Phytochemicals and Antioxidant Properties of Edible Flowers
Abstract
:1. Introduction
2. Phytochemicals
2.1. Phenolic Compounds
2.1.1. Total Phenolic Content
2.1.2. Phenolic Acids
2.1.3. Flavonoids
Anthocyanins
Flavones and Flavanones
Flavones/Flavanones (and Their Derivatives) | Flower | Reference |
---|---|---|
Acacetin | Chrysanthemum morifolium | [40] |
Apigenin | Chrysanthemum indicum L., Chrysanthemum lavandulifolium, Chrysanthemum morifolium, Clitoria ternatea L., Florists chrysanthemum, Helichrysum bracteatum, Matthiola incana, Nelumbo nucifera Gaertn., Rosa rugose, Tagetes erecta L., Tropaeolum majus | [36,41,42] |
Chrysoeriol | Tree peony flowers, Hemerocallis fulva | [43,44] |
Chrysin | Chrysanthemum morifolium, Helichrysum bracteatum | [36] |
Eriodictyol | Fengdan Bai (tree peony), Impatiens walleriana, Chrysanthemum morifolium | [45,46,47] |
Hesperetin | Amygdalus persica, Chrysanthemum indicum, Chrysanthemum lavandulifolium, Chrysanthemum morifolium, Citrus aurantium L., Gomphrena globose, Hylocereus undatus, Musa basjoo Sieb. et Zucc. | [36,48] |
Hesperidin | Citrus aurantium L., Rosa chinensis, Torenia fournieri, Clitoria ternatea L. | [39,48] |
Luteolin | Chrysanthemum indicum L., Chrysanthemum morifolium, Glycyrrhiza glabra, Lonicera japonica Thunb., Viburnum inopinatum | [41,47,49,50] |
Naringenin | Amygdalus persica, Helichrysum bracteatum, Nymphaea hybrid, Begonia × tuberhybrida Voss., Rosa chinensis, Torenia fournieri, Clitoria ternatea L. | [36,39] |
Naringin | Citrus aurantium, Rhododendron simsii Planch, Rosa chinensis, Nymphaea hybrid | [36] |
Flavonols
Flavanols
2.2. Carotenoids
2.3. Tocols
2.4. Terpenes
3. Antioxidant Activity of Edible Flowers
4. Toxic and Antinutritional Compounds in Edible Flowers
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible flowers: Antioxidant compounds and their functional properties. Horticulturae 2021, 7, 66. [Google Scholar] [CrossRef]
- Kumari, P.; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods 2021, 78, 104375. [Google Scholar] [CrossRef]
- Janarny, G.; Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S. Nutraceutical potential of dietary phytochemicals in edible flowers—A review. J. Food Biochem. 2021, 45, e13642. [Google Scholar] [CrossRef] [PubMed]
- Skrajda-Brdak, M.; Dąbrowski, G.; Konopka, I. Edible flowers, a source of valuable phytonutrients and their pro-healthy effects–A review. Trends Food Sci. Technol. 2020, 103, 179–199. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S130–S148. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.D.O., Jr.; Di Gioia, F.; Rouphael, Y.; Ferreira, I.C.; Caleja, C.; Barros, L.; Petropoulos, S.A. The compositional aspects of edible flowers as an emerging horticultural product. Molecules 2021, 26, 6940. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Esteve, M.J.; Frígola, A. Bioactive components from leaf vegetable products. Stud. Nat. Prod. Chem. 2014, 41, 321–346. [Google Scholar] [CrossRef]
- Murkovic, M. Phenolic Compounds: Occurrence, Classes, and Analysis. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 346–351. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M.C. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 2001, 427, 119–127. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Pinedo-Espinoza, J.M.; Gutiérrez-Tlahque, J.; Santiago-Saenz, Y.O.; Aguirre-Mancilla, C.L.; Reyes-Fuentes, M.; López-Palestina, C.U. Nutritional composition, bioactive compounds and antioxidant activity of wild edible flowers consumed in semiarid regions of Mexico. Plant Foods Hum. Nutr. 2020, 75, 413–419. [Google Scholar] [CrossRef]
- Stefaniak, A.; Grzeszczuk, M. Nutritional and biological value of five edible flower species. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Socha, R.; Kałwik, J.; Juszczak, L. Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland. Acta Univ. Cinbinesis Ser. E Food Technol. 2021, 25, 185–200. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Xie, Y.Q.; Chen, F.; Zhao, Y.Y.; Luo, C.X.; Gao, Y.Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Kritsi, E.; Tsiaka, T.; Ioannou, A.G.; Mantanika, V.; Strati, I.F.; Panderi, I.; Zoumpoulakis, P.; Sinanoglou, V.J. In vitro and in silico studies to assess edible flowers’ antioxidant activities. Appl. Sci. 2022, 12, 7331. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018, 21, 1524–1540. [Google Scholar] [CrossRef]
