Natural Gum from Flaxseed By-Product as a Potential Stabilizing and Thickening Agent for Acid Whey Fermented Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Acid Whey Production
2.3. Flaxseed Gum Preparation
2.4. Fermented Whey Beverages Production
2.5. Fermented Whey Beverages Characterization
2.5.1. Microbial Analyses
2.5.2. Determination of Titratable Acidity, pH, Water Activity and Acetaldehyde Content
2.5.3. Viscosity, Syneresis and Particle Size Measurements
2.5.4. Color Analysis
2.5.5. Sensory Evaluation
2.5.6. Preparation of Supernatants
2.5.7. Determination of Reducing Sugars Content and Total Free Amino Acids Level
2.5.8. Determination of DPPH and ABTS Radicals Scavenging Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Lactic Acid Bacteria (LAB) Survivability during Cold Storage
3.2. Titratable Acidity and pH
3.3. Water Activity, Syneresis, Viscosity and Particle Sizes
3.4. Changes in Acetaldehyde Content and Sensory Evaluation Results
3.5. Color Changes
3.6. Reducing Sugars Content, Total Free Amino Acids Level and Free Radicals Scavenging Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryan, M.P.; Walsh, G. The biotechnological potential of whey. Rev. Environ. Sci. Bio/Technol. 2016, 15, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Skryplonek, K.; Dmytrów, I.; Mituniewicz-Małek, A. Probiotic fermented beverages based on acid whey. J. Dairy Sci. 2019, 102, 7773–7780. [Google Scholar] [CrossRef] [PubMed]
- Kadyan, S.; Rashmi, H.M.; Pradhan, D.; Kumari, A.; Chaudhari, A.; Deshwal, G.K. Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. LWT 2021, 142, 111059. [Google Scholar] [CrossRef]
- León-López, A.; Pérez-Marroquín, X.A.; Campos-Lozada, G.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Characterization of whey-based fermented beverages supplemented with hydrolyzed collagen: Antioxidant activity and bioavailability. Foods 2020, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozlowska, E.; Trocer, P.; Kostek, M.; Śliwiński, M.; Henriques, M.H.F.; Bartkowiak, A.; Sobolewski, P. Whey protein concentrate/isolate biofunctional films modified with melanin from watermelon (Citrullus lanatus) seeds. Materials 2020, 13, 3876. [Google Scholar] [CrossRef] [PubMed]
- Macwan, S.R.; Dabhi, B.K.; Parmar, S.C.; Aparnathi, K.D. Whey and its utilization. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 134–155. [Google Scholar] [CrossRef]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef]
- Pescuma, M.; Hébert, E.M.; Mozzi, F.; de Valdez, G.F. Functional fermented whey-based beverage using lactic acid bacteria. Int. J. Food Microbiol. 2010, 141, 73–81. [Google Scholar] [CrossRef]
- Djurić, M.; Carić, M.; Milanović, S.; Tekić, M.; Panić, M. Development of whey-based beverages. Eur. Food Res. Technol. 2004, 219, 321–328. [Google Scholar] [CrossRef]
- Luo, S.R.; Demarsh, T.; Stelick, A.; Alcaine, S. Characterization of the Fermentation and Sensory Profiles of Novel Yeast-Fermented Acid Whey Beverages. Foods 2021, 10, 1204. [Google Scholar] [CrossRef]
- Joshi, J.; Gururani, P.; Vishnoi, S.; Srivastava, A. Whey Based Beverages: A Review. Octa J. Biosci. 2020, 8, 30–37. [Google Scholar]
- Borges, A.R.; Pires, A.F.; Marnotes, N.G.; Gomes, D.G.; Henriques, M.F.; Pereira, C.D. Dairy by-Products Concentrated by Ultrafiltration Used as Ingredients in the Production of Reduced Fat Washed Curd Cheese. Foods 2020, 9, 1020. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef]
