High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures
Abstract
:1. Introduction
2. Discussion
3. Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Space Group | Lattice Parameters (Å) | Atoms | Atomic Coordinates (Fractional) | |||
---|---|---|---|---|---|---|
x | y | z | ||||
LaH16 (250 GPa) | P6/mmm | a = b = 3.52147 | H(4h) | 0.3333 | 0.6667 | 0.1811 |
c = 3.55630 | H(6i) | 0.5000 | 0.0000 | 0.2522 | ||
= = 90° | H(6k) | 0.7086 | 0.0000 | 0.5000 | ||
= 120° | La(1a) | 0.0000 | 0.0000 | 0.0000 | ||
CeH16 (250 GPa) | P6/mmm | a = b = 3.47980 | H(4h) | 0.3333 | 0.6667 | 0.1754 |
c = 3.43362 | H(6i) | 0.5000 | 0.0000 | 0.2511 | ||
= = 90° | H(6k) | 0.2890 | 0.0000 | 0.5000 | ||
= 120° | La(1a) | 0.0000 | 0.0000 | 0.0000 |
References
- McMillan, P.F. Condensed matter chemistry under ‘extreme’ high pressure–High temperature conditions. High Press. Res. 2004, 24, 67–86. [Google Scholar] [CrossRef]
- Miao, M.; Sun, Y.; Zurek, E.; Lin, H. Chemistry under high pressure. Nat. Rev. Chem. 2020, 4, 508–527. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Gao, G.; Li, Y.; Ma, Y. Hydrogen-rich superconductors at high pressures. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1330. [Google Scholar] [CrossRef]
- Ashcroft, N. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 2004, 92, 187002. [Google Scholar] [CrossRef]
- Ashcroft, N.W. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 1968, 21, 1748. [Google Scholar] [CrossRef]
- Nakao, H.; Einaga, M.; Sakata, M.; Kitagaki, M.; Shimizu, K.; Kawaguchi, S.; Hirao, N.; Ohishi, Y. Superconductivity of pure H3S synthesized from elemental sulphur and hydrogen. J. Phys. Soc. Jpn. 2019, 88, 123701. [Google Scholar] [CrossRef] [Green Version]
- Harshman, D.R.; Fiory, A.T. Compressed H3S: Inter-sublattice Coulomb coupling in a high-T c superconductor. J. Phys. Condens. Matter 2017, 29, 445702. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Minkov, V.S.; Mozaffari, S.; Sun, Y.; Ma, Y.; Chariton, S.; Prakapenka, V.B.; Eremets, M.I.; Balicas, L.; Balakirev, F.F. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Szczęśniak, K.; Durajski, A.; Szczęśniak, R. From lah 10 to room–temperature superconductors. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Yi, S.; Wang, C.; Jeon, H.; Cho, J.H. Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH 10. Phys. Rev. Mater. 2021, 5, 024801. [Google Scholar] [CrossRef]
- Li, Y.; Hao, J.; Liu, H.; Li, Y.; Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 2014, 140, 174712. [Google Scholar] [CrossRef] [Green Version]
- Drozdov, A.; Eremets, M.; Troyan, I.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulphur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Drozdov, A.; Kong, P.; Minkov, V.; Besedin, S.; Kuzovnikov, M.; Mozaffari, S.; Balicas, L.; Balakirev, F.; Graf, D.; Prakapenka, V.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Kong, P.; Minkov, V.S.; Kuzovnikov, M.A.; Drozdov, A.P.; Besedin, S.P.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Prakapenka, V.B.; Chariton, S.; et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Sun, W.; Kuang, X.; Keen, H.D.; Lu, C.; Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 2020, 102, 144524. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Yi, S.; Kim, K.W.; Kim, J.; Cho, J.H. Microscopic mechanism of room-temperature superconductivity in compressed LaH 10. Phys. Rev. B 2019, 99, 140501. [Google Scholar] [CrossRef] [Green Version]
