A Novel Synthetization Approach for Multi Coupled Line Section Impedance Transformers in Wideband Applications
Abstract
:1. Introduction
2. The Principle of the Synthetization Approach
2.1. The Number of Variable Parameters of Conventional N-Section IT
2.2. The Proposed Synthesization Approach for Simplification
3. Design Examples for the Proposed Synthetization Approach
3.1. Design Example for the Conventional 5-Section IT
3.2. Design Example for Proposed Synthesization Approach
3.2.1. Category I: One CLS Is Substituted by TL
3.2.2. Category II: Two CLSs Are Substituted by TL
3.2.3. Category III: Three CLSs Are Substituted by TL
3.3. Comparison and Summary
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Matthzei, G.L.; Young, L.; Jones, E.M.T. Microwave Filters, Impedance-Matching Networks and Coupling Structures; Artech House: Norwood, MA, USA, 1980. [Google Scholar]
- Riblet, H. General Synthesis of Quarter-Wave Impedance Transformers. IEEE Trans. Microw. Theory Tech. 1957, 5, 36–43. [Google Scholar] [CrossRef]
- Chow, Y.; Wan, K. A transformer of one-third wavelength in two sections—For a frequency and its first harmonic. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 22–23. [Google Scholar] [CrossRef]
- Monzon, C. Analytical derivation of a two-section impedance transformer for a frequency and its first harmonic. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 381–382. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, S.; Wu, F.; Wu, Y. A Three-Section Dual-Band Transformer for Frequency-Dependent Complex Load Impedance. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 611–613. [Google Scholar] [CrossRef]
- Darraji, R.; Honari, M.M.; Mirzavand, R.; Ghannouchi, F.M.; Mousavi, P. Wideband Two-Section Impedance Transformer with Flat Real-to-Real Impedance Matching. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 313–315. [Google Scholar] [CrossRef]
- Liu, L.; Jin, R.; Liang, X.; Fan, H.; Wang, W.; Geng, J.; Liu, F.; Chen, Y. Multifrequency Transformer with Arbitrary Frequency and Real Impedance Transform Ratio. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1–3. [Google Scholar] [CrossRef]
- Chuang, M.-L. Dual-Band Impedance Transformer Using Two-Section Shunt Stubs. IEEE Trans. Microw. Theory Tech. 2010, 58, 1257–1263. [Google Scholar] [CrossRef]
- Chuang, M.-L.; Wu, M.-T. Transmission Zero Embedded Dual-Band Impedance Transformer with Three Shunt Stubs. IEEE Microw. Wirel. Components Lett. 2017, 27, 788–790. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, L.; Wang, W.; Yang, Y.; Wei, Y.; Wu, H.; Ma, L. A New Self-Packaged Substrate Integrated Air-Filled Spoof Surface Plasmon Polaritons Line with Inherent Low Loss and Deep Upper Frequency Suppression. IEEE Trans. Plasma Sci. 2020, 48, 3516–3523. [Google Scholar] [CrossRef]
- Pan, L.; Wu, Y.; Wang, W.; Wei, Y.; Yang, Y. A Flexible High-Selectivity Single-Layer Coplanar Waveguide Bandpass Filter Using Interdigital Spoof Surface Plasmon Polaritons of Bow-Tie Cells. IEEE Trans. Plasma Sci. 2020, 48, 3582–3588. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, Y.; Wang, W.; Pan, L.; Yang, Y.; Liu, Y. Double-Sided Spoof Surface Plasmon Polaritons- Line Bandpass Filter With Excellent Dual-Band Filtering and Wide Upper Band Suppressions. IEEE Trans. Plasma Sci. 2020, 48, 4134–4143. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Yang, Y.; Wang, W. IPD-Based Miniaturized Wideband Bandpass Filter with Frequency-Dependent Complex Source and Load. IEEE Trans. Plasma Sci. 2021, 49, 1115–1120. [Google Scholar] [CrossRef]