- Neves, M.; Antunes, M.; Fernandes, W.; Campos, M.J.; Azevedo, Z.M.; Freitas, V.; Rocha, J.M.; Tecelão, C. Physicochemical and nutritional profile of leaves, flowers, and fruits of the edible halophyte chorão-da-praia (Carpobrotus edulis) on Portuguese west shores. Food Biosci. 2021, 43, 101288. [Google Scholar] [CrossRef]
- Zeng, Y.; Deng, M.; Lv, Z.; Peng, Y. Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. SpringerPlus 2014, 3, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Mao, S.; Shen, C. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Kucekova, Z.; Mlcek, J.; Humpolicek, P.; Rop, O. Edible flowers—Antioxidant activity and impact on cell viability. Open Life Sci. 2013, 8, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- De Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Iwashina, T. Contribution to flower colors of flavonoids including anthocyanins: A review. Nat. Prod. Commun. 2015, 10, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Bortolotti, E.; Maggini, R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016, 199, 170–177. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Chong, S.; Yan, S.; Yu, R.; Chen, R.; Si, J.; Zhang, X. Identification and quantitative analysis of anthocyanins composition and their stability from different strains of Hibiscus syriacus L. flowers. Ind. Crops Prod. 2022, 177, 114457. [Google Scholar] [CrossRef]
- Janarny, G.; Ranaweera, K.K.D.S.; Gunathilake, K.D.P.P. Antioxidant activities of hydro-methanolic extracts of Sri Lankan edible flowers. Biocatal. Agric. Biotechnol. 2021, 35, 102081. [Google Scholar] [CrossRef]
- Chensom, S.; Shimada, Y.; Nakayama, H.; Yoshida, K.; Kondo, T.; Katsuzaki, H.; Hasegawa, S.; Mishima, T. Determination of anthocyanins and antioxidants in ‘Titanbicus’ edible flowers in vitro and in vivo. Plant Foods Hum. Nutr. 2020, 75, 265–271. [Google Scholar] [CrossRef] [PubMed]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From biosynthesis to health benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Meenu, M.; Xu, B. A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed. Anal. 2019, 172, 268–277. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, B.; Huang, W.; Amrouche, A.T.; Maurizio, B.; Simal-Gandara, J.; Tundis, R.; Xiao, J.; Zou, L.; Lu, B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 2020, 106, 30–47. [Google Scholar] [CrossRef]
- Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr. 2017, 57, 613–631. [Google Scholar] [CrossRef]
- De Morais, J.S.; Sant’Ana, A.S.; Dantas, A.M.; Silva, B.S.; Lima, M.S.; Borges, G.C.; Magnani, M. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res. Int. 2020, 131, 109046. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Dong, G.; Zhang, X.; Liu, Y.; Sun, W.; Liu, A. Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds. Food Chem. 2021, 344, 128733. [Google Scholar] [CrossRef]
- Tsuji-Naito, K.; Saeki, H.; Hamano, M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem. 2009, 116, 854–859. [Google Scholar] [CrossRef]
- Kaisoon, O.; Siriamornpun, S.; Weerapreeyakul, N.; Meeso, N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods 2011, 3, 88–99. [Google Scholar] [CrossRef]
- Wang, S.; Xue, J.; Zhang, S.; Zheng, S.; Xue, Y.; Xu, D.; Zhang, X. Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. Plant Physiol. Biochem. 2020, 155, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Lu, C.K.; Huang, Y.J.; Chen, H.J. Antioxidative caffeoylquinic acids and flavonoids from Hemerocallis fulva flowers. J. Agric. Food Chem. 2011, 59, 8789–8795. [Google Scholar] [CrossRef]
- Xiang, J.; Yang, C.; Beta, T.; Liu, S.; Yang, R. Phenolic profile and antioxidant activity of the edible tree peony flower and underlying mechanisms of preventive effect on H2O2-induced oxidative damage in Caco-2 cells. Foods 2019, 8, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, E.D.O., Jr.; Pereira, E.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Soković, M.; Hassemer, G.; Garcia, C.C.; Caleja, C.; Barros, L. Chemical composition and bioactive characterisation of Impatiens walleriana. Molecules 2021, 26, 1347. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, S.; Xue, S.; Yang, D.; Li, L. Effects of drying methods on phenolic components in different parts of Chrysanthemum morifolium flower. J. Food Process. Preserv. 2020, 44, e14982. [Google Scholar] [CrossRef]