- Gallardo-Escamilla, F.J.; Kelly, A.L.; Delahunty, C.M. Mouthfeel and flavour of fermented whey with added hydrocolloids. Int. Dairy J. 2007, 17, 308–315. [Google Scholar] [CrossRef]
- Farah, J.S.; Araujo, C.B.; Melo, L. Analysis of yoghurts’, whey-based beverages’ and fermented milks’ labels and differences on their sensory profiles and acceptance. Int. Dairy J. 2017, 68, 17–22. [Google Scholar] [CrossRef]
- Buriti, F.C.A.; Freitas, S.C.; Egito, A.Ô.S.; Dos Santos, K.M.O. Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages. LWT 2014, 59, 196–203. [Google Scholar] [CrossRef]
- Kalicka, D.; Znamirowska, A.; Pawlos, M.; Szajnar, K. Effect of the type of thickener for selected quality features of peach yoghurts during refrigerated storage. In Technological Shaping of Food Quality; Wójciak, K.M., Dolatowski, Z.J., Eds.; Wydawnictwo Naukowe PTTŻ: Kraków, Poland, 2015; pp. 69–78. [Google Scholar]
- Gawai, K.M.; Mudgal, S.P.; Prajapati, J.B. Chapter 3—Stabilizers, Colorants, and Exopolysaccharides in Yogurt A2—Shah, Nagendra P. In Yogurt and Health Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; pp. 49–68. [Google Scholar]
- Gutiérrez, C.; Rubilar, M.; Jara, C.; Verdugo, M.; Sineiro, J.; Shene, C. Flaxseed and flaxseed cake as a source of compounds for food industry. J. Soil Sci. Plant Nutr. 2010, 10, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed-a potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Mendoza, D.; Kosmerl, E.; Krentz, A.; Zhang, L.; Badiger, S.; Miyagusuku-Cruzado, G.; Mayta-Apaza, A.; Giusti, M.; Jiménez-Flores, R.; García-Cano, I. Invited review: Acid whey trends and health benefits. J. Dairy Sci. 2021, 104, 1262–1275. [Google Scholar] [CrossRef]
- Hu, Y.; Shim, Y.Y.; Reaney, M.J.T. Flaxseed Gum Solution Functional Properties. Foods 2020, 9, 681. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, X.; Zhen, W.; Li, Z.; Kang, J.; Sun, X.; Wang, S.; Cui, S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocoll. 2021, 112, 106289. [Google Scholar] [CrossRef]
- Drozłowska, E.; Bartkowiak, A.; Trocer, P.; Kostek, M.; Tarnowiecka-Kuca, A.; Bienkiewicz, G.; Łopusiewicz, Ł. The influence of flaxseed oil cake extract on oxidative stability of microencapsulated flaxseed oil in spray-dried powders. Antioxidants 2021, 10, 211. [Google Scholar] [CrossRef]
- Drozłowska, E.; Bartkowiak, A.; Trocer, P.; Kostek, M.; Tarnowiecka-Kuca, A.; Łopusiewicz, Ł. Formulation and Evaluation of Spray-Dried Reconstituted Flaxseed Oil-In-Water Emulsions Based on Flaxseed Oil Cake Extract as Emulsifying and Stabilizing Agent. Foods 2021, 10, 256. [Google Scholar] [CrossRef]
- Drozłowska, E.; Bartkowiak, A.; Łopusiewicz, Ł. Characterization of flaxseed oil bimodal emulsions prepared with flaxseed oil cake extract applied as a natural emulsifying agent. Polymers 2020, 12, 2207. [Google Scholar] [CrossRef]
- Khalloufi, S.; Corredig, M.; Goff, H.D.; Alexander, M. Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocoll. 2009, 23, 611–618. [Google Scholar] [CrossRef]
- Drozłowska, E.; Łopusiewicz, Ł.; Mężyńska, M.; Bartkowiak, A. The effect of native and denaturated flaxseed meal extract on physiochemical properties of low fat mayonnaises. J. Food Meas. Charact. 2020, 14, 1135–1145. [Google Scholar] [CrossRef]
- Fedeniuk, R.W.; Biliaderis, C.G. Composition and Physicochemical Properties of Linseed (Linum usitatissimum L.) Mucilage. J. Agric. Food Chem. 1994, 42, 240–247. [Google Scholar] [CrossRef]
