Dielectric Slabs-Based Lens for Millimeter-Wave Beamforming
Abstract
:1. Introduction
2. Dielectric Slabs-Based Lens Design
3. Discussion and Simulation Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—With a focus on propagation models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Kutty, S.; Sen, D. Beamforming for millimeter wave communications: An inclusive survey. IEEE Commun. Surv. Tutor. 2015, 18, 949–973. [Google Scholar] [CrossRef]
- Anderson, C.R.; Rappaport, T.S. In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Trans. Wirel. Commun. 2004, 3, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Yassin, M.R.A.; Abdallah, H. Hybrid beamforming in multiple user massive multiple input multiple output 5G communications system. In Proceedings of the 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; pp. 215–220. [Google Scholar]
- Kim, C.; Kim, T.; Seol, J.-Y. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 61–65. [Google Scholar]
- Wang, X.; Aboutanios, E.; Trinkle, M.; Amin, M.G. Reconfigurable adaptive array beamforming by antenna selection. IEEE Trans. Signal Process. 2014, 62, 2385–2396. [Google Scholar] [CrossRef]
- Abbasi, M.A.B.; Fusco, V.F.; Tataria, H.; Matthaiou, M. Constant-εr Lens Beamformer for Low-Complexity Millimeter-Wave Hybrid MIMO. IEEE Trans. Microw. Theory Technol. 2019, 67, 2894–2903. [Google Scholar] [CrossRef]
- Mei, Z.L.; Bai, J.; Cui, T.J. Gradient index metamaterials realized by drilling hole arrays. J. Phys. D Appl. Phys. 2010, 43, 055404. [Google Scholar] [CrossRef]
- Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. An optical cloak made of dielectrics. Nat. Mater. 2009, 8, 568–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Mendis, R.; Mittleman, D.M. A Maxwell’s fish eye lens for the terahertz region. Appl. Phys. Lett. 2013, 103, 031104. [Google Scholar] [CrossRef] [Green Version]
- Chou, H.-T.; Yan, Z.-D. Parallel-plate Luneburg lens antenna for broadband multibeam radiation at millimeter-wave frequencies with design optimization. IEEE Trans. Antennas Propag. 2018, 66, 5794–5804. [Google Scholar] [CrossRef]
- Ahmadi-Boroujeni, M. Parallel-plate waveguide integrated filters and lenses realized by metallic posts for terahertz applications. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Quevedo-Teruel, O.; Miao, J.; Mattsson, M.; Algaba-Brazalez, A.; Johansson, M.; Manholm, L. Glide-symmetric fully metallic luneburg lens for 5G communications at K a-band. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1588–1592. [Google Scholar] [CrossRef]
- Lin, Q.-W.; Wong, H. A low-profile and wideband lens antenna based on high-refractive-index metasurface. IEEE Trans. Antennas Propag. 2018, 66, 5764–5772. [Google Scholar] [CrossRef]
- Cheng, Q.; Ma, H.F.; Cui, T.J. Broadband planar Luneburg lens based on complementary metamaterials. Appl. Phys. Lett. 2009, 95, 181901. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, Z.N.; Zhang, Y.; Hong, W.; Xuan, X. Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans. Antennas Propag. 2016, 65, 464–472. [Google Scholar] [CrossRef]
- Ma, H.F.; Cui, T.J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 2010, 1, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.; Wu, B.-I. Design and fabrication of an RF GRIN lens using 3D printing technology. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VI; SPIE: Bellingham, WA, USA, 2013; p. 86240V. [Google Scholar]
- Zhang, S.; Vardaxoglou, Y.; Whittow, W.; Mittra, R. 3D-printed graded index lens for RF applications. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 90–91. [Google Scholar]
- Acikgoz, H.; Arya, R.K.; Mittra, R. Statistical analysis of 3D-printed flat GRIN lenses. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 473–474. [Google Scholar]
- Melkonyan, H.; Dahlem, M.S. GRIN-like dielectric slab lens through effective index engineering. In Proceedings of the 2012 Photonics Global Conference (PGC), Singapore, 13–16 December 2012; pp. 1–4. [Google Scholar]
