Chronology of Coastal Alluvial Deposits in The Ria de Coruña (NW Spain) Linked to the Upper Pleistocene Sea Level Regression
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Dose Rate (Drs), OSL Signal and Des
4.2. Grain Size Distributions and Concentrations of K
5. Discussion
5.1. Overdispersion Analysis
5.1.1. Incomplete Bleaching
5.1.2. Beta-Microdose Variability and Overdispersion
5.1.3. Burial Ages
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viveen, W.; Braucher, R.; Bourlès, D.; Schoorl, J.M.; Veldkamp, A.; van Balen, R.T.; Wallinga, J.; Fernandez-Mosquera, D.; Vidal-Romani, J.R.; Sanjurjo-Sanchez, J. A 0.65 Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Glob. Planet. Chang. 2012, 94–95, 82–100. [Google Scholar] [CrossRef]
- Arce-Chamorro, C.; Vidal-Romaní, J.R. Late-Pleistocene chronology of coastal fluvial deposits at the mouth of the Ulla River in the Ría de Arousa (Galicia, NW Spain) by OSL dating. Cad. Lab. Xeol. Laxe 2021, 43, 61–88. [Google Scholar] [CrossRef]
- López Fernández, C.; Llana-Fúnez, S.; Fernández-Viejo, G.; Domínguez-Cuesta, M.J.; Díaz-Díaz, L.M. Comprehensive characterization of elevated coastal platforms in the north Iberian margin: A new template to quantify uplift rates and tectonic patterns. Geomorphology 2020, 364, 107242. [Google Scholar] [CrossRef]
- Escuer-Sole, J.; Vidal-Romaní, J.R. Facies y modelo local de los depósitos aluviales de la cuenca del río Mero y península de Sada (A Coruña, Galicia, NW Spain). Cad. Lab. Xeol. Laxe 1987, 11, 69–83. [Google Scholar]
- Nonn, H. Les Régiones Cotières de la Galice (Espagne). Etude Géomorpholigique; Publications de la Faculté des Lettres de L´Université de Strasbourg; Foundation Baulig: Paris, France, 1966; Tomo III. [Google Scholar]
- Macías-Vázquez, F.; García-Paz, C. Formaciones sedimentarias de las Mariñas. Estudio Mineralógico. Bol. Soc. Gal. Hist. Nat. 1977, 1, 145–166. [Google Scholar]
- Monteserín-López, V.; Fernández-Pompa, F. Hoja 21: A Coruña. Mapa Geológico de España 1:50.000; Servicio de Publicaciones del Ministerio de Industria y Energía IGME: Madrid, Spain, 1975. [Google Scholar]
- Galán-Arias, J.; Fernández-Rodríguez Arango, R. Hoja 45: Betanzos. Mapa Geológico de España 1:50.000; Servicio de Publicaciones del Ministerio de Industria y Energía IGME: Madrid, Spain, 1981. [Google Scholar]
- Arenas, R.; Díaz-García, F.; Martínez-Catalán, J.R.; Abati, J.; González-Cuadra, P.; Andonaegui, P.; González del Tánago, J.; Rubio-Pascual, F.; Castiñeiras, P.; Gómez-Barreiro, J. Structure and Evolution of the Ordenes Complex: Pre-conference Field Trip 29 June–3 July. In Basement Tectonics; Universidad de Oviedo: Oviedo, Spain, 2000; 160p. [Google Scholar]
- Fuenlabrada Pérez, J.M. Geoquímica de series Metasedimentarias del Macizo Ibérico: Contexto Dinámico de la Transición Ediacarense- Cámbrico. Ser. Nova Terra 2018, 46, 1–183. Available online: http://www.iux.es/almacen/NT_49_html/ (accessed on 7 September 2022).