- Drozłowska, E.; Łopusiewicz, Ł.; Mężyńska, M.; Bartkowiak, A. Valorization of flaxseed oil cake residual from cold-press oil production as a material for preparation of spray-dried functional powders for food applications as emulsion stabilizers. Biomolecules 2020, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Dmytrów, I.; Szczepanik, G.; Kryza, K.; Mituniewicz-Małek, A.; Lisiecki, S. Impact of polylactic acid packaging on the organoleptic and physicochemical properties of tvarog during storage. Int. J. Dairy Technol. 2011, 64, 569–577. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Trocer, P.; Kwiatkowski, P.; Bartkowiak, A.; Gefrom, A.; Sienkiewicz, M. The Effect of Fermentation with Kefir Grains on the Physicochemical and Antioxidant Properties of Beverages from Blue Lupin (Lupinus angustifolius L.) Seeds. Molecules 2020, 25, 5791. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1997. [Google Scholar]
- PN-ISO 5534:2005; Determination of Total Dry Matter Content (Reference Method). Polish Committee for Standardization: Warszawa, Poland, 2005. (In Polish)
- Yu, D.; Kwon, G.; An, J.; Lim, Y.S.; Jhoo, J.W.; Chung, D. Influence of prebiotic biopolymers on physicochemical and sensory characteristics of yoghurt. Int. Dairy J. 2021, 115, 104915. [Google Scholar] [CrossRef]
- Kubo, M.T.K.; Maus, D.; Xavier, A.A.O.; Mercadante, A.Z.; Viotto, W.H. Transference of lutein during cheese making, color stability, and sensory acceptance of Prato cheese. Food Sci. Technol. 2013, 33, 81–88. [Google Scholar] [CrossRef] [Green Version]
- ISO 22935-2:2013-07; Milk and Milk Products. Sensory Analysis. Part 2: Recommended Methods of Sensory Evaluation. Polish Committee for Standardization: Warszawa, Poland, 2013. (In Polish)
- PN-ISO 22935-3:2013-07; Milk and Milk Products. Sensory Analysis. Part 3: Guidelines for Assessing the Conformity of Sensory Properties with Product Specifications Using the Scoring Method. Polish Committee for Standardization: Warszawa, Poland, 2013. (In Polish)
- Kiełczewska, K.; Pietrzak-Fiećko, R.; Nalepa, B. Acid whey-based smoothies with probiotic strains. J. Elem. 2020, 25, 1435–1448. [Google Scholar] [CrossRef]
- AbdulAlim, T.S.; Abeer, F.; Zayan, A.F.; Pedro, H.; Campelo, P.H.; Bakry, A.M. Development of new functional fermented product: Mulberry-whey beverage. J. Nutr. Food Technol. 2018, 1, 64–69. [Google Scholar] [CrossRef]
- Sady, M.; Najgebauer-Lejko, D.; Domagala, J. The suitability of different probiotic strains for the production of fruit-whey beverages. Acta Sci. Pol. Technol. Aliment. 2017, 16, 421–429. [Google Scholar] [CrossRef]
- Madhavi, T.V.; Shah, R.K. Microbiological study of synbiotic fermented whey drink. Res. J. Anim. Husb. Dairy Sci. Res. Pap. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Hadinezhad, M.; Duc, C.; Han, N.F.; Hosseinian, F. Flaxseed Soluble Dietary Fibre Enhances Lactic Acid Bacterial Survival and Growth in Kefir and Possesses High Antioxidant Capacity. J. Food Res. 2013, 2, 152. [Google Scholar] [CrossRef] [Green Version]
- Basiri, S.; Haidary, N.; Shekarforoush, S.S.; Niakousari, M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018, 187, 59–65. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- Terpou., A.; Bosnea, L.; Kanellaki, M. Effect of Mastic Gum (Pistacia Lentiscus Via Chia) as a Probiotic Cell Encapsulation Carrier for Functional Whey Beverage Production. SCIOL Biomed. 2017, 1, 1–10. [Google Scholar]