- Hao, K.; Hu, W.; Hou, M.; Cao, D.; Wang, Y.; Guan, Q.; Zhang, X.; Wang, A.; Yu, J.; Guo, B. Optimization of ultrasonic-assisted extraction of total phenolics from Citrus aurantium L. blossoms and evaluation of free radical scavenging, anti-HMG-CoA reductase activities. Molecules 2019, 24, 2368. [Google Scholar] [CrossRef] [Green Version]
- Suksathan, R.; Rachkeeree, A.; Puangpradab, R.; Kantadoung, K.; Sommano, S.R. Phytochemical and nutritional compositions and antioxidants properties of wild edible flowers as sources of new tea formulations. NFS J. 2021, 24, 15–25. [Google Scholar] [CrossRef]
- Lee, J.; Kang, Y.; Kim, Y.J.; Chang, Y.H. Effect of high pressure and treatment time on nutraceuticals and antioxidant properties of Lonicera japonica Thunb. Innov. Food Sci. Emerg. Technol. 2019, 54, 243–251. [Google Scholar] [CrossRef]
- Pires, T.C.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Solarte, N.; Cejudo-Bastante, M.J.; Hurtado, N.; Heredia, F.J. First accurate profiling of antioxidant anthocyanins and flavonols of Tibouchina urvilleana and Tibouchina mollis edible flowers aided by fractionation with Amberlite XAD-7. Int. J. Food Sci. Technol. 2022, 57, 2416–2423. [Google Scholar] [CrossRef]
- Rivas-García, L.; Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Esteban-Muñoz, A.; Giampieri, F.; Sumalla-Cano, S.; Battino, M.; Quiles, J.L.; Llopis, J.; Sánchez-González, C. Unravelling potential biomedical applications of the edible flower Tulbaghia violacea. Food Chem. 2022, 381, 132096. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bhandari, P.; Singh, B.; Gupta, A.P.; Kaul, V.K. Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species. J. Sep. Sci. 2008, 31, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, M.C.; Menichini, F.; Xiao, J.; Tundis, R. Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. J. Agric. Food Chem. 2016, 64, 2467–2474. [Google Scholar] [CrossRef]
- Sun, Q.L.; Hua, S.; Ye, J.H.; Zheng, X.Q.; Liang, Y.R. Flavonoids and volatiles in Chrysanthemum morifolium Ramat flower from Tongxiang County in China. Afr. J. Biotechnol. 2010, 9, 3817–3821. [Google Scholar]
- Liang-Yu, W.; Hong-Zhou, G.; Xun-Lei, W.; Jian-Hui, Y.; Jian-Liang, L.; Yue-Rong, L. Analysis of chemical composition of Chrysanthemum indicum flowers by GC/MS and HPLC. J. Med. Plants Res. 2010, 4, 421–426. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Z.; Fang, J.; Liu, M.; Niu, Y.; Chen, S.; Wang, H. An on-line high-performance liquid chromatography–diode-array detector–electrospray ionization–ion-trap–time-of-flight–mass spectrometry–total antioxidant capacity detection system applying two antioxidant methods for activity evaluation of the edible flowers from Prunus mume. J. Chromatogr. A 2015, 1414, 88–102. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Bortolini, D.G.; Barros, L.; Maciel, G.M.; Brugnari, T.; Modkovski, T.A.; Fachi, M.M.; Pontarolo, R.; Pinela, J.; Ferreira, I.C.; Haminiuk, C.W.I. Bioactive profile of edible nasturtium and rose flowers during simulated gastrointestinal digestion. Food Chem. 2022, 381, 132267. [Google Scholar] [CrossRef]
- Barriada-Bernal, L.G.; Almaraz-Abarca, N.; Delgado-Alvarado, E.A.; Gallardo-Velázquez, T.; Ávila-Reyes, J.A.; Torres-Morán, M.I.; González-Elizondo, M.D.S.; Herrera-Arrieta, Y. Flavonoid composition and antioxidant capacity of the edible flowers of Agave durangensis (Agavaceae). CyTA-J. Food 2014, 12, 105–114. [Google Scholar] [CrossRef]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
- Caballero-Ortega, H.; Pereda-Miranda, R.; Abdullaev, F.I. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007, 100, 1126–1131. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananingsih, V.K.; Sharma, A.; Zhou, W. Green tea catechins during food processing and storage: A review on stability and detection. Food Res. Int. 2013, 50, 469–479. [Google Scholar] [CrossRef]
- The Carotenoids Database. Available online: http://carotenoiddb.jp/ (accessed on 3 August 2022).
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Montoya-Arroyo, A.; Toro-González, C.; Sus, N.; Warner, J.; Esquivel, P.; Jiménez, V.M.; Frank, J. Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica. J. Sci. Food Agric. 2022, in press. [Google Scholar] [CrossRef]