- Arce-Chamorro, C. Datación por Luminiscencia de Depósitos Fluviales y Eólicos en el Margen Occidental de Galicia. Ph.D. Thesis, Universidad de A Coruña, A Coruña, Spain, 2017; 399p. [Google Scholar]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single- aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Ballarini, M.; Wallinga, J.; Wintle, A.G.; Bos, A.J. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiat. Meas. 2007, 42, 360–369. [Google Scholar] [CrossRef]
- Rodnight, H.; Duller, G.A.T.; Wintle, A.G.; Tooth, S. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quat. Geochronol. 2006, 1, 109–120. [Google Scholar] [CrossRef]
- Buylaert, J.P.; Jain, M.; Murray, A.; Thomsen, K.; Thiel, C.; Sohbati, R. A Robust Feldspar Luminescence Dating Method for Middle and Late Pleistocene Sediments. Boreas 2012, 41, 435–451. [Google Scholar] [CrossRef]
- Thiel, C.; Buylaert, J.P.; Murray, A.; Terhorst, B.; Hofer, I.; Tsukamoto, S.; Frechen, M. Luminescence Dating of the Stratzing Loess Profile (Austria)—Testing the potential of an elevated temperature post-IR IRSL protocol. Quat. Int. 2009, 234, 23–31. [Google Scholar] [CrossRef]
- Guérin, G.; Mercier, N.; Adamiec, G. Dose rate conversion factors: Update. Ancient TL 2011, 29, 5–8. [Google Scholar]
- Brennan, B.J. Beta doses to spherical grains. Radiat. Meas. 2003, 37, 299–303. [Google Scholar] [CrossRef]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contribution to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Aitken, M.J. An Introduction to Optical Dating; Oxford University Press: London, UK, 1998; 267p. [Google Scholar]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 1999, 41, 339–364. [Google Scholar] [CrossRef]
- Gascoyne, M. Geochemistry of the actinides and their daughters. In Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences; Ivanovich, M., Harmon, R.S., Eds.; Clarendon Press: Oxford, UK, 1992; pp. 34–61. [Google Scholar]
- Boyle, R.W. Geochemical Prospecting for Thorium and Uranium Deposits; Elsevier: New York, NY, USA, 1982; 489p. [Google Scholar]
- CSN. Proyecto Marna. Mapa de Radiación Gamma Natural; Consejo de Seguridad Nuclear: Madrid, Spain, 2000; 138p. [Google Scholar]
- Sanjurjo-Sánchez, J.; Vidal Romaní, J.R. Luminescence Dating of Pseudokarst Speleothems: A first approach. Spectrosc. Lett. 2011, 44, 543–548. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Jeffries, T.E.; Johnston, S.T.; Pastor-Galán, D.; Murphy, J.B.M.; Piedad-Franco, P.; Gonzalo, J.C. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 2011, 30, TC5008. [Google Scholar] [CrossRef] [Green Version]
- Railsbak, L.B.; Liang, F.; Vidal-Romaní, J.R.; Garret, K.B.; Sellers, R.C.; Vaqueiro-Rodríguez, M.; Grandal-D´Anglade, A.; Cheng, H.; Edwards, R.L. Radiometric, isotopic, and petrographic evidence of changing interglacials over the past 550,000 years from six stalagmites from the Serra do Courel in the Cordillera Cantábrica of northwestern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 137–152. [Google Scholar] [CrossRef]
- Fritzsimmons, K.E. An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochronometria 2011, 38, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Alexanderson, H.; Næraa, T.; Doverbratt, I. Luminescence characteristics of Scandinavian quartz, their connection to bedrock provenance and influence on dating results. In Proceedings of the 16th International Luminescence and ESR Dating Conference, Virtual, 13–17 September 2021. [Google Scholar]
- Cao, Z.; Zhou, L.P. Luminescence Sensitivity of Quartz from Rocks under Different in situ Weathering Conditions. Front. Earth Sci. 2022, 10, 940212. [Google Scholar] [CrossRef]
- Panda, S.K.; Kaushal, R.K.; Parida, S.; Chauhan, N.; Singhvi, A.K. Spatial variations in luminescence sensitivity of quartz extracted from source rocks and fluvial sediments of the Sabarmati River basin, Western India: Implications for provenance studies. In Proceedings of the 16th International Luminescence and ESR Dating Conference, Virtual, 13–17 September 2021. [Google Scholar]