- Zhang, R.; Luo, S.; Zhu, L. Synthesis and Design of Mixed Lumped and Distributed Low-Pass Filters/Low-Passing Impedance Transformers with Taylor Series. IEEE Trans. Microw. Theory Tech. 2016, 64, 1265–1272. [Google Scholar] [CrossRef]
- Zhu, L.; Shi, H.; Menzel, W. Coupling behaviors of quarter-wavelength impedance transformers for wideband CPW bandpass filters. IEEE Microw. Wirel. Components Lett. 2005, 15, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Van Der Walt, P. Short-Step-Stub Chebyshev Transformers Impedance. IEEE Trans. Microw. Theory Tech. 1986, 34, 863–868. [Google Scholar] [CrossRef]
- Chang, W.-S.; Chang, C.-Y. Analytical Design of Microstrip Short-Circuit Terminated Stepped-Impedance Resonator Dual-Band Filters. IEEE Trans. Microw. Theory Tech. 2011, 59, 1730–1739. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L. Design of a Wideband Bandpass Filter with Composite Short- and Open-Circuited Stubs. IEEE Microw. Wirel. Components Lett. 2013, 24, 96–98. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Zhu, L. Wideband Impedance Transformers with Good Frequency Selectivity Based on Multisection Quarter-Wave Lines and Short-Circuited Stubs. IEEE Microw. Wirel. Components Lett. 2016, 26, 337–339. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Z.; Xie, T.; Ohira, M.; Chen, C.-P.; Lu, G. Synthesis Theory of Ultra-Wideband Bandpass Transformer and its Wilkinson Power Divider Application with Perfect in-Band Reflection/Isolation. IEEE Trans. Microw. Theory Tech. 2019, 67, 3377–3390. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, H.; Abbosh, A. Planar UWB phase shifter using parallel coupled lines combined with short-ended stubs and impedance transformer. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Kong, M.; Wu, Y.; Zhuang, Z.; Wang, W.; Wang, C. Ultraminiaturized Wideband Quasi-Chebyshev/-Elliptic Impedance-Transforming Power Divider Based on Integrated Passive Device Technology. IEEE Trans. Plasma Sci. 2020, 48, 858–866. [Google Scholar] [CrossRef]
- Rayno, J.; Celik, N.; Iskander, M.F. Dual-Polarization Cylindrical Long-Slot Array (CLSA) Antenna Integrated with Compact Broadband Baluns and Slot Impedance Transformers. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1384–1387. [Google Scholar] [CrossRef]
- Gao, S.S.; Sun, S. Synthesis of Wideband Parallel-Coupled Line Bandpass Filters with Non-Equiripple Responses. IEEE Microw. Wirel. Components Lett. 2014, 24, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Orellana, M.; Selga, J.; Velez, P.; Sans, M.; Rodriguez, A.; Bonache, J.; Boria, V.E.; Martin, F. Design of Capacitively Loaded Coupled-Line Bandpass Filters with Compact Size and Spurious Suppression. IEEE Trans. Microw. Theory Tech. 2017, 65, 1235–1248. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, S.; Lee, Y. Extremely Miniaturized Bandpass Filters Based on Asymmetric Coupled Lines with Equal Reactance. IEEE Trans. Microw. Theory Tech. 2011, 60, 261–269. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y. Generalized Miniaturization Method for Coupled-Line Bandpass Filters by Reactive Loading. IEEE Trans. Microw. Theory Tech. 2010, 58, 2383–2391. [Google Scholar] [CrossRef]
- Chin, K.-S.; Chiou, Y.-C.; Kuo, J.-T. New Synthesis of Parallel-Coupled Line Bandpass Filters with Chebyshev Responses. IEEE Trans. Microw. Theory Tech. 2008, 56, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhu, L. Improved formulas for synthesizing multiple-mode-resonator-based UWB bandpass filters. In Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 29 September–1 October 2009; pp. 299–302. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Zhu, L. Wideband Impedance Transformers on Parallel-Coupled and Multisection Microstrip Lines: Synthesis Design and Implementation. IEEE Trans. Components, Packag. Manuf. Technol. 2016, 6, 1873–1880. [Google Scholar] [CrossRef]