- Primitivo, M.J.; Neves, M.; Pires, C.L.; Cruz, P.F.; Brito, C.; Rodrigues, A.C.; de Carvalho, C.C.; Mortimer, M.M.; Moreno, M.J.; Brito, R.M.; et al. Edible flowers of Helichrysum italicum: Composition, nutritive value, and bioactivities. Food Res. Int. 2022, 157, 111399. [Google Scholar] [CrossRef]
- Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Food Res. Int. 2020, 132, 109070. [Google Scholar] [CrossRef]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols—Bioactive dietary compounds; what is certain, what is doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol. 2019, 26, 101259. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, E.B.; Hall, S.E.; Ripp, K.G.; Ganzke, T.S.; Hitz, W.D.; Coughlan, S.J. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat. Biotechnol. 2003, 21, 1082–1087. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E.; Rémésy, C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J. Cereal Sci. 2008, 48, 258–276. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Ferreira, I.C. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, Â.; Bancessi, A.; Pinela, J.; Dias, M.I.; Liberal, Â.; Calhelha, R.C.; Ćirić, A.; Soković, M.; Catarino, L.; Ferreira, I.C.; et al. Nutritional and phytochemical profiles and biological activities of Moringa oleifera Lam. edible parts from Guinea-Bissau (West Africa). Food Chem. 2021, 341, 128229. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roriz, C.L.; Xavier, V.; Heleno, S.A.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Morales, P.; Ferreira, I.C.; Barros, L. Chemical and bioactive features of Amaranthus caudatus L. flowers and optimized ultrasound-assisted extraction of betalains. Foods 2021, 10, 779. [Google Scholar] [CrossRef]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.M.; Tomuta, I.; Popa, D.S. Enhanced recovery of phenolic and tocopherolic compounds from walnut (Juglans regia L.) male flowers based on process optimization of ultrasonic assisted-extraction: Phytochemical profile and biological activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef]
- Liberal, Â.; Coelho, C.T.; Fernandes, Â.; Cardoso, R.V.; Dias, M.I.; Pinela, J.; Alves, M.J.; Severino, V.G.; Ferreira, I.C.; Barros, L. Chemical features and bioactivities of Lactuca canadensis L., an unconventional food plant from Brazilian Cerrado. Agriculture 2021, 11, 734. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Sánchez-Machado, D.I.; Cruz-Flores, P.; Mariscal-Domínguez, M.F.; de la Mora-López, G.S.; Campas-Baypoli, O.N. Antioxidant capacity, proximate composition, and lipid constituents of Aloe vera flowers. J. Appl. Res. Med. Aromat. Plants 2018, 10, 93–98. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Baranauskienė, R.; Venskutonis, P.R. Supercritical CO2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules 2022, 27, 353. [Google Scholar] [CrossRef] [PubMed]
- Mandim, F.; Petropoulos, S.A.; Fernandes, Â.; Santos-Buelga, C.; Ferreira, I.C.; Barros, L. Chemical composition of Cynara cardunculus L. var. altilis heads: The impact of harvesting time. Agronomy 2020, 10, 1088. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Bhandari, B.; Mujumdar, A.S. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res. Int. 2021, 139, 109809. [Google Scholar] [CrossRef]
- Rath, C.C.; Devi, S.; Dash, S.K.; Mishra, R.K. Antibacterial potential assessment of Jasmine essential oil against E. coli. Indian J. Pharm. Sci. 2008, 70, 238. [Google Scholar] [CrossRef] [Green Version]
- Kalagatur, N.K.; Mudili, V.; Kamasani, J.R.; Siddaiah, C. Discrete and combined effects of Ylang-Ylang (Cananga odorata) essential oil and gamma irradiation on growth and mycotoxins production by Fusarium graminearum in maize. Food Control 2018, 94, 276–283. [Google Scholar] [CrossRef]
- Cosimi, S.; Rossi, E.; Cioni, P.L.; Canale, A. Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). J. Stored Prod. Res. 2009, 45, 125–132. [Google Scholar] [CrossRef]
- Sabulal, B.; George, V.; Dan, M.; Pradeep, N.S. Chemical composition and antimicrobial activities of the essential oils from the rhizomes of four Hedychium species from South India. J. Essent. Oil Res. 2007, 19, 93–97. [Google Scholar] [CrossRef]