- Farahani, Z.K.; Mousavi, S.M.A.E.; Ardebili, S.M.S.; Bakhoda, H. Modification of sodium alginate by octenyl succinic anhydride to fabricate beads for encapsulating jujube extract. Curr. Res. Food Sci. 2022, 5, 157. [Google Scholar] [CrossRef]
- Tabibloghmany, F.; Hojjatoleslamy, M.; Farhadian, F.; Ehsandoost, E. Effect of linseed (Linum usitatissimum L.) hydrocolloid as edible coating on decreasing oil absorption in potato chips during Deep-fat frying. Int. J. Agric. Crop Sci. 2013, 6, 63–69. [Google Scholar]
- Aamer, R.A.; El-Kholy, W.M.; Mailam, M.A. Production of Functional Beverages from Whey and Permeate Containing Kumquat Fruit. Alexandria J. Food Sci. Technol. 2017, 14, 41–56. [Google Scholar] [CrossRef]
- Alane, D.; Raut, N.; Kamble, D.B.; Bhotmange, M. Studies on preparation and storage stability of whey based mango herbal beverage. Int. J. Chem. Stud. 2017, 5, 237–241. [Google Scholar]
- Ismail, A.E.; Abdelgader, M.O.; Ali, A.A. Microbial and chemical evaluation of Whey-Based Mango beverage. Adv. J. Food Sci. Technol. 2011, 3, 250–253. [Google Scholar]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering capacity of dairy products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Kalyas, A.; Ürkek, B. Effect of Flaxseed Powder on Physicochemical, Rheological, Microbiological and Sensory Properties of Yoghurt. Braz. Arch. Biol. Technol. 2022, 65, 2022. [Google Scholar] [CrossRef]
- Van Long, N.N.; Rigalma, K.; Coroller, L.; Dadure, R.; Debaets, S.; Mounier, J.; Vasseur, V. Modelling the effect of water activity reduction by sodium chloride or glycerol on conidial germination and radial growth of filamentous fungi encountered in dairy foods. Food Microbiol. 2017, 68, 7–15. [Google Scholar] [CrossRef]
- Skryplonek, K.; Jasińska, M. The quality of fermented probiotic drinks obtained from frozen acid whey and milk during cooling storage. Food Sci. Technol. Qual. 2016, 1, 32–44. [Google Scholar] [CrossRef]
- Skryplonek, K.; Jasińska, M. Fermented probiotic beverages based on acid whey. Acta Sci. Pol. Technol. Aliment. 2015, 14, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, B.; Kenari, R.E.; Amiri, Z.R. Stabilization of whey-based pina colada beverage by mixed Iranian native gums: A mixture design approach. J. Food Meas. Charact. 2022, 16, 171–179. [Google Scholar] [CrossRef]
- Hashemi, F.S.; Pezeshky, A.; Gharedaghi, K.; Javani, R. Effect of Hydrocolloids on Sensory Properties of the Fermented Whey Beverage. In Proceedings of the 1st International Conference on Natural Food Hydrocolloids, Mashhad, Iran, 22–23 October 2014. [Google Scholar]
- Zendeboodi, F.; Yeganehzad, S.; Sadeghian, A. Optimizing the formulation of a natural soft drink based on biophysical properties using mixture design methodology. J. Food Meas. Charact. 2018, 12, 763–769. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Tse, T.J.; Wang, Y.; Reaney, M.J.T. Flaxseed gum a versatile natural hydrocolloid for food and non-food applications. Trends Food Sci. Technol. 2018, 75, 146–157. [Google Scholar] [CrossRef]
- Amiri, M.S.; Mohammadzadeh, V.; Yazdi, M.E.T.; Barani, M.; Rahdar, A.; Kyzas, G.Z. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021, 26, 1770. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G. Physicochemical characteristics of flaxseed gum. Food Res. Int. 1996, 29, 397–402. [Google Scholar] [CrossRef]
- Chen, H.H.; Xu, S.Y.; Wang, Z. Gelation properties of flaxseed gum. J. Food Eng. 2006, 77, 295–303. [Google Scholar] [CrossRef]