- Sawakuchi, A.O.; Jain, M.; Mineli, T.D.; Nogueira, L.; Bertassoli, D.J.; Häggi, C.; Sawakuchi, H.O.; Pupim, F.N.; Grohmann, C.H.; Chiessi, C.M.; et al. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin. Earth. Planet. Sci. Lett. 2018, 492, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Bartyik, T.; Magyar, G.; Dávid Filyó, D.; Tóth, O.; Blanka-Végi, V.; Kiss, T.; Marković, S.; Persoiu, I.; Gavrilov, M.; Mezősi, G.; et al. Spatial differences in the luminescence sensitivity of quartz extracted from Carpathian Basin fluvial sediments. Quat. Geochronol. 2021, 64, 101166. [Google Scholar] [CrossRef]
- Jacobs, Z.; Duller, G.A.T.; Wintle, A.G. Interpretation of single grain De distributions and calculation of De. Radiat. Meas. 2006, 41, 264–277. [Google Scholar] [CrossRef]
- Wallinga, J. Optically stimulated luminescence dating of fluvial deposits: A review. Boreas 2002, 31, 303–322. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochronol. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Duller, G.A.T. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiat. Meas. 2012, 47, 770–777. [Google Scholar] [CrossRef]
- Feathers, J.K.; Pagonis, V. Dating quartz near saturation—Simulations and application at archaeological sites in South Africa and South Carolina. Quat. Geochronol. 2015, 30, 416–421. [Google Scholar] [CrossRef]
- Murray, A.S.; Olley, J.M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review. Geochronometria 2002, 21, 1–16. [Google Scholar]
- Singarayer, J.; Bailey, R. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiat. Meas. 2003, 37, 451–458. [Google Scholar] [CrossRef]
- Wintle, A.G.; Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 2006, 41, 369–391. [Google Scholar] [CrossRef]
- Cunningham, A.C.; Wallinga, J. Selection of integration time intervals for quartz OSL decay curves. Quat. Geochronol. 2010, 5, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, K.J.; Murray, A.S.; Bøtter-Jensen, L. Sources of variability in OSL dose measurements using single grains of Quartz. Radiat. Meas. 2005, 39, 47–61. [Google Scholar] [CrossRef]
- Arnold, L.J.; Roberts, R.G. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quat. Geochronol. 2009, 4, 204–230. [Google Scholar] [CrossRef]
- Rittenour, T.M. Luminescence dating of fluvial deposits: Applications to geomorphic, palaeoseismic and archaeological research. Boreas 2008, 37, 613–635. [Google Scholar] [CrossRef]
- Duller, G.A.T. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating. Boreas 2008, 37, 589–612. [Google Scholar] [CrossRef]
- Colarossi, D.; Duller, G.A.T.; Roberts, H.M.; Tooth, S.; Lyons, R. Comparison of paired quartz OSL and feldspar post-IR IRSL dose distributions in poorly bleached fluvial sediments from South Africa. Quat. Geochronol. 2015, 30, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, Z.; Wintle, A.G.; Duller, G.A.T. Optical dating of dune sand from Blombos Cave, South Africa: I—Multiple grain data. J. Hum. Evol. 2003, 44, 599–612. [Google Scholar] [CrossRef]
- Burow, C.; Kreutzer, S.; Dietze, M.; Fuchs, M.; Fischer, M.; Schmidt, C.; Brückner, H. RLumShiny—A graphical user interface for the R Package ‘Luminescence’. Ancient TL 2016, 34, 22–32. [Google Scholar]
- Nathan, R.; Thomas, P.J.; Murray, A.S.; Rhodes, E.J. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiat. Meas. 2003, 37, 305–313. [Google Scholar] [CrossRef]
- Guérin, G.; Christophe, C.; Philippe, A.; Murray, A.S.; Thomsen, K.J.; Tribolo, C.; Urbanova, P.; Jain, M.; Guibert, P.; Mercier, N.; et al. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model. Quat. Geochronol. 2017, 41, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Anechitei-Deacu, V.; Timar-Gabor, A.; Thomsen, K.J.; Buylaert, J.P.; Jain, M.; Bailey, M.; Murray, A.S. Single and multi-grain OSL investigations in the high dose range using coarse quartz. Radiat. Meas. 2018, 120, 124–130. [Google Scholar] [CrossRef]
- EDMOnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM). 2018. Available online: https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6 (accessed on 7 July 2022).
