes in the UHMWPE matrix: Effects on the tribological and mechanical response. Polym. Test. 2018, 71, 125–136. [Google Scholar] [CrossRef]
- Sreekanth, P.S.R.; Reddy, N.R.; Lahkar, M.; Kanagaraj, S. Biocompatibility studies on MWCNTs reinforced ultra high molecular weight polyethylene nanocomposites. Trends Biomater. Artif. Organs 2013, 27, 1–9. [Google Scholar]
- Wang, Y.; Yin, Z.; Li, H.; Gao, G.; Zhang, X. Friction and wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE) composites containing glass fibers and carbon fibers under dry and water-lubricated conditions. Wear 2017, 380–381, 42–51. [Google Scholar] [CrossRef]
- Lee, J.H.; Kathi, J.; Rhee, K.Y.; Lee, J.H. Wear properties of 3-aminopropyltriethoxysilane-functionalized carbon nanotubes reinforced ultra high molecular weight polyethylene nanocomposites. Polym. Eng. Sci. 2010, 50, 1433–1439. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Senatov, F.S.; Danilov, V.D. Structure and properties of ultra-high molecular weight polyethylene filled with disperse hydroxyapatite. Inorg. Mater. Appl. Res. 2012, 3, 288–295. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhu, Y.Y.; Wang, Q.L.; Ge, S.R. Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite. J. China Univ. Min. Technol. 2008, 18, 606–612. [Google Scholar] [CrossRef]
- Efe, G.; Altınsoy, İ.; Türk, S.; Bindal, C. An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sak. Univ. J. Sci. 2020, 24, 1–9. [Google Scholar] [CrossRef][Green Version]
- Ran, X.; He, J.; Bao, X.-J.; Di, Z. Microstructure and mechanical properties of HA/UHMWPE composites. Trans. Mater. Heat Treat. 2011, 2. [Google Scholar]
- Kurt, H.I.; Oduncuoglu, M. Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites. Int. J. Polym. Sci. 2015, 2015, 315710. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D.; Joy, M.K.; Death, R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Modell. 2004, 178, 389–397. [Google Scholar] [CrossRef]
- Datta, S.; Chattopadhyay, P.P. Soft computing techniques in advancement of structural metals. Int. Mater. Rev. 2013, 58, 475–504. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Pearson-Education: New Delhi, India, 2002; p. 432. [Google Scholar] [CrossRef]
- Macuvele, D.L.; Colla, G.; Cesca, K.; Ribeiro, L.F.; da Costa, C.E.; Nones, J.; Breitenbach, E.R.; Porto, L.M.; Soares, C.; Fiori, M.A.; et al. UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. Mater. Sci. Eng. C 2019, 100, 411–423. [Google Scholar] [CrossRef]
- Vadivel, H.S.; Golchin, A.; Emami, N. Tribological behaviour of carbon filled hybrid UHMWPE composites in water. Tribol. Int. 2018, 124, 169–177. [Google Scholar] [CrossRef]
- Lin, L.; Schlarb, A.K. The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants. Tribol. Int. 2018, 119, 404–410. [Google Scholar] [CrossRef]
Variables | Low | High | Average | Normal Deviation |
---|---|---|---|---|
Input variables (for all properties): | ||||
Molecular weight of UHMWPE (million g/mol) | 1.2 | 9.2 | 4.882 | 1.988 |
MWCNT (wt%) | 0 | 3 | 0.72 | 0.758 |
Fiber length of MWCNT (µm) | 0 | 30 | 8.606 | 13.244 |
Fiber OD of MWCNT (nm) | 0 | 80 | 29.983 | 25.966 |
Graphene (wt%) | 0 | 5 | 0.248 | 0.744 |
Sheet thickness of graphene (nm) | 0 | 20 | 1.35 | 3783 |
Sheet length of graphene (µm) | 0 | 40 | 6.058 | 13.190 |
CF (wt%) | 0 | 20 | 2.529 | 5.081 |
Fiber length of CF (µm) | 0 | 1000 | 106.621 | 308.92 |