- Durham, R.J.; Hourigan, J.A. Waste Management and Co-product Recovery in Food Processing. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Waldron, K.W., Ed.; Woodhead Publishing: Sawston, UK, 2007; pp. 332–387. ISBN 978-1-84569-025-0. [Google Scholar]
- Uebelacker, M.; Lachenmeier, D.W. Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography. J. Autom. Methods Manag. Chem. 2011, 2011, 907317. [Google Scholar] [CrossRef] [Green Version]
- Shepard, L.; Miracle, R.E.; Leksrisompong, P.; Drake, M.A. Relating sensory and chemical properties of sour cream to consumer acceptance. J. Dairy Sci. 2013, 96, 5435–5454. [Google Scholar] [CrossRef]
- Gierczynski, I.; Guichard, E.; Laboure, H. Aroma perception in dairy products: The roles of texture, aroma release and consumer physiology. A review. Flavour Fragr. J. 2011, 26, 141–152. [Google Scholar] [CrossRef]
- Zarei, F.; Nateghi, L.; Eshaghi, M.R.; Abadi, M.E.T. Production of gamma-aminobutyric acid (Gaba) in whey protein drink during fermentation by lactobacillus plantarum. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1087–1092. [Google Scholar] [CrossRef]
- Keshtkaran, M.; Mohammadifar, M.A.; Asadi, G.H.; Nejad, R.A.; Balaghi, S. Effect of gum tragacanth on rheological and physical properties of a flavored milk drink made with date syrup. J. Dairy Sci. 2013, 96, 4794–4803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behbahani, M.; Abbasi, S. Stabilization of Flixweed (Descurainia sophia L.) syrup using native hydrocolloids. Iran. J. Nutr. Sci. Food Technol. 2014, 9, 31–38. [Google Scholar]
- Neis, E.P.J.G.; Dejong, C.H.C.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, F.; Pourjafar, H.; Bahadori, M.B.; Pimentel, T.C. Effect of microencapsulation on the development of antioxidant activity and viability of lactobacillus acidophilus la5 in whey drink during fermentation. Biointerface Res. Appl. Chem. 2021, 11, 9762–9771. [Google Scholar] [CrossRef]
- Virtanen, T.; Pihlanto, A.; Akkanen, S.; Korhonen, H. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 2007, 102, 106–115. [Google Scholar] [CrossRef]
Sample | Time of Storage (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
LAB (CFU/mL) | |||||
W | 7.65 × 106 ± 1.05 Aa | 5.05 × 106 ± 0.71 Aa | 4.86 × 106 ± 0.79 Aa | 4.50 × 105 ± 2.15 Ba | 4.60 × 105 ± 0.85 Ba |
WMP | 6.40 × 107 ± 1.55 Ab | 2.47 × 107 ± 0.20 BCb | 5.30 × 107 ± 0.05 ABb | 1.49 × 107 ± 0.01 Cb | 3.32 × 106 ± 0.09 Cb |
WFG1 | 2.65 × 108 ± 0.07 Ac | 7.25 × 107 ± 2.33 Bc | 1.15 × 108 ± 0.07 Cc | 7.50 × 107 ± 0.71 Bc | 1.49 × 107 ± 0.32 Ec |
WFG2 | 2.75 × 108 ± 1.63 Av | 1.18 × 108 ± 0.06 Bd | 1.37 × 108 ± 0.14 Cc | 4.67 × 107 ± 0.40 Dd | 7.90 × 107 ± 0.99 Ed |
Sample | Time of Storage (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
pH | |||||
W | 4.40 ± 0.01 Ab | 4.39 ± 0.02 Aab | 4.42 ± 0.03 Aa | 4.43 ± 0.02 Aac | 4.48 ± 0.03 Ba |
WMP | 4.51 ± 0.02 Aa | 4.52 ± 0.02 Ad | 4.52 ± 0.01 Ab | 4.52 ± 0.01 Ab | 4.55 ± 0.03 ABb |
WFG1 | 4.32 ± 0.02 Ac | 4.37 ± 0.02 Bbc | 4.40 ± 0.02 Cac | 4.41 ± 0.02 Cacd | 4.44 ± 0.01 Cc |
WFG2 | 4.26 ± 0.02 Ad | 4.34 ± 0.02 Bc | 4.38 ± 0.01 Cc | 4.39 ± 0.01 Ccd | 4.41 ± 0.07 Cc |
TA (%) | |||||
W | 0.86 ± 0.00 Aa | 0.88 ± 0.03 ABa | 0.89 ± 0.01 ABa | 0.90 ± 0.01 Ba | 0.82 ± 0.05 Ca |
WMP | 0.65 ± 0.01 Ab | 0.64 ± 0.01 Ab | 0.63 ± 0.01 Ab | 0.60 ± 0.01 Bb | 0.60 ± 0.01 Bb |
WFG1 | 0.94 ± 0.01 Ac | 0.95 ± 0.01 Abc | 0.96 ± 0.01 Abc | 0.97 ± 0.01 Ac | 0.96 ± 0.04 Abc |