- Albarracín-Vargas, F.; Vega-Stavro, F.; Baer, C.; Orend, K.; Musch, T. Design Considerations in a Graded Index Flat Dielectric Lens for an Impulse Radiating Antenna. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 855–856. [Google Scholar]
- Smith, D.R.; Schultz, S.; Markoš, P.; Soukoulis, C. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Grzegorczyk, T.M.; Wu, B.-I.; Pacheco, J., Jr.; Kong, J.A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 2004, 70, 016608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbert, M.; Papió, A.; de Flaviis, F.; Jofre, L.; Romeu, J. Design and performance evaluation of a dielectric flat lens for millimeter-wave applications. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 3193–3196. [Google Scholar]
- Yuan, L.H.; Tang, W.X.; Li, H.; Cheng, Q.; Cui, T.J. Three-dimensional anisotropic zero-index lenses. IEEE Trans. Antennas Propag. 2014, 62, 4135–4142. [Google Scholar] [CrossRef]
- Imbert, M.; Romeu, J.; Jofre, L. Design of a dielectric flat lens antenna for 60 GHz WPAN applications. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 1164–1165. [Google Scholar]
- Imbert, M.; Romeu, J.; Jofre, L.; Papió, A.; de Flaviis, F. Switched-beam antenna array for 60 GHz WPAN applications. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1672–1673. [Google Scholar]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. Compact near zero index metasurface lens with high aperture efficiency for antenna radiation characteristic enhancement. IET Microw. Antennas Propag. 2019, 13, 1248–1254. [Google Scholar] [CrossRef]
Antenna # | Gain (dBi) | Sidelobe Level (dB) | HPBW (Degree) | θ (Degree) | ϕ (Degree) |
---|---|---|---|---|---|
ANT1, ANT2 | 27.2 | −20.1 | 6.2 | −27 | 40, −40 |
ANT3, ANT4 | 27.9 | −20.43 | 6.6 | −21 | 15, −15 |
ANT5, ANT6 | 26.6 | −21.6 | 7.8 | −7 | 40, −40 |
ANT7, ANT8 | 26.6 | −21.6 | 7.8 | 7 | 40, −40 |
ANT9, ANT10 | 27.9 | −20.43 | 6.6 | 21 | 15, −15 |
ANT11, ANT12 | 27.2 | −20.1 | 6.2 | 27 | 40, −40 |
ANT13, ANT14 | 27.3 | −21.6 | 5.9 | −19 | 70, −70 |
ANT15, ANT16 | 27.3 | −21.6 | 5.9 | 19 | 70, −70 |
Reference | Gain (dBi) | Sidelobe Level (dB) | HPBW (Degree) | Frequency | Designed Lens | Tested Antennas |
---|---|---|---|---|---|---|
Proposed work | 30 | −19.8 | 6 | 28 GHz | Dielectric slabs | Circular horn |
25 to 27 | −20 to −21.6 | 5.9 to 7.8 | 28 GHz | Dielectric slabs | Rectangular horn | |
[7] | 29.4 | −22 | 6 | 28 GHz | Spherical dielectric | Rectangular horn |
[25] | 15.4 to 18.9 | −18 | 12 to 20 | 60, 77 GHz | Dielectric flat lens with hols on concentric rings of different permittivity | Conical horn antenna |
[26] | 21.25 | −23 | 9.6 | 9.4 GHz | Metamaterials lenses | Rectangular horn |
[27] | 16.9 to 21.2 | −3.5 to −20 | 10.5 to 22.3 | 60 GHz | Dielectric flat lens with a set of concentric rings of different permittivity | Conical horn antenna |
[28] | 14 to 18.4 | −10 to −15 | 10 to 20 | 60 GHz | Dielectric flat lens with hols on concentric rings of different permittivity | Array antenna |
[29] | 16.4 | 15 | 30.2 | 10 GHZ | Metasurfaces layered lens | Patch antenna |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.H.; Aladadi, Y.T.; Alresheedi, M.T. Dielectric Slabs-Based Lens for Millimeter-Wave Beamforming. Appl. Sci. 2022, 12, 638. https://doi.org/10.3390/app12020638
Alqahtani AH, Aladadi YT, Alresheedi MT. Dielectric Slabs-Based Lens for Millimeter-Wave Beamforming. Applied Sciences. 2022; 12(2):638. https://doi.org/10.3390/app12020638
Chicago/Turabian StyleAlqahtani, Ali H., Yosef T. Aladadi, and Mohammed T. Alresheedi. 2022. "Dielectric Slabs-Based Lens for Millimeter-Wave Beamforming" Applied Sciences 12, no. 2: 638. https://doi.org/10.3390/app12020638
APA StyleAlqahtani, A. H., Aladadi, Y. T., & Alresheedi, M. T. (2022). Dielectric Slabs-Based Lens for Millimeter-Wave Beamforming. Applied Sciences, 12(2), 638. https://doi.org/10.3390/app12020638