- Şerbetçi, T.; Özsoy, N.; Demirci, B.; Can, A.; Kültür, Ş.; Başer, K.C. Chemical composition of the essential oil and antioxidant activity of methanolic extracts from fruits and flowers of Hypericum lydium Boiss. Ind. Crops Prod. 2012, 36, 599–606. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Sriti, J.; Jemia, M.B.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Castellanos, P.P.; Bishop, C.D.; Pascual-Villalobos, M.J. Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 2001, 57, 99–102. [Google Scholar] [CrossRef]
- Bazdar, M.; Sadeghi, H.; Hosseini, S. Evaluation of oil profiles, total phenols and phenolic compounds in Prangos ferulacea leaves and flowers and their effects on antioxidant activities. Biocatal. Agric. Biotechnol. 2018, 14, 418–423. [Google Scholar] [CrossRef]
- Ioannou, E.; Poiata, A.; Hancianu, M.; Tzakou, O. Chemical composition and in vitro antimicrobial activity of the essential oils of flower heads and leaves of Santolina rosmarinifolia L. from Romania. Nat. Prod. Res. 2007, 21, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Bruni, R.; Medici, A.; Andreotti, E.; Fantin, C.; Muzzoli, M.; Dehesa, M.; Romagnoli, C.; Sacchetti, G. Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chem. 2004, 85, 415–421. [Google Scholar] [CrossRef]
- Fei, L.U.; Ding, Y.C.; Ye, X.Q.; Ding, Y.T. Antibacterial effect of cinnamon oil combined with thyme or clove oil. Agric. Sci. China 2011, 10, 1482–1487. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Y.; Sun, Y.; Cui, H. Characterization of chrysanthemum essential oil triple-layer liposomes and its application against Campylobacter jejuni on chicken. LWT 2019, 107, 16–24. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Upadhyay, N.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Chaudhari, A.K.; Dubey, N.K. Cistus ladanifer L. essential oil as a plant based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT 2018, 92, 395–403. [Google Scholar] [CrossRef]
- Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. [Google Scholar] [CrossRef]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef]
- García-Mateos, R.; Lucas, B.; Zendejas, M.; Soto-Hernández, M.; Martínez, M.; Sotelo, A. Variation of total nitrogen, non-protein nitrogen content, and types of alkaloids at different stages of development in Erythrina americana seeds. J. Agric. Food Chem. 1996, 44, 2987–2991. [Google Scholar] [CrossRef]
- Clemente, M.; Miguel, M.D.; Felipe, K.B.; Gribner, C.; Moura, P.F.; Rigoni, A.G.R.; Fernandes, L.C.; Carvalho, J.L.S.; Hartmann, I.; Piltz, M.T.; et al. Acute and sub-acute oral toxicity studies of standardized extract of Nasturtium officinale in Wistar rats. Regul. Toxicol. Pharmacol. 2019, 108, 104443. [Google Scholar] [CrossRef]
- Nisa, A.; Hina, S.; Mazhar, S.; Kalim, I.; Ijaz, A.; Zahra, N.; Masood, S.; Asif, M. Stability of lutein content in color extracted from marigold flower and its application in candies. Pak. J. Agric. Res. 2018, 31, 15–23. [Google Scholar] [CrossRef]
- Wanjari, M.M.; Gangoria, R.; Dey, Y.N.; Gaidhani, S.N.; Pandey, N.K.; Jadhav, A.D. Hepatoprotective and antioxidant activity of Bombax ceiba flowers against carbon tetrachloride-induced hepatotoxicity in rats. Hepatoma Res. 2016, 2, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Ghosh, D.; Sagar, N.; Ganapaty, S. Evaluation of antioxidant, toxicological and wound healing properties of Hibiscus rosa-sinensis L. (Malvaceae) ethanolic leaves extract on different experimental animal models. Indian J. Pharm. Educ. Res. 2016, 50, 620–637. [Google Scholar] [CrossRef]
- Khan, W.; Gupta, S.; Ahmad, S. Toxicology of the aqueous extract from the flowers of Butea monosperma Lam. and it’s metabolomics in yeast cells. Food Chem. Toxicol. 2017, 108, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Ojulari, O.V.; Lee, S.G.; Nam, J.O. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity. Molecules 2019, 24, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Arruda, A.; Cardoso, C.A.L.; Vieira, M.D.C.; Arena, A.C. Safety assessment of Hibiscus sabdariffa after maternal exposure on male reproductive parameters in rats. Drug Chem. Toxicol. 2016, 39, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Copetta, A.; Durazzo, A.; Gabrielli, P.; Lombardi-Boccia, G.; Lupotto, E.; Santini, A.; Ruffoni, B. A snapshot on food allergies: A case study on edible flowers. Sustainability 2020, 12, 8709. [Google Scholar] [CrossRef]
Flower | TPC | Flower | TPC | Flower | TPC |
---|---|---|---|---|---|
Agave salmiana | 4.6 d | Dianthus caryophyllus | 30.8 a | Myosotis sylvatica | 64.0 a |
