Eco-Friendly Synthesis and Comparative In Vitro Biological Evaluation of Silver Nanoparticles Using Tagetes erecta Flower Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Obtaining of Extracts
2.2. Green Synthesis of AgNPs
2.3. Characterization of the Synthesized AgNPs
2.4. In Vitro Antioxidant Activity
2.5. Antimicrobial Activity
3. Results
3.1. AgNPs Synthesis
3.2. Optimization of AgNPs Synthesis
3.2.1. The Influence of Silver Nitrate Concentration on AgNPs Synthesis
3.2.2. The Influence of Plant Extract:AgNO3 Ratios on AgNPs synthesis
3.2.3. The Influence of pH on AgNPs Synthesis
3.2.4. The Influence of Temperature on AgNPs Synthesis
3.2.5. The Influence of Stirring Time on AgNPs Synthesis
3.3. Characterization of The Synthesized AgNPs
3.3.1. Visual Inspection
3.3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3.3. Transmission Electron Microscopy (TEM) Analysis
3.3.4. Energy Dispersive X-ray (EDX) Analysis
3.3.5. DLS Characterization and Zeta Potential Determination
3.3.6. Evaluation of The Total Phenolic Content of Extracts Used for AgNPs Synthesis
3.4. In Vitro Evaluation of the Antioxidant Activity
3.5. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary metabolites from Artemisia genus as biopesticides and innovative nano-based application strategies. Molecules 2021, 26, 3061. [Google Scholar] [CrossRef]
- Rai, S.; Rai, A. Review: Nanotechnology—The secret of fifth industrial revolution and the future of next generation. Nusant. Biosci. 2015, 7, 61–66. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2014, 42, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharathi, D.; Bhuvaneshwari, V. Evaluation of the cytotoxic and antioxidant activity of phyto-synthesized silver nanoparticles using Cassia angustifolia flowers. Bionanoscience 2019, 9, 155–163. [Google Scholar] [CrossRef]
- Ansar, S.; Tabassum, H.; Aladwan, N.S.M.; Naiman Ali, M.; Almaarik, B.; AlMahrouqi, S.; Abudawood, M.; Banu, N.; Alsubki, R. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci. Rep. 2020, 10, 18564. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Haghighi Pak, Z.; Abbaspour, H.; Karimi, N.; Fattahi, A. Eco-friendly synthesis and antimicrobial activity of silver nanoparticles using Dracocephalum moldavica seed extract. Appl. Sci. 2016, 6, 69. [Google Scholar] [CrossRef]
- Burlec, A.F.; Pecio, Ł.; Kozachok, S.; Mircea, C.; Corciovă, A.; Vereștiuc, L.; Cioancă, O.; Oleszek, W.; Hăncianu, M. Phytochemical profile, antioxidant activity, and cytotoxicity assessment of Tagetes erecta L. flowers. Molecules 2021, 26, 1201. [Google Scholar] [CrossRef] [PubMed]
- Burlec, A.F.; Cioancă, O.; Mircea, C.; Arsene, C.; Tuchiluş, C.; Corciovă, A.; Hăncianu, M. Antioxidant and antimicrobial properties of Chrysanthemum and Tagetes selective extracts. Farmacia 2019, 67, 405–410. [Google Scholar] [CrossRef]
- Neher, R.T. The ethnobotany of Tagetes. Econ. Bot. 1968, 22, 317–325. [Google Scholar] [CrossRef]
- Lim, T.K. Tagetes erecta. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2014; pp. 432–447. ISBN 978-94-007-7394-3. [Google Scholar]
- Maity, N.; Nema, N.K.; Abedy, M.K.; Sarkar, B.K.; Mukherjee, P.K. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J. Ethnopharmacol. 2011, 137, 1300–1305. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, X.; He, W.-H.; Xu, H.-G.; Yuan, F.; Gao, Y.-X. Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia 2012, 83, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Qi, H.; Shi, Y. Phytochemicals and their biological activities of plants in Tagetes L. Chin. Herb. Med. 2012, 4, 103–117. [Google Scholar] [CrossRef]