Fiber OD of CF (nm) | 0 | 7000 | 689.361 | 1959.33 |
HAP (wt%) | 0 | 70 | 7.393 | 15.401 |
HAP particle size (µm) | 0 | 7.5 | 1.017 | 2.320 |
Input variables (for wear properties): | ||||
Hardness of counteracting material (kgf/mm2) | 67.5 | 1950 | 856.958 | 427.162 |
Method | 0 | 1 | 0.161 | 0.368 |
Speed of sliding (m/s) | 0.004 | 1.667 | 0.415 | 0.427 |
Lubrication | 0 | 2 | 0.851 | 0.886 |
Normal Load (N) | 3.9 | 140 | 38.283 | 29.472 |
Sliding distance (m) | 5 | 10,000 | 959.481 | 1230.49 |
Output variables: | ||||
Young’s modulus (MPa) | 272 | 974 | 617.825 | 194.356 |
Ultimate tensile strength (MPa) | 14.2 | 77 | 32.726 | 10.675 |
Hardness (MPa) | 38 | 120 | 61.568 | 17.884 |
Specific wear rate (mm3/Nm) | 8 × 10−9 | 0.00009 | 1.98 × 10−5 | 1.83 × 10−5 |
Coefficient of friction (CoF) | 0.04 | 0.84 | 0.2036 | 0.203 |
Parameters | Values |
---|---|
Number of populations | 500 |
Number of generations | 500 |
Probability of crossover | 0.95 |
Probability of mutation | 0.05 |
Properties | Molecular Weight (Million gm/mol) | MWCNT | Graphene | Carbon Fiber | HAP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight % | Length of Fiber (µm) | OD of Fiber (nm) | Weight % | Thickness of Sheet (nm) | Length of Sheet (µm) | Weight % | Length of Fiber (µm) | OD of Fiber (nm) | Weight % | Average Particle Size (nm) | ||
E_CoF_SWR | 3 | 0.01–2 | 0.344–3.849 | 1.171–31.15 | 0.011–0.676 | 0.001–1 | 0.01–0.95 | 0.27–8.6 | 5.73–58.6 | 0.035–2.56 | 1.223–15.22 | 0.393–1.575 |
4 | 0.016–1.99 | 0.0878–3.276 | 0.565–38.14 | 0.007–1.369 | 0.003–0.98 | 0.002–0.156 | 0.0003–9.93 | 14.093–56.35 | 0.0102–2.263 | 3.4–13.9 | 0.03–1.56 | |
5 | 0.053–1.997 | 0.598–8.209 | 10.864–21.893 | 0.007–0.96 | 0.91–0.995 | 0.013–0.114 | 1.29–8.51 | 15.72–52.98 | 0.007–0.512 | 6.276–38.62 | 0.141–1.567 | |
6 | 0.017–1.98 | 0.010–4.273 | 1.042–4.181 | 0.002–0.13 | 0.719–0.998 | 0.006–0.095 | 0.14–8.34 | 6.973–27.132 | 0.0001–2.45 | 5.967–25.61 | 0.078–1.551 | |
H_CoF_SWR | 3 | 0.006–0.097 | 0.004–2.837 | 1.491–32 | 0.02–1.995 | 0.011–0.936 | 0.009–2.043 | 0.04–7.71 | 14.022–64.88 | 0.249–3.609 | 0.882–44.23 | 0.004–0.045 |
4 | 0.072–0.09 | 0.282–2.43 | 5.924–7.615 | 0.0407–1.884 | 0.294–0.907 | 0.078–1.43 | 2.91–4.17 | 76.64–90.18 | 1.544–2.32 | 14.32–44.05 | 0.016–0.022 | |
5 | 0.0018–0.097 | 0.025–5.217 | 0.026–5.735 | 0.0024–1.995 | 0.686–0.993 | 0.018–0.306 | 0.47–10.15 | 67.42–97.69 | 2.024–5.752 | 4.111–43.71 | 0.002–0.031 | |
6 | 0.052–0.099 | 0.235–6.676 | 2.977–9.185 | 0.009–1.406 | 0.658–0.964 | 0.014–0.214 | 1.43–7.91 | 54.184–87.17 | 1.672–6.65 | 6.768–42.68 | 0.0006–0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arulraj, V.; Datta, S.; Davim, J.P. Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants. Appl. Sci. 2022, 12, 10408. https://doi.org/10.3390/app122010408
Arulraj V, Datta S, Davim JP. Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants. Applied Sciences. 2022; 12(20):10408. https://doi.org/10.3390/app122010408
Chicago/Turabian StyleArulraj, Vinoth, Shubhabrata Datta, and João Paulo Davim. 2022. "Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants" Applied Sciences 12, no. 20: 10408. https://doi.org/10.3390/app122010408
APA StyleArulraj, V., Datta, S., & Davim, J. P. (2022). Natural Computing-Based Designing of Hybrid UHMWPE Composites for Orthopedic Implants. Applied Sciences, 12(20), 10408. https://doi.org/10.3390/app122010408