Aglaia odorata | 55.5 a | Dianthus L. | 15.9 b | Myrtillocactus geometrizans | 28.7 d |
Albizzia julibrissin | 14.2 a | Epipremnum aureum | 12.9 a | Nelumbo nucifera | 54.5 a |
Allium schoneoprasum L. | 7.2 b | Eriobotrya japonica | 21.6 a | Nymphaea stellata | 69.6 a |
Aloe vera | 4.6 d | Erythrina americana | 7.8 d | Oroxylum indicum | 46.0 a |
Amygdalus persica | 51.2 a | Florists chrysanthemum (yellow) | 32.5 a | Osmanthus fragrans | 134.0 a |
Armeniaca mume | 54.6 a | Florists chrysanthemum (white) | 23.2 a | Osmanthus fragrans (Thunb.) Lour. | 68.2 c |
Bauhinia variegata | 48.0 a | Gomphrena globosa | 11.1 a | Paeonia lactiflora Pall. | 222.0 c |
Begonia tuberhybrida Voss. | 33.0 b | Gomphrena globosa Linn. | 4.8 c | Paeonia suffruticosa | 240.0 a |
Bombax ceiba | 21.6 a | Hedychium coronarium | 14.2 a | Panax pseudoginseng | 7.7 a |
Calendula officinalis | 17.4 a | Helichrysum bracteatum | 72.4 a | Perennial chamomile | 28.5 c |
Calendula officinalis L. | 17.2 b | Hemerocallis citrina | 8.7 a | Plumeria rubra Acutifolia | 20.4 a |
Calendula officinalis L. | 13.0 c | Hemerocallis hybrida hort | 15.7 b | Plumeria rubra Linn. Sp. | 56.0 a |
Camellia azalea | 61.5 a | Hibiscus sabdariffa L. | 21.1 c | Prunella vulgaris | 9.5 a |
Camellia japonica | 22.0 a | Hibiscus sabdariffa | 16.4 a | Punica granatum | 245.8 a |
Campsis grandiflora | 29.6 a | Hylocereus undatus | 9.7 a | Radix Gentianae | 25.1 c |
Canna edulis | 18.0 a | Jasminum sambac | 20.6 a | Redartfulplum tea | 8.6c |
Carpobrotus edulis | 299.0 e | Jasminum sambac (L.) Ait | 12.7 c | Rhododendron simsii Planch | 249.8 a |
Centaurea cyanus L. | 7.3 b | Lavandula angustifolia | 50.8 a | Rosa centifolia | 108.9 a |
Chamomilia | 30.2 c | Lavandula angustifolia Mill. | 36.9 c | Rosa chinensis | 284.8 a |
Chimonanthus praecox | 33.9 a | Lavandula angustifolia Mill. | 7.4 b | Rosa gallica | 111.3 a |
Chimonanthus praecox | 25.8 c | Lilium brownie | 34.8 a | Rosa rugosa (rose) | 312.2 a |
Chrysanthemum indicum | 36.0 a | Lilium brownii var. viridulum | 18.4 c | Rosa rugosa (white-rose) | 39.5 a |
Chrysanthemum indicum | 55.0 a | Lilium bulbiferum | 12.1 a | Rosa rugosa Thunb (pink) | 25.8 c |
Chrysanthemum lavandulifolium | 39.4 a | Lonicera japonica | 87.5 a | Rosa rugosa Thunb (purple) | 57.8 c |
Chrysanthemum morifolium ramat | 33.6 a | Magnolia denudate | 19.6 a | Rosa rugosa | 56.2 b |
Chrysanthemum morifolium | 24.6 c | Magnolia grandiflora | 10.4 a | Rosmarinus officinalis L. | 24.9 c |
Citrus aurantium | 62.5 a | Malus pumila | 60.6 a | Sambucus nigra L. | 14.4 b |
Coreopsis tinctoria | 92.9 a | Malus spectabilis | 8.2 a | Siraitia grosvenorii | 12.8 a |
Crocus sativus L. | 21.4 a | Matricaria recutita | 26.5 a | Siraitia grosvenorii | 22.2 c |
Cucumis sativus Linn. | 5.5 a | Matricaria recutita | 26.4 c | Sophora japonica L. | 84.2 a |
Cucurbita pepo L. | 13.0 b | Matthiola incana | 43.3 a | Tagates L. | 89.2 b |
Cymbidium sinense | 23.3 a | Michelia alba | 18.9 a | Tropaeolum majus | 62.7 a |
Dendranthema morifolium | 20.8 c | Myosotis sylvatica | 25.9 c | Tropaeolum majus | 11.8 b |
Dianthus caryophyllus | 27.9 c | Viola tricolor L. | 46.8 b |
Flower | TPC | Flower | TPC | Flower | TPC |
---|---|---|---|---|---|
Ageratum conyzoides | 4.6 a | Flos chrysanthemi | 3.8 a | Oxalis corymbosa | 2.2 a |
Allamanda cathartica | 4.2 a | Geranium sylvaticum | 12.7 d | Paeonia officinalis | 19.3 d |
Allium ursinum | 1.8 d | Gerbera jamesonii Bolus | 4.9 a | Pelargonium hortorum | 25.7 a |
Antirrhinum majus L. | 1.0 b | Gladiolus hybrids | 2.3 a | Phaseolus vulgaris | 1.9 a |
Antirrhinum majus L. | 2.7 c | Helianthus annuus | 1.9 a | Platycodon grandiflorus | 4.6 a |
Bauhinia purpurea | 6.1 a | Hemerocallis × hybrida Hort. | 2.1 c | Plumbago auriculata Lam. | 6.3 b |
Bellis perennis | 4.0 d | Hibiscus rosa-sinensis | 6.8 a | Primula veris | 10.4 d |
Bidens pilosa | 8.1 a | Hibiscus rosa-sinensis L. (red) | 4.3 b | Primula vulgaris | 6.0 d |
Bombax malabaricum | 3.9 a | Hibiscus rosa-sinensis L. (white) | 4.2 b | Rhapniolepis indica | 8.0 a |
Borago officinalis | 1.6 d | Impatiens walleriana | 7.6 a | Rhododendron simsii Planch | 6.8 a |
Bougainvillea spectabilis | 6.9 a | Ipomoea cairica | 1.8 a | Rhododendron simsii Planch | 1.8 b |
Brassica campestris | 3.3 a | Iris japonica | 0.6 a | Rhoeo discolor | 2.6 a |
Brassica compestris | 4.4 a | Jasminum officinale L. | 4.6 b | Robinia pseudoacacia | 2.0 d |