- Ang, K.S.; Lee, C.H.; Leong, Y.C. Analysis and design of coupled line impedance transformers. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Fort Worth, TX, USA, 6–11 June 2004; Volume 3, pp. 1951–1954. [Google Scholar] [CrossRef]
- Cheong, P.; Fok, S.-W.; Tam, K.W. Miniaturized parallel coupled-line bandpass filter with spurious-response suppression. IEEE Trans. Microw. Theory Tech. 2005, 53, 1810–1816. [Google Scholar] [CrossRef]
- Chin, K.-S.; Kuo, J.-T. Insertion loss function synthesis of maximally flat parallel-coupled line bandpass filters. IEEE Trans. Microw. Theory Tech. 2005, 53, 3161–3168. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Sun, S.; Menzel, W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wirel. Components Lett. 2005, 15, 796–798. [Google Scholar] [CrossRef] [Green Version]
- Jensen, T.; Zhurbenko, V.; Krozer, V.; Meincke, P. Coupled Transmission Lines as Impedance Transformer. IEEE Trans. Microw. Theory Tech. 2007, 55, 2957–2965. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-G.; Hou, T.-B.; Tang, C.-W. Design of Planar Complex Impedance Transformers with the Modified Coupled Line. IEEE Trans. Components, Packag. Manuf. Technol. 2012, 2, 1704–1710. [Google Scholar] [CrossRef]
- Tang, C.-W.; Tseng, C.-T.; Chang, S.-C. Design of the Compact Tunable Filter with Modified Coupled Lines. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 1815–1821. [Google Scholar] [CrossRef]
- Feng, W.; Che, W.; Xue, Q. Balanced filters with wideband common mode suppression using dual-mode ring resonators. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1499–1507. [Google Scholar] [CrossRef]
- Kim, P.; Chaudhary, G.; Jeong, Y. Ultra-High Transforming Ratio Coupled Line Impedance Transformer With Bandpass Response. IEEE Microw. Wirel. Components Lett. 2015, 25, 445–447. [Google Scholar] [CrossRef]
- Garg, A.; Pratap, B.; Gupta, D. Design of Parallel Coupled Line Band Pass Filter. In Proceedings of the 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 12–13 February 2016; pp. 452–454. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, L.; Zhuang, Z.; Wang, W.; Liu, Y. A Simple Planar Dual-Band Bandpass Filter With Multiple Transmission Poles and Zeros. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 56–60. [Google Scholar] [CrossRef]
- Ahn, H.-R.; Tentzeris, M.M. Wideband and Compact Impedance-Transforming 90° DC Blocks with Symmetric Coupled Transmission-Line Sections. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 9, 80–87. [Google Scholar] [CrossRef]
- Bi, X.-K.; Cheng, T.; Cheong, P.; Ho, S.-K.; Tam, K.-W. Design of Dual-Band Bandpass Filters with Fixed and Reconfigurable Bandwidths Based on Terminated Cross-Shaped Resonators. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 317–321. [Google Scholar] [CrossRef]
- Saghir, A.; Quddious, A.; Arain, S.; Vryonides, P.; Nikolaou, S. Single-/Dual-BPF Using Coupled-Line Stepped Impedance Resonators (CLSIR). IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 1497–1501. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Zhuang, Z.; Kong, M.; Wang, W.; Wang, C. An Ultraminiaturized Bandpass Filtering Marchand Balun Chip with Spiral Coupled Lines Based on GaAs Integrated Passive Device Technology. IEEE Trans. Plasma Sci. 2020, 48, 3067–3075. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, S.; Li, R. Microwave Bandpass Filters for Wideband Communications; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 232. [Google Scholar]
Number of Substituted CLSs by TLs | Number of Substitutable Combinations |