WFG2 | 1.00 ± 0.01 ABd | 0.99 ± 0.01 Ad | 1.03 ± 0.01 BCd | 1.04 ± 0.00 Cd | 0.97± 0.02 Dd |
Sample | Time of Storage (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
aw (-) | |||||
W | 0.98 ± 0.01 Aa | 0.98 ± 0.00 ABa | 0.98 ± 0.00 BCa | 0.97 ± 0.00 Ca | 0.97 ± 0.01 CDa |
WMP | 0.97 ± 0.00 Ab | 0.97 ± 0.01 Ab | 0.97 ± 0.01 Aa | 0.97 ± 0.03 Bb | 0.96 ± 0.00 Bb |
WFG1 | 0.96 ± 0.00 Ac | 0.96 ± 0.01 ABc | 0.95 ± 0.00 ABb | 0.95 ± 0.02 BCc | 0.95 ± 0.01 Cc |
WFG2 | 0.96 ± 0.03 Ac | 0.95 ± 0.00 BCd | 0.95 ± 0.00 BCb | 0.95 ± 0.02 Bc | 0.95 ± 0.02 ACc |
Syneresis (%) | |||||
W | 94.83 ± 0.30 Aa | 94.67 ± 0.30 Aa | 95.47 ± 0.50 Aa | 94.77 ± 0.40 Aa | 94.30 ± 1.10 Aa |
WMP | 74.50 ± 0.50 Ab | 74.50 ± 0.50 Ab | 74.67 ± 2.10 Ab | 72.67 ± 2.50 BCb | 73.99 ± 1.60 ABb |
WFG1 | 74.67 ± 0.60 Ab | 74.70 ± 0.30 Ab | 75.57 ± 1.30 Ab | 74.83 ± 0.20 Ac | 74.67 ± 0.70 Ab |
WFG2 | 67.00 ± 1.00 Ac | 65.67 ± 0.80 Ac | 65.03 ± 0.30 Bb | 64.00 ± 0.40 Cbc | 61.82 ± 1.50 Dc |
Viscosity (Pa·s) | |||||
W | 125.31 ± 0.05 Aa | 122.30 ± 0.03 Aa | 89.21 ± 0.10 Ba | 41.48 ± 0.03 Ca | 33.52 ± 0.10 Da |
WMP | 604.30 ± 0.02 Ab | 749.52 ± 0.02 Bb | 425.10 ± 0.05 Cb | 159.32 ± 0.02 Db | 89.30 ± 0.12 Eb |
WFG1 | 1038.22 ± 0.10 Ac | 1012.32 ± 0.01 Bc | 989.22 ± 0.02 Cd | 975.13 ± 0.02 Dc | 911.34 ± 0.05 Ec |
WFG2 | 1800.21 ± 0.05 Ad | 1740.90 ± 0.02 Bd | 1534.00 ± 0.01 Ce | 1522.23 ± 0.09 Dd | 1501.24 ± 0.06 Ed |
D4,3 (µm) | |||||
W | 279.48 ± 1.14 Aa | 130.52 ± 0.85 Ba | 124.63 ± 0.36 Ca | 132.04 ± 0.59 Da | 133.22 ± 0.35 Ea |
WMP | 261. 44 ± 1.12 Ab | 259.17 ± 0.48 Bb | 262.24 ± 0.79 Cb | 252.49 ± 0.10 Db | 257.12 ± 0.77 Eb |
WFG1 | 110.48 ± 0.46 Ac | 115.18 ± 0.58 Bc | 114.16 ± 0.41 Cc | 115.97 ± 0.19 Dc | 116.79 ± 0.39 Ec |
WFG2 | 81.20 ± 0.36 Ad | 70.76 ± 0.39 Bd | 69.47 ± 0.35 Cd | 68.86 ± 0.37 Dd | 70.92 ± 0.36 Bd |
D3,2 (µm) | |||||
W | 38.86 ± 1.18 Aa | 22.52 ± 0.92 Ba | 21.48 ± 0.47 Ca | 22.58 ± 0.68 Ba | 21.00 ± 0.47 Da |
WMP | 79.04 ± 1.21 Ab | 81.52 ± 0.58 Bb | 79.63 ± 0.79 Ab | 71.93 ± 0.11 Cb | 75.81 ± 0.78 Db |
WFG1 | 14.42 ± 0.66 Ac | 17.25 ± 0.71 Bc | 14.97 ± 0.61 Cc | 16.32 ± 0.13 Dc | 14.99 ± 0.61 Cc |
WFG2 | 16.89 ± 0.53 Ad | 14.85 ± 0.57 Bd | 15.29 ± 0.53 Cd | 14.52 ± 0.56 Bd | 14.76 ± 0.56 Bc |
Sample | Time of Storage (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
Acetaldehyde (mg/dm3) | |||||
W | 0.075 ± 0.00 Ac | 0.393 ± 0.03 Bb | 0.491 ± 0.06 Cd | 0.475 ± 0.06 Cd | 1.343 ± 0.04 Dc |
WMP | 0.088 ± 0.01 Ab | 0.923 ± 0.03 Ba | 0.984 ± 0.01 Bc | 0.964 ± 0.03 Bc | 1.558 ± 0.08 Cb |
WFG1 | 0.441 ± 0.10 Aa | 0.952 ± 0.03 Ba | 1.389 ± 0.10 Ca | 1.346 ± 0.04 Cb | 1.645 ± 0.04 Da |
WFG2 | 0.364 ± 0.01 Ab | 0.449 ± 0.01 Bb | 1.184 ± 0.03 Cb | 1.613 ± 0.02 Da | 1.638 ± 0.04 Da |
Consistency (points) | |||||
W | 2.20 ± 0.30 Aa | 2.30 ± 0.30 Aa | 2.20 ± 0.30 Aa | 2.20 ± 0.30 Aa | 2.00 ± 0.00 Ba |
WMP | 2.70 ± 0.30 Aa | 3.20 ± 0.30 Bb | 3.30 ± 0.30 Bb | 3.20 ± 0.30 Bb | 3.50 ± 0.50 BCb |
WFG1 | 4.00 ± 0.60 Ab | 4.20 ± 0.60 Abc | 4.30 ± 0.30 BCc | 4.30 ± 0.30 BCc | 4.50 ± 0.00 Cc |
WFG2 | 4.80 ± 0.30 ABc | 4.80 ± 0.30 ABd | 5.00 ± 0.00 Bd | 5.00 ± 0.00 Bd | 5.00 ± 0.00 Bc |
Appearance (points) | |||||
W | 3.20 ± 0.30 ABa | 3.00 ± 0.00 Aa | 3.20 ± 0.30 ABa | 3.20 ± 0.30 ABa | 3.50 ± 0.50 Ba |
WMP | 3.70 ± 0.30 Ab | 3.80 ± 0.30 Ab | 4.00 ± 0.00 Ab | 4.00 ± 0.00 Ab | 3.80 ± 0.30 Ab |
WFG1 | 4.00 ± 0.50 Abc | 4.20 ± 0.30 Bbc | 4.2 ± 0.30 Bb | 4.20 ± 0.30 Bb | 4.30 ± 0.30 Bc |
WFG2 | 4.30 ± 0.30 ABc | 4.50 ± 0.00 BCc | 4.70 ± 0.30 Cc | 4.70 ± 0.30 Cc | 4.70 ± 0.30 Cc |