Brunfelsia acuminate | 4.1 a | Jasminum nudiflorum | 3.1 a | Rosa canina | 14.0 d |
Calendula officinalis | 1.9 d | Jatropha integerrima | 17.2 a | Rosa chinensis Jacq. | 18.6 b |
Calliandra haematocephala | 14.4 a | Lantana camara | 3.5 a | Rosa hybrida | 35.8 a |
Camellia japonica | 5.1 a | Lantana camara L. (white) | 1.7 b | Rosa pendulina | 17.7 d |
Catharanthus roseus L. G. Don | 3.5 b | Lantana camara L. (pink) | 1.4 b | Ruellia simpex C. Wright | 4.3 b |
Centaurea cyanus | 3.8 d | Lantana camara L. (yellow) | 2.6 b | Salvia pratensis | 3.1 d |
Chaenomeles sinensis | 13.9 a | Lavandula angustifolia | 4.0 d | Salvia splendens | 2.6 a |
Chrysanthemum coronarium | 3.8 a | Leucanthemum vulgare | 4.5 d | Sambucus nigra | 5.1 d |
Chrysanthemum indicum L. (purple) | 2.1 b | Ligustrum sinense | 6.2 a | Strelitzia reginae Aiton | 9.4 a |
Chrysanthemum indicum L. (dark-red) | 1.9 b | Lilium candidum L. | 0.9 b | Tagetes erecta L. | 7.6 b |
Cichorium intybus | 6.2 d | Lilium brownie | 1.3 a | Tagetes patula | 4.7 d |
Cyclamen hederifolium Aiton (fuchsia) | 5.5 b | Limonium sinuatum | 34.2 a | Taraxacum officinale | 1.6 d |
Cyclamen hederifolium Aiton (white) | 6.4 b | Lorpetalum chindense var.rubrum | 11.5 a | Tecomaria capensis (Thunb.) Spach | 2.5 b |
Cyclamen repandum Sm | 7.4 b | Magnolia soulangeana | 5.3 a | Thunbergia alata Bojer ex Sims | 2.0 b |
Dianthus caryophyllus | 5.5 a | Malvaviscus arboreus | 3.1 a | Trifolium alpinum | 4.6 d |
Dianthus caryophyllus L. | 1.3 b | Malvaviscus arboreus Cav. | 2.3 b | Tropaeolum majus | 3.6 d |
Dianthus carthusianorum | 9.4 d | Matthiola incana | 1.7 a | Viola tricolor L. (pink) | 6.9 b |
Dianthus chinensis | 5.3 a | Mentha aquatica | 10.6 d | Viola tricolor L. (yellow) | 7.2 b |
Dianthus chinensis L. | 12.3 c | Mimulus × hybridus L. | 4.3 c | Viola odorata | 4.3 d |
Dianthus pavonius | 7.5 d | Monarda didyma L. | 10.6 c | Wedelia trilobata | 3.8 a |
Ericaceae rhododendron | 6.3 a | Oncidium varicosum | 4.5 a | Youngia japonica | 1.1 a |
Erythrina variegata | 3.9 a | Orostachys fimbriatu | 12.4 a | Zantedeschia aethiopica Spreng | 3.1 a |
Erythronium dens-canis | 3.6 d | Osmanthus fragrans | 16.0 a |
Flower |
---|
p-coumaric |
|
Caffeic |
|
Ferulic |
|
Sinapic |
Chlorogenic |
|
Flower |
---|
p-hydroxybenzoic |
|
Protocatechuic |
|
Vanillic |
|
Syringic |
|
Ellagic |
|
Gallic |
|
Flower | TFC | Flower | TFC | Flower | TFC |
---|---|---|---|---|---|
Aglaia odorata | 3.85 | Epipremnum aureum | 1.6 | Michelia alba | 5.6 |
Albizzia julibrissin | 3.78 | Eriobotrya japonica | 9.6 | Myosotis sylvatica | 11.1 |
Amygdalus persica | 16.9 | Florists chrysanthemum (yellow) | 15.2 | Nelumbo nucifera | 7.8 |
Armeniaca mume | 28.5 | Florists chrysanthemum (white) | 11.2 | Nymphaea stellata | 8.8 |
Bauhinia variegata | 6.62 | Gomphrena globosa | 1.2 | Oroxylum indicum | 3.0 |
Bombax ceiba | 5.76 | Gomphrena globosa | 2.2 | Osmanthus fragrans | 85.3 |
Calendula officinalis | 6.82 | Hedychium coronarium | 2.0 | Paeonia suffruticosa | 19.2 |
Camellia azalea | 8.76 | Helichrysum bracteatum | 28.6 | Panax pseudoginseng | 1.4 |
Camellia japonica | 4.36 | Hemerocallis citrina | 0.9 | Plumeria rubra Acutifolia | 3.8 |
Campsis grandiflora | 9.76 | Hibiscus sabdariffa | 2.9 | Plumeria rubra Linn. Sp. | 15.7 |
Canna edulis | 6.67 | Hylocereus undatus | 0.8 | Prunella vulgaris | 3.6 |
Chimonanthus praecox | 6.93 | Jasminum sambac | 4.4 | Punica granatum | 25.0 |
Chrysanthemum indicum | 20.45 | Lavandula angustifolia | 12.3 | Rhododendron simsii planch | 20.0 |
Chrysanthemum indicum | 25.39 | Lilium brownie | 7.2 | Rosa centifolia | 10.9 |
Chrysanthemum lavandulifolium | 19.19 | Lilium bulbiferum | 1.6 | Rosa chinensis | 24.1 |
Chrysanthemum morifolium ramat | 18.73 | Lonicera japonica | 52.5 | Rosa gallica | 13.4 |
Citrus aurantium | 2.96 | Magnolia denudate | 2.3 | Rosa rugose (rose) | 23.6 |
Coreopsis tinctoria | 29.3 | Magnolia grandiflora | 2.6 | Rosa rugose (white-rose) | 2.5 |
Crocus sativus L. | 2.57 | Malus pumila | 16.9 | Siraitia grosvenorii | 2.9 |
Cucumis sativus Linn. | 0.67 | Malus spectabilis | 1.6 | Sophora japonica L. | 18.2 |
Cymbidium sinense | 4.06 | Matricaria recutita | 10.2 | Tropaeolum majus | 24.7 |
Dianthus caryophyllus | 2.45 | Matthiola incana | 7.5 |
Flower | TFC | Flower | TFC | Flower | TFC |
---|---|---|---|---|---|