---|---|
1 | |
2 | |
… | … |
N − 3 | |
N − 2 |
The ith CLS Substituted By TL | 1st | 2nd | 3rd | 4th | 5th |
---|---|---|---|---|---|
Index of cases | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
The ith CLS Is Substituted by TL | ||||||
---|---|---|---|---|---|---|
The jth CLS is substituted by TL | 1st | 2nd | 3rd | 4th | 5th | |
1st | Case 6 | Case 7 | Case 8 | Case 9 | ||
2nd | Case 10 | Case 11 | Case 12 | |||
3rd | Case 13 | Case 14 | ||||
4th | Case 15 | |||||
5th |
The ith CLS Is Not Substituted by TL | ||||||
---|---|---|---|---|---|---|
The jth CLS is Not substituted by TL | 1st | 2nd | 3rd | 4th | 5th | |
1st | Case 16 | Case 17 | Case 18 | Case 19 | ||
2nd | Case 20 | Case 21 | Case 22 | |||
3rd | Case 23 | Case 24 | ||||
4th | Case 25 | |||||
5th |
Number of Variable Parameters | Substitutable Cases | Characteristic Impedances of theith CLSs or TLs (Ω) | Symmetrical/ Asymmetrical Topology | ||||
1st | 2nd | 3rd | 4th | 5th | |||
3 | Conventional topology [28] Former work | CLS Zev1 = 4.1030 Zod1 = 0.4371 | CLS Zev2 = 4.7546 Zod2 = 0.6000 | CLS Zev3 = 4.7474 Zod3 = 0.6000 | CLS Zev4 = 4.2000 Zod4 = 0.6000 | CLS Zev5 = 2.8441 Zod5 = 0.1826 | Symmetrical |
2 | Case 2 This work | CLS Zev1 = 3.8756 Zod1 = 0.6643 | TL Z2 = 1.5268 | CLS Zev3 = 3.8798 Zod3 = 0.6643 | CLS Zev4 = 3.9323 Zod4 = 0.6000 | CLS Zev5 = 2.8214 Zod5 = 0.2053 | Asymmetrical |
1 | Case 11 in Figure 5 This work | CLS Zev1 = 3.8447 Zod1 = 0.6953 | TL Z2 = 1.4813 | CLS Zev3 = 3.0487 Zod3 = 0.6000 | TL Z4 = 1.1271 | CLS Zev5 = 2.6067 Zod5 = 0.4200 | Symmetrical |
Case 10 This work | CLS Zev1 = 3.7642 Zod1 = 0.7758 | TL Z2 = 1.1076 | TL Z3 = 0.9148 | CLS Zev4 = 3.0366 Zod4 = 0.6000 | CLS Zev5 = 2.7415 Zod5 = 0.2852 | Asymmetrical | |
0 | Case 18 This work | CLS Zev1 = 3.8158 Zod1 = 0.7242 | TL Z2 = 1.2486 | TL Z3 = 1.4696 | CLS Zev4 = 5.5788 Zod4 = 1.5118 | TL Z5 = 1.5133 | Asymmetrical |
Case 19 [30] Former work | CLS Zev1 = 3.7113 Zod1 = 0.8287 | TL Z2 = 0.7888 | TL Z3 = 0.4592 | TL Z4 = 0.6071 | CLS Zev5 = 2.4931 Zod5 = 0.5336 | Symmetrical | |
Case 21 in Figure 7 This work | TL Z1 = 2.2700 | CLS Zev2 = 8.5051 Zod2 = 2.1307 | TL Z3 = 2.8948 | CLS Zev4 = 5.8497 Zod4 = 1.2408 | TL Z5 = 1.5133 | Symmetrical |
Characteristic Impedance (Ω) | Coupling Strength (dB) | Physical Parameters (mm) |
---|---|---|
Zev1 = 192.23 Zod1 = 34.77 | 3.18 | W1 = 4.0 L1 = 27.5 S1 = 10.8 |
Z2 = 69.06 | W2 = 1.4 L2 = 27.0 | |
Zev3 = 152.43 Zod3 = 30.00 | 3.46 | W3 = 4.9 L3 = 26.7 S3 = 8.4 |
Z4 = 56.35 | W4 = 2.1 L4 = 26.0 | |
Zev5 = 130.33 Zod5 = 20.10 | 2.82 | W5 = 7.6 L5 = 26.4 S5 = 10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Wang, X.; Bao, C.; Wu, B.; Chen, C.-P.; Ma, Z.; Lu, G. A Novel Synthetization Approach for Multi Coupled Line Section Impedance Transformers in Wideband Applications. Appl. Sci. 2022, 12, 875. https://doi.org/10.3390/app12020875
Zhang N, Wang X, Bao C, Wu B, Chen C-P, Ma Z, Lu G. A Novel Synthetization Approach for Multi Coupled Line Section Impedance Transformers in Wideband Applications. Applied Sciences. 2022; 12(2):875. https://doi.org/10.3390/app12020875
Chicago/Turabian StyleZhang, Nan, Xiaolong Wang, Chunxi Bao, Bin Wu, Chun-Ping Chen, Zhewang Ma, and Geyu Lu. 2022. "A Novel Synthetization Approach for Multi Coupled Line Section Impedance Transformers in Wideband Applications" Applied Sciences 12, no. 2: 875. https://doi.org/10.3390/app12020875
APA StyleZhang, N., Wang, X., Bao, C., Wu, B., Chen, C.-P., Ma, Z., & Lu, G. (2022). A Novel Synthetization Approach for Multi Coupled Line Section Impedance Transformers in Wideband Applications. Applied Sciences, 12(2), 875. https://doi.org/10.3390/app12020875