- Mosquera-Santé, M.J. Evolución Post-Glaciar del Nivel del Mar en el NO de la Península Ibérica: El Caso del Golfo Ártabro. Ph.D. Thesis, Universidad de A Coruña, A Coruña, Spain, 2000; 155p. [Google Scholar]
- Valencia-Vila, F. Golfo Ártabro: Marco Físico. In Biodiversidad Marina del Golfo Ártabro (A Coruña); Valencia-Vila, F., Parra, S., Eds.; Instituto Español de Oceanografía; Ministerio de Ciencia e Innovación: A Coruña, Spain, 2015; Chapter 2; p. 45. [Google Scholar]
- Ribeiro, H.; Bernal, A.; Flores, D.; Pissarra, J.; Ruas de Abreu, I.; Vidal-Romani, J.R.; Noronha, F. A multidisciplinary study of an organic-rich mudstone in the Middle Holocene on the Northern coast of Portugal. Comun. Geol. 2011, 98, 93–98. [Google Scholar]
- Ribeiro, H.; Pinto de Jesus, A.; Sanjurjo-Sánchez, J.; Abreu, I.; Romani, J.R.V.; Noronha, F. Multidisciplinary study of the quaternary deposits of the Vila Nova de Gaia, NW Portugal, and its climate significance. J. Iber. Geol. 2019, 45, 553–563. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.K.; Azuma, N.; Barnola, J.M.; Bigler, M.; Biscaye, P.; Caillon, N.; Chappellaz, J.; Clausen, H.B.; Dahl-Jensen, D.; Fischer, H.; et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Waelbroeck, C.; Labeyrie, L.; Michel, E.; Duplessy, J.C.; McManus, J.F.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
Sample | 238-U | 232-Th | 40-K | F (w = 40%) | Dr (Gy/ka) |
---|---|---|---|---|---|
MERO-1 | 16 ± 9 | 29 ± 4 | 226 ± 20 | 7 ± 1 | 1.50 ± 0.25 |
MERO-2 | 21 ± 12 | 21 ± 3 | 82 ± 16 | 8 ± 2 | 1.83 ± 0.14 |
MERO-3 | 23 ± 11 | 37 ± 6 | 113 ± 15 | 16 ± 4 | 1.21 ± 0.20 |
MERO-4 | 19 ± 9 | 13 ± 6 | 91 ± 15 | 16 ± 4 | 0.90 ± 0.13 |
MERO-5 | 21 ± 10 | 27 ± 7 | 127 ± 16 | 13 ± 4 | 1.15 ± 0.07 |
MERO-6 | 9 ± 1 | 10 ± 7 | 78 ± 17 | 8 ± 2 | 0.68 ± 0.10 |
MERO-7 | 26 ± 2 | 26 ± 1 | 115 ± 79 | 11 ± 2 | 1.37 ± 0.27 |
MERO-8 | 29 ± 13 | 53 ± 2 | 126 ± 8 | 8 ± 2 | 1.64 ± 0.16 |
Sample | N | Dr (Gy/ka) | De (Gy) | OD (%) | Age (ka) |
---|---|---|---|---|---|
MERO-1 | 59/141 | 1.50 ± 0.25 | 98 ± 6 | 35 ± 5 | 65 ± 13 |
MERO-2 | 36/202 | 1.83 ± 0.14 | 108 ± 10 | 50 ± 7 | 59 ± 8 |
MERO-3 | 43/168 | 1.21 ± 0.20 | 115 ± 7 | 30 ± 5 | 95 ± 19 |
MERO-4 | 51/91 | 0.90 ± 0.13 | 95 ± 6 | 39 ± 5 | 105 ± 23 |
MERO-5 | 51/125 | 1.15 ± 0.07 | 89 ± 5 | 32 ± 5 | 77 ± 11 |
MERO-6 | 65/188 | 0.68 ± 0.10 | 32 ± 3 | 78 ± 7 | 46.1 ± 12 |
MERO-7 | 26/219 | 1.37 ± 0.27 | 135 ± 7 | 13 ± 5 | 99 ± 22 |
MERO-8 | 26/195 | 1.64 ± 0.16 | 139 ± 9 | 28 ± 5 | 85 ± 12 |
Location | Formation | Age (ka) | Technique | Reference |
---|---|---|---|---|
Lower Mero River (A Coruña, Galicia) | Alluvial | 128-51 | OSL | (this paper) |
Lower Ulla River (Pontevedra, Galicia) | Alluvial | 92-37 | OSL | [2] |
Lower Miño River (Pontevedra, Galicia) | Fluvial terraces | 57-27 | OSL | [1] |
Fluvial terraces | 120-108 | IRSL | ||
Lower Neiva River (North Portugal) | Fluvial | 90-40 | OSL | [56,57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce-Chamorro, C.; Sanjurjo-Sánchez, J.; Vidal-Romaní, J.R. Chronology of Coastal Alluvial Deposits in The Ria de Coruña (NW Spain) Linked to the Upper Pleistocene Sea Level Regression. Appl. Sci. 2022, 12, 9982. https://doi.org/10.3390/app12199982
Arce-Chamorro C, Sanjurjo-Sánchez J, Vidal-Romaní JR. Chronology of Coastal Alluvial Deposits in The Ria de Coruña (NW Spain) Linked to the Upper Pleistocene Sea Level Regression. Applied Sciences. 2022; 12(19):9982. https://doi.org/10.3390/app12199982
Chicago/Turabian StyleArce-Chamorro, Carlos, Jorge Sanjurjo-Sánchez, and Juan Ramón Vidal-Romaní. 2022. "Chronology of Coastal Alluvial Deposits in The Ria de Coruña (NW Spain) Linked to the Upper Pleistocene Sea Level Regression" Applied Sciences 12, no. 19: 9982. https://doi.org/10.3390/app12199982
APA StyleArce-Chamorro, C., Sanjurjo-Sánchez, J., & Vidal-Romaní, J. R. (2022). Chronology of Coastal Alluvial Deposits in The Ria de Coruña (NW Spain) Linked to the Upper Pleistocene Sea Level Regression. Applied Sciences, 12(19), 9982. https://doi.org/10.3390/app12199982