- Pérez Gutiérrez, R.M.; Luna, H.H.; Garrido, S.H. Antioxidant activity of Tagetes erecta essential oil. J. Chil. Chem. Soc. 2006, 51, 883–886. [Google Scholar] [CrossRef]
- Li, W.; Gao, Y.; Zhao, J.; Wang, Q. Phenolic, flavonoid, and lutein ester content and antioxidant activity of 11 cultivars of Chinese marigold. J. Agric. Food Chem. 2007, 55, 8478–8484. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Saha, P.; Jain, R.; Malhotra, S.; Saleh, M.A.A.M. Antibacterial activity of leaf extract of Mexican marigold (Tagetes erecta) against different Gram positive and Gram negative bacterial strains. J. Pharm. Res. 2012, 5, 4201–4203. [Google Scholar]
- Giri, R.; Bose, A.; Mishra, S. Hepatoprotective activity of Tagetes erecta against carbon tetrachloride-induced hepatic damage in rats. Acta Pol. Pharm. Drug Res. 2011, 68, 999–1003. [Google Scholar]
- Katta, V.K.M.; Dubey, R.S. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater. Today Proc. 2021, 45, 794–798. [Google Scholar] [CrossRef]
- Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2015, 8, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Dhuldhaj, U.P.; Deshmukh, S.D.; Gade, A.K.; Yashpal, M.; Rai, M.K. Tagetes erecta mediated phytosynthesis of silver nanoparticles: An eco-friendly approach. Nusant. Biosci. 2012, 4, 109–112. [Google Scholar] [CrossRef]
- Maji, A.; Beg, M.; Das, S.; Aktara, M.N.; Nayim, S.; Patra, A.; Islam, M.M.; Hossain, M. Study on the antibacterial activity and interaction with human serum albumin of Tagetes erecta inspired biogenic silver nanoparticles. Process Biochem. 2020, 97, 191–200. [Google Scholar] [CrossRef]
- Navya Rani, M.; Murthy, M.; Shyla Shree, N.; Ananda, S.; Yogesh, S.; Dinesh, R. Cuprous oxide anchored reduced graphene oxide ceramic nanocomposite using Tagetes erecta flower extract and evaluation of its antibacterial activity and cytotoxicity. Ceram. Int. 2019, 45, 25020–25026. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Barros, L.; Falcão, S.; Baptista, P.; Freire, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 2008, 111, 61–66. [Google Scholar] [CrossRef]
- Malterud, K.E.; Rydland, K.M. Inhibitors of 15-lipoxygenase from orange peel. J. Agric. Food Chem. 2000, 48, 5576–5580. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute. M44-A2: Method for antifungal disk diffusion susceptibility testing of yeasts. In Approved Guideline, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009. [Google Scholar]
- Badi’ah, H.I.; Seedeh, F.; Supriyanto, G.; Zaidan, A.H. Synthesis of silver nanoparticles and the development in analysis method. IOP Conf. Ser. Earth Environ. Sci. 2019, 217, 012005. [Google Scholar] [CrossRef]
- Shaheen, S.; Humma, Z.; Arooj, I.; Batool, S. Green synthesis of silver nanoparticles from flowers of Helianthus annus and Tagetes erecta and their antibacterial activity against MDR pathogens. RADS J. Biol. Res. Appl. Sci. 2021, 12, 98–107. [Google Scholar] [CrossRef]
- Kgatshe, M.; Aremu, O.S.; Katata-Seru, L.; Gopane, R. Characterization and antibacterial activity of biosynthesized silver nanoparticles using the ethanolic extract of Pelargonium sidoides DC. J. Nanomater. 2019, 2019, 3501234. [Google Scholar] [CrossRef] [Green Version]
- Batir-Marin, D.; Mircea, C.; Boev, M.; Burlec, A.F.; Corciova, A.; Fifere, A.; Iacobescu, A.; Cioanca, O.; Verestiuc, L.; Hancianu, M. In vitro antioxidant, antitumor and photocatalytic activities of silver nanoparticles synthesized using Equisetum species: A green approach. Molecules 2021, 26, 7325. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Tyagi, P.K.; Tyagi, S.; Gola, D.; Arya, A.; Ayatollahi, S.A.; Alshehri, M.M.; Sharifi-Rad, J. Ascorbic acid and polyphenols mediated green synthesis of silver nanoparticles from Tagetes erecta L. aqueous leaf extract and studied their antioxidant properties. J. Nanomater. 2021, 2021, 6515419. [Google Scholar] [CrossRef]