mg RE/g DW [18] | |||||
Calendula officinalis L. | 3.0 | Jasminum sambac (L.) Ait | 3.8 | Perennial chamomile | 16.0 |
Chamomilia | 15.7 | Lavandula angustifolia Mill. | 27.4 | Radix Gentianae | 6.9 |
Chimonanthus praecox (L.) Link | 6.0 | Lilium brownii var. viridulum | 1.9 | Redartfulplum tea | 0.7 |
Chrysanthemum morifolium | 10.4 | Matricaria recutita | 17.6 | Rosa rugosa Thunb (pink) | 3.4 |
Dendranthema morifolium | 9.6 | Myosotis sylvatica | 4.3 | Rosa rugosa Thunb (purple) | 6.6 |
Dianthus caryophyllus | 1.4 | Osmanthus fragrans (Thunb.) Lour. | 71.5 | Rosmarinus officinalis L. | 18.8 |
Gomphrena globosa Linn. | 0.5 | Paeonia lactiflora Pall. | 13.8 | Siraitia grosvenorii | 4.5 |
Hibiscus sabdariffa L. | 1.9 | ||||
mg QE/g DW [14] | [14] | [16] | |||
Allium schoneoprasum L. | 4.6 | Hemerocallis hybrida hort | 9.6 | Agave salmiana | 4.6 |
Begonia tuberhybrida Voss. | 22.0 | Lavandula angustifolia Mill. | 2.1 | Aloe vera | 7.8 |
Calendula officinalis L. | 7.8 | Rosa rugosa | 14.4 | Erythrina Americana | 25.3 |
Centaurea cyanus L. | 4.8 | Sambucus nigra L. | 2.1 | Myrtillocactus geometrizans | 72.4 |
Chrysanthemum | 5.7 | Tagates L. | 14.7 | ||
Cucurbita pepo L. | 3.6 | Tropaeolum majus | 0.8 | ||
Dianthus L. | 11.9 | Viola tricolor L. | 1.5 |
Flavonols | Flower | Reference |
---|---|---|
Quercetin | Bauhinia variegata L., Capparis spinose, Chrysanthemum morifolium, Coreopsis tinctoria Nutt., Hedysarum coronarium, Matthiola incana (L.) R.Br., Paeonia suffruticosa, Prunus persica, Rhododendron indicum var. simsii, Rosa brunonii, Rosa centifolia L., Rosa gallica L., Sambucus nigra, Styphnolobium japonicum (L.) Schott, Tibouchina urvilleana, Tibouchina mollis, Tulbaghia violacea | [18,23,36,52,53,54] |
Quercitrin (quercetin 3-rhamnoside) and isoquercitrin | Chamomilia, Chrysanthemum morifolium, Dendranthema morifolium, Matricaria recutita, Osmanthus fragrans, Paeonia lactiflora Pall., Perennial chamomile, Rosa brunonii, Rosa bourboniana, Rosa damascene | [54,55] |
Hyperoside (quercetin-3-galactoside) | Chrysanthemum morifolium, Chrysanthemum indicum, Prunus mume | [56,57,58] |
Rutin (quercetin 3-rutinoside) | Calendula officinalis L., Capparis spinose, Chamomilia, Cichorium intybus, Dahlia mignon, Dendranthema morifolium, Flos lonicerae, Hedysarum coronarium, Osmanthus fragrans, Paeonia suffruticosa, Prunus persica, Robinia pseudoacacia, Rosmarinus officinalis, Sambucus nigra, Tulbaghia violacea | [18,23,53,55,59] |
Other quercetin derivatives | Agave durangensis, Calendula officinalis L., Cyanus segetum Hill, Rosa gallica L., Tibouchina urvilleana, Tibouchina mollis, Tulbaghia violacea, Tropaeolum majus L. | [52,53,59,60,61] |
Kaempherol | Anchusa azurea, Anchusa azurea Mill., Antigonon leptopus Hook. & Arn., Bauhinia variegata L., Bougainvillea glabra Choisy, Capparis spinose, Coreopsis tinctoria Nutt., Flos rosae rugosae, Hedysarum coronarium, Malva sylvestris, Matthiola incana (L.) R.Br., Nymphaea nouchali Burm. f., Paeonia x suffruticosa Andrews, Prunus persica, Robinia pseudoacacia, Rosmarinus officinalis, Rhododendron indicum var. simsii, Rosa centifolia L., Rosa gallica L., Styphnolobium japonicum (L.) Schott | [23,36,55,62] |
Kaempherol derivatives | Agave durangensis, Calendula officinalis L., Crocus sativus, Cyanus segetum Hill, Dahlia mignon, Rosa gallica L., Tibouchina urvilleana, Tibouchina mollis, Tulbaghia violacea, Tropaeolum majus L. | [52,53,59,60,61,63] |
Isorhamnetin and its derivatives | Rosa gallica L., Tibouchina urvilleana, Tibouchina mollis, Prunus mume | [52,58,59] |
Myricetin and its derivatives | Anchusa azurea Mill., Antigonon leptopus Hook. & Arn., Bauhinia variegata L., Bougainvillea glabra Choisy, Capparis spinose, Cichorium intybus, Malva sylvestris, Rosmarinus officinalis, Rosa damascene, Rosa brunonii, Rosa bourboniana, Sambucus nigra, Tibouchina urvilleana, Tibouchina mollis | [36,52,54,55,62] |
Flower |
---|
Catechin |
Bauhinia purpurea, Bombax malabaricum, Bougainvillea spectabilis, Brunfelsia acuminate, Calendula officinalis L., Calliandra haematocephala, Camellia japonica, Chaenomeles sinensis, Chamomilia, Chimonanthus praecox, Chrysanthemum morifolium, Cichorium intybus, Dendranthema morifolium, Dianthus caryophyllus, Dianthus chinensis, Dianthus pavonius, Erythrina variegate, Flos chrysanthemi, Geranium sylvaticum, Gomphrena globosa Linn., Helianthus