Taste (points) | |||||
W | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Aa | 3.40 ± 0.50 Ba | 3.40 ± 0.50 Ba |
WMP | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Aa | 4.20 ± 0.30 Bb | 4.20 ±0.30 Bb |
WFG1 | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Aa | 3.80 ± 0.30 Ac | 3.80 ± 0.30 Ac |
WFG2 | 3.20 ± 0.30 Ab | 3.30 ± 0.30 Ab | 3.20 ± 0.30 Ab | 3.30 ± 0.30 Ad | 3.30 ± 0.30 Ad |
Smell (points) | |||||
W | 4.80 ± 0.30 Aa | 5.00 ± 0.00 Ba | 5.00 ± 0.00 Ba | 5.00 ± 0.00 Ba | 5.00 ± 0.00 Ba |
WMP | 5.00 ± 0.00 Ab | 5.00 ± 0.00 Aa | 5.00 ± 0.00 Aa | 5.00 ± 0.00 Aa | 5.00 ± 0.00 Aa |
WFG1 | 4.30 ± 0.30 Ac | 4.20 ± 0.30 Ab | 4.00 ± 0.00 Bb | 3.80 ± 0.30 Cb | 3.80 ± 0.30 Cb |
WFG2 | 4.20 ± 0.30 Ac | 4.20 ± 0.30 Ab | 3.80 ± 0.30 Bc | 3.70 ± 0.30 Bb | 3.70 ± 0.30 Bb |
Overall sensory quality (points) | |||||
W | 3.50 ± 1.12 Aa | 3.54 ± 1.15 Aa | 3.54 ± 1.19 Aa | 3.44 ± 1.17 Aa | 3.48 ± 1.23 Aab |
WMP | 3.79 ± 0.96 Aa | 3.96 ± 0.76 ABa | 4.04 ± 0.70 Ba | 4.08 ± 0.75 Ba | 4.13 ± 0.64 Ba |
WFG1 | 4.04 ± 0.21 Aa | 4.08 ± 0.17 Aa | 4.08 ± 0.22 Aa | 4.04 ± 0.25 ABa | 4.13 ± 0.34 Bb |
WFG2 | 4.13 ± 0.70 Aa | 4.21 ± 0.64 Aa | 4.17 ± 0.83 Aa | 4.17 ± 0.79 Aa | 4.17 ± 0.79 Aab |
Sample | Time of Storage (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | 28 | |
L* | |||||
W | 48.82 ± 2.80 Aa | 50.13 ± 0.80 Aa | 49.92 ± 0.40 Aa | 48.51 ± 0.40 Aa | 49.78 ± 1.00 Aa |
WMP | 65.50 ± 0.40 Ab | 66.67 ± 3.00 Ab | 65.27 ± 0.50 Bb | 61.85 ± 2.90 Cb | 57.81 ± 1.50 Db |
WFG1 | 69.42 ± 0.50 Ac | 67.79 ± 1.60 Bb | 67.40 ± 0.70 Ac | 66.50 ± 6.10 Ac | 60.20 ± 1.20 Cb |
WFG2 | 70.72 ± 0.00 Acd | 71.35 ± 2.20 Ac | 69.50 ± 1.10 Ac | 69.78 ± 1.20 Ac | 70.52 ± 0.40 Ac |
a* | |||||
W | 2.92 ± 0.09 Aa | 2.90 ± 0.11 Aa | 3.07 ± 0.05 Aa | 2.83 ± 0.06 Aa | 2.89 ± 0.07 Aa |
WMP | 3.57 ± 0.34 Ab | 3.83 ± 0.16 BCbc | 3.54 ± 0.08 Ab | 3.49 ± 0.44 Ab | 3.67 ± 0.06 ABb |
WFG1 | 4.06 ± 0.03 Abc | 4.08 ± 0.04 Abc | 4.07 ± 0.08 Abc | 4.04 ± 0.00 Bc | 4.28 ± 0.18 ACc |
WFG2 | 4.19 ± 0.05 ABcd | 4.17 ± 0.21ABcd | 4.18 ± 0.10 ABc | 4.36 ± 0.16 Bd | 3.92 ± 0.04 Cb |
b* | |||||
W | 2.32 ± 0.11 Aa | 2.50 ± 0.13Aa | 2.38 ± 0.06 Aa | 2.38 ± 0.05 Aa | 3.00 ± 0.03 Ba |
WMP | 5.68 ± 0.36 ABb | 5.72 ± 0.17ABb | 5.24 ± 0.08 Cb | 5.83 ± 0.10 Db | 4.40 ± 0.11 Ab |
WFG1 | 5.27 ± 0.15 Ac | 5.10 ± 0.21Abc | 5.76 ± 0.39 Cc | 5.06 ± 0.07 Abc | 4.53 ± 0.19 Dbc |
WFG2 | 4.73 ± 0.11 ABd | 5.50 ± 0.08Dd | 4.86 ± 0.17 ACd | 4.91 ± 0.03 ACc | 4.74 ± 0.40 ABc |
C* | |||||
W | 3.73 ± 0.07 Aa | 3.83 ± 0.06Aa | 3.88 ± 0.05 ABa | 3.70 ± 0.07 Aa | 4.25 ± 0.03 Ba |
WMP | 6.71 ± 0.39 Ab | 6.88 ± 0.18Ab | 6.32 ± 0.03 Bb | 6.79 ± 0.30 Ab | 6.60 ± 0.12 Cb |
WFG1 | 6.65 ± 0.13 Ab | 6.53 ± 0.14Ac | 7.05 ± 0.36 Bc | 6.47 ± 0.05 Ac | 6.73 ± 0.26 Cb |
WFG2 | 6.32 ± 0.10 ABc | 6.90 ± 0.19Cd | 6.41 ± 0.08 ABb | 6.57 ± 0.09 Ac | 6.21 ± 0.33 Bc |
h° | |||||
W | 0.67 ± 0.03 ABa | 0.71 ± 0.04Ca | 0.66 ± 0.01 Aa | 0.70 ± 0.01 BCa | 0.79 ± 0.02 Da |
WMP | 1.01 ± 0.04 ABb | 0.98 ± 0.02ACb | 0.98 ± 0.02 ACb | 1.03 ± 0.05 Bb | 0.84 ± 0.01 Dc |
WFG1 | 0.92 ± 0.01 Ac | 0.90 ± 0.02Abc | 0.96 ± 0.03 Cb | 0.90 ± 0.01 ABc | 0.83 ± 0.00 Db |
WFG2 | 0.85 ± 0.01 Ad | 0.92 ± 0.02Bc | 0.86 ± 0.03 Ac | 0.84 ± 0.02 Ad | 0.70 ± 0.04 Cc |
ΔE | |||||
W | used as standard | 2.19 ± 0.76Aa | 2.48 ± 0.65 Aa | 2.35 ± 1.42 Ba | 2.92 ± 0.65 Aa |
WMP | 16.59 ± 2.48 Aa | 16.47 ± 3.15Ab | 15.26 ± 0.62 Ab | 13.23 ± 2.46 Ab | 7.98 ± 0.47 Bb |
WFG1 | 22.17 ± 0.62 Aa | 17.19 ± 1.33Bb | 17.41 ± 1.07 Bb | 17.95 ± 5.71 Abc | 10.44 ± 0.57 Cc |