- Corciova, A.; Ivanescu, B. Biosynthesis, characterization and therapeutic applications of plant-mediated silver nanoparticles. J. Serbian Chem. Soc. 2018, 83, 515–538. [Google Scholar] [CrossRef] [Green Version]
- Siakavella, I.K.; Lamari, F.; Papoulis, D.; Orkoula, M.; Gkolfi, P.; Lykouras, M.; Avgoustakis, K.; Hatziantoniou, S. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics 2020, 12, 1244. [Google Scholar] [CrossRef]
- Dias, A.C.P.; Marslin, G.; Selvakesavan, R.K.; Gregory, F.; Sarmento, B. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomed. 2015, 10, 5955. [Google Scholar] [CrossRef] [Green Version]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, S.A.; Kotakadi, V.S.; Subramanyam, G.K.; Penchalaneni, J.; Challagundla, V.N.; DVR, S.G.; Pasupuleti, V.R. Multifaceted phytogenic silver nanoparticles by an insectivorous plant Drosera spatulata Labill var. bakoensis and its potential therapeutic applications. Sci. Rep. 2021, 11, 21969. [Google Scholar] [CrossRef]
- Kambale, E.K.; Nkanga, C.I.; Mutonkole, B.-P.I.; Bapolisi, A.M.; Tassa, D.O.; Liesse, J.-M.I.; Krause, R.W.M.; Memvanga, P.B. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 2020, 6, e04493. [Google Scholar] [CrossRef]
- Shah, Z.; Hassan, S.; Shaheen, K.; Khan, S.A.; Gul, T.; Anwar, Y.; Al-shaeri, M.A.; Khan, M.; Khan, R.; Haleem, M.A.; et al. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mater. Sci. Eng. C 2020, 111, 110829. [Google Scholar] [CrossRef]
- Gomes, D.; Carvalho, G.; Araujo, A.; Casquilho, N.; Valenca, S.; Leal-Cardoso, J.; Zin, W. 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) impairs lung mechanics, morphology and oxidative balance in rats. Eur. Respir. J. 2014, 44, P2155. [Google Scholar]
- Du, R.; Liu, K.; Zhao, S.; Chen, F. Changes in antioxidant activity of peptides identified from brown rice hydrolysates under different conditions and their protective effects against AAPH-induced oxidative stress in human erythrocytes. ACS Omega 2020, 5, 12751–12759. [Google Scholar] [CrossRef]
- Barros, V.; Pereira, G.; Ota, S.; Melo, F.; de Jesus, A.C.; Lima, A.; da Silva, A.; Borges, R. A theoretical antioxidant mechanism for cytoprotective effect of p-acetamide-salicylate derivatives against free radical initiator AAPH in human erythrocytes. J. Braz. Chem. Soc. 2021, 32, 1354–1360. [Google Scholar] [CrossRef]
- Cyboran-Mikołajczyk, S.; Kleszczyńska, H.; Oszmiański, J.; Pasławski, R. Allium ursinum L. leaves components modified the physico-chemical properties of red blood cells protecting them from the effects of oxidative stress. Acta Pol. Pharm.-Drug Res. 2019, 76, 483–491. [Google Scholar] [CrossRef]
- Chedea, V.S.; Jisaka, M. Lipoxygenase and carotenoids: A co-oxidation story. Afr. J. Biotechnol. 2013, 12, 2786–2791. [Google Scholar] [CrossRef]
- Lončarić, M.; Strelec, I.; Moslavac, T.; Šubarić, D.; Pavić, V.; Molnar, M. Lipoxygenase inhibition by plant extracts. Biomolecules 2021, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Likasari, I.D.; Astuti, R.W.; Yahya, A.; Isnaini, N.; Purwiandono, G.; Hidayat, H.; Wicaksono, W.P.; Fatimah, I. NiO nanoparticles synthesized by using Tagetes erecta L. leaf extract and their activities for photocatalysis, electrochemical sensing, and antibacterial features. Chem. Phys. Lett. 2021, 780, 138914. [Google Scholar] [CrossRef]