- Heil, C.; Di Cataldo, S.; Bachelet, G.B.; Boeri, L. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B 2019, 99, 220502. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Zhang, Z.; Cui, T.; Pickard, C.J.; Kresin, V.Z.; Duan, D. High Tc Superconductivity in Heavy Rare Earth Hydrides. Chin. Phys. Lett. 2021, 38, 107401. [Google Scholar] [CrossRef]
- Sarma, S.D.; Li, Q. Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators. Phys. Rev. B 2013, 88, 081404. [Google Scholar] [CrossRef] [Green Version]
- Olalde-Velasco, P.; Jiménez-Mier, J.; Denlinger, J.; Hussain, Z.; Yang, W. Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems. Phys. Rev. B 2011, 83, 241102. [Google Scholar] [CrossRef] [Green Version]
- Plekhanov, E.; Zhao, Z.; Macheda, F.; Wei, Y.; Bonini, N.; Weber, C. Computational Materials Discovery for Lanthanide Hydrides at high pressure: Predicting High Temperature superconductivity. arXiv 2021, arXiv:2107.12316. [Google Scholar]
- Plekhanov, E.; Bonini, N.; Weber, C. Calculating dynamical mean-field theory forces in ab initio ultrasoft pseudopotential formalism. Phys. Rev. B 2021, 104, 235131. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Plekhanov, E.; Hasnip, P.; Sacksteder, V.; Probert, M.; Clark, S.J.; Refson, K.; Weber, C. Many-body renormalization of forces in f-electron materials. Phys. Rev. B 2018, 98, 075129. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Plekhanov, E.; Blackbourn, D.; Acharya, S.; Weber, C. The Mott to Kondo transition in diluted Kondo superlattices. Commun. Phys. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671. [Google Scholar] [CrossRef]
- Rappe, A.M.; Rabe, K.M.; Kaxiras, E.; Joannopoulos, J. Erratum: Optimized pseudopotentials [phys. rev. b 41, 1227 (1990)]. Phys. Rev. B 1991, 44, 13175. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Dynes, R. McMillan’s equation and the Tc of superconductors. Solid State Commun. 1972, 10, 615–618. [Google Scholar] [CrossRef]
- Allen, P.B.; Dynes, R. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 1975, 12, 905. [Google Scholar] [CrossRef]
- Weber, C. Unifying guiding principles for designing optimized superconductors. Proc. Natl. Acad. Sci. USA 2021, 118, e2115874118. [Google Scholar] [CrossRef]
- Parcollet, O.; Ferrero, M.; Ayral, T.; Hafermann, H.; Krivenko, I.; Messio, L.; Seth, P. TRIQS: A toolbox for research on interacting quantum systems. Comput. Phys. Commun. 2015, 196, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Aichhorn, M.; Pourovskii, L.; Seth, P.; Vildosola, V.; Zingl, M.; Peil, O.E.; Deng, X.; Mravlje, J.; Kraberger, G.J.; Martins, C.; et al. TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials. Comput. Phys. Commun. 2016, 204, 200–208. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Macheda, F.; Zhao, Z.; Tse, T.; Plekhanov, E.; Bonini, N.; Weber, C. High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures. Appl. Sci. 2022, 12, 874. https://doi.org/10.3390/app12020874
Wei Y, Macheda F, Zhao Z, Tse T, Plekhanov E, Bonini N, Weber C. High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures. Applied Sciences. 2022; 12(2):874. https://doi.org/10.3390/app12020874
Chicago/Turabian StyleWei, Yao, Francesco Macheda, Zelong Zhao, Terence Tse, Evgeny Plekhanov, Nicola Bonini, and Cedric Weber. 2022. "High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures" Applied Sciences 12, no. 2: 874. https://doi.org/10.3390/app12020874
APA StyleWei, Y., Macheda, F., Zhao, Z., Tse, T., Plekhanov, E., Bonini, N., & Weber, C. (2022). High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures. Applied Sciences, 12(2), 874. https://doi.org/10.3390/app12020874