WFG2 | 23.49 ± 0.17 Aa | 20.75 ± 0.85Bc | 19.54 ± 1.41 Cc | 21.27 ± 1.65 Bc | 20.72 ± 1.15 Bd |
Sample | Time of Storage (Days) | |||||
---|---|---|---|---|---|---|
0 | 1 | 7 | 14 | 21 | 28 | |
DPPH (%) | ||||||
W | 96.17 ± 0.11 ABab | 96.22 ± 0.11 Ba | 95.99 ± 0.35 Aa | 95.67 ± 0.11 Ca | 95.71 ± 0.10 Ca | 95.53 ± 0.21 Ca |
WMP | 95.90 ± 0.17 ABEa | 95.86 ± 0.05 ACEb | 96.25 ± 0.23 Ca | 96.10 ± 0.14 Bb | 95.63 ± 0.26 Da | 95.81 ± 0.11 DEab |
WFG1 | 96.32 ± 0.08 Ab | 96.29 ± 0.04 ACa | 96.01 ± 0.14 Ba | 96.10 ± 0.16A BCb | 96.31 ± 0.06 ACb | 95.59 ± 0.17 Da |
WFG2 | 96.16 ± 0.12 ABab | 96.91 ± 0.19 Cc | 95.54 ± 0.54 Db | 96.71 ± 0.07 Cc | 96.32 ± 0.15 Ab | 95.95 ± 0.17 Bb |
ABTS (%) | ||||||
W | 69.84 ± 1.70 Aa | 62.78 ± 2.10 BCa | 64.34 ± 2.30 CDa | 61.72 ± 1.20 Ba | 67.02 ± 1.90 Ea | 65.40 ± 2.20 DEa |
WMP | 73.02 ± 1.80 Aabc | 71.61 ± 1.40 Ab | 72.95 ± 1.10 ABb | 72.39 ± 3.90 Ab | 72.67 ± 2.30 ABb | 74.79 ± 2.30 Bb |
WFG1 | 76.77 ± 2.30 Ab | 75.56 ± 1.20 ABb | 72.39 ± 0.10 Db | 70.06 ± 1.40 Cb | 72.25 ± 2.50 CDb | 73.94 ± 2.10 BDbc |
WFG2 | 77.54 ± 0.40 Ac | 72.46 ± 2.20 Bb | 75.07 ± 1.50 Cb | 71.89 ± 2.40 CDb | 73.52 ± 3.50 BCb | 72.46 ± 1.20 Cbc |
RSC (mg/mL) | ||||||
W | 141.46 ± 1.52 Aa | 133.46 ± 2.50 Ba | 150.35 ± 3.32 Ca | 162.15 ± 3.05 Da | 133.27 ± 1.03 Ba | 106.38 ± 2.18 Ea |
WMP | 188.73 ± 3.86 Ab | 203.54 ± 2.39 Bb | 222.85 ± 5.87 Cb | 253.23 ± 5.66 Db | 244.85 ± 2.72 Db | 217.46 ± 8.81 Bb |
WFG1 | 248.32 ± 1.23 Ac | 232.69 ± 12.29 Bc | 224.45 ± 2.21 Cc | 222.96 ± 0.82 Cb | 234.35 ± 3.97 Bc | 216.08 ± 4.79 Dc |
WFG2 | 271.04 ± 5.60 Ad | 247.69 ± 5.33 Bd | 274.81 ± 4.51 Ad | 224.31 ± 0.65 Cc | 247.23 ± 2.39 Bc | 211.19 ± 2.23 Dd |
TFAAL (mg/mL) | ||||||
W | 1.51 ± 0.12ABa | 1.60 ± 0.18ABa | 1.72 ± 0.11Aa | 1.63 ± 0.15 Aa | 1.32 ± 0.14 Ba | 0.92 ± 0.00 Ca |
WMP | 2.22 ± 0.15Ab | 2.48 ± 0.27ABb | 2.66 ± 0.19Bb | 2.68 ± 0.23 Bb | 2.23 ± 0.20 Ab | 2.31 ± 0.19 Ab |
WFG1 | 2.59 ± 0.22ABbc | 2.31 ± 0.24ACb | 2.82 ± 0.27BDb | 3.10 ± 0.30 Db | 2.21 ± 0.18 Cb | 3.83 ± 0.80 Ec |
WFG2 | 3.03 ± 0.31Ac | 3.26 ± 0.46Ac | 3.92 ± 0.32Bc | 1.77 ± 0.11 Ca | 1.81 ± 0.18 Cab | 1.59 ± 0.15 Cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łopusiewicz, Ł.; Dmytrów, I.; Mituniewicz-Małek, A.; Kwiatkowski, P.; Kowalczyk, E.; Sienkiewicz, M.; Drozłowska, E. Natural Gum from Flaxseed By-Product as a Potential Stabilizing and Thickening Agent for Acid Whey Fermented Beverages. Appl. Sci. 2022, 12, 10281. https://doi.org/10.3390/app122010281
Łopusiewicz Ł, Dmytrów I, Mituniewicz-Małek A, Kwiatkowski P, Kowalczyk E, Sienkiewicz M, Drozłowska E. Natural Gum from Flaxseed By-Product as a Potential Stabilizing and Thickening Agent for Acid Whey Fermented Beverages. Applied Sciences. 2022; 12(20):10281. https://doi.org/10.3390/app122010281
Chicago/Turabian StyleŁopusiewicz, Łukasz, Izabela Dmytrów, Anna Mituniewicz-Małek, Paweł Kwiatkowski, Edward Kowalczyk, Monika Sienkiewicz, and Emilia Drozłowska. 2022. "Natural Gum from Flaxseed By-Product as a Potential Stabilizing and Thickening Agent for Acid Whey Fermented Beverages" Applied Sciences 12, no. 20: 10281. https://doi.org/10.3390/app122010281
APA StyleŁopusiewicz, Ł., Dmytrów, I., Mituniewicz-Małek, A., Kwiatkowski, P., Kowalczyk, E., Sienkiewicz, M., & Drozłowska, E. (2022). Natural Gum from Flaxseed By-Product as a Potential Stabilizing and Thickening Agent for Acid Whey Fermented Beverages. Applied Sciences, 12(20), 10281. https://doi.org/10.3390/app122010281