- Selvam, S.I.; Joicesky, S.M.B.; Dashli, A.A.; Vinothini, A.; Premkumar, K. Assessment of anti bacterial, anti inflammation and wound healing activity in Wistar albino rats using green silver nanoparticles synthesized from Tagetes erecta leaves. J. Appl. Nat. Sci. 2021, 13, 343–351. [Google Scholar] [CrossRef]
- Dobrucka, R.; Długaszewska, J. Antimicrobial activities of silver nanoparticles synthesized by using water extract of Arnicae anthodium. Indian J. Microbiol. 2015, 55, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Teow, S.-Y.; Wong, M.; Yap, H.-Y.; Peh, S.-C.; Shameli, K. Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs). Molecules 2018, 23, 1366. [Google Scholar] [CrossRef] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.-A.-R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front. Microbiol. 2018, 9, 1555. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: A review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilangovan, A.; Venkatramanan, A.; Thangarajan, P.; Saravanan, A.; Rajendran, S.; Kaveri, K. Green synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous extract of Tagetes erecta flower and evaluation of its antioxidant, antimicrobial, and cytotoxic activities on HeLa cell line. Curr. Biotechnol. 2021, 10, 61–76. [Google Scholar] [CrossRef]
Sample | Content in Phenolic Compounds (mg GAE/mL Sample) | |
---|---|---|
Plant Extract | Supernatant after Separation of AgNPs | |
AgNPs-H2O | 0.1050 ± 0.002 | 0.0671 ± 0.003 |
AgNPs-EtOH | 0.2267 ± 0.001 | 0.1960 ± 0.004 |
Sample | EC50 (µg/mL Final Solution) | |
---|---|---|
Inhibition of Erythrocyte Hemolysis | 15-LOX Inhibition | |
Aqueous extract | - | - |
Ethanolic extract | 53.62 ± 1.96 | 75.89 ± 6.06 |
AgNPs-H2O | 70.83 ± 1.10 | 59.66 ± 2.39 |
AgNPs-EtOH | 280.86 ± 0.89 | 79.72 ± 3.49 |
Gallic acid | 44.83 ± 0.49 | 13.68 ± 0.88 |
Samples/Standards | Diameter of Inhibition Zones (mm) ± SD | ||
---|---|---|---|
Staphylococcus aureus ATCC 25923 | Pseudomonas aeruginosa ATCC 27853 | Candida albicans ATCC 90028 | |
Aqueous extract | 14.0 ± 0.00 | NA * | 13.0 ± 0.00 |
Ethanolic extract | 14.0 ± 0.00 | NA * | 12.0 ± 0.00 |
AgNPs-H2O | 14.0 ± 0.00 | NA * | 14.0 ± 0.00 |
AgNPs-EtOH | 14.0 ± 0.00 | NA * | 20.0 ± 0.00 |
Ciprofloxacin | 30.0 ± 0.00 | 30.3 ± 0.57 | * NT |
Fluconazole | NT * | NT ** | 29.0 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burlec, A.F.; Hăncianu, M.; Macovei, I.; Mircea, C.; Fifere, A.; Turin-Moleavin, I.-A.; Tuchiluș, C.; Robu, S.; Corciovă, A. Eco-Friendly Synthesis and Comparative In Vitro Biological Evaluation of Silver Nanoparticles Using Tagetes erecta Flower Extracts. Appl. Sci. 2022, 12, 887. https://doi.org/10.3390/app12020887
Burlec AF, Hăncianu M, Macovei I, Mircea C, Fifere A, Turin-Moleavin I-A, Tuchiluș C, Robu S, Corciovă A. Eco-Friendly Synthesis and Comparative In Vitro Biological Evaluation of Silver Nanoparticles Using Tagetes erecta Flower Extracts. Applied Sciences. 2022; 12(2):887. https://doi.org/10.3390/app12020887
Chicago/Turabian StyleBurlec, Ana Flavia, Monica Hăncianu, Irina Macovei, Cornelia Mircea, Adrian Fifere, Ioana-Andreea Turin-Moleavin, Cristina Tuchiluș, Silvia Robu, and Andreia Corciovă. 2022. "Eco-Friendly Synthesis and Comparative In Vitro Biological Evaluation of Silver Nanoparticles Using Tagetes erecta Flower Extracts" Applied Sciences 12, no. 2: 887. https://doi.org/10.3390/app12020887
APA StyleBurlec, A. F., Hăncianu, M., Macovei, I., Mircea, C., Fifere, A., Turin-Moleavin, I.-A., Tuchiluș, C., Robu, S., & Corciovă, A. (2022). Eco-Friendly Synthesis and Comparative In Vitro Biological Evaluation of Silver Nanoparticles Using Tagetes erecta Flower Extracts. Applied Sciences, 12(2), 887. https://doi.org/10.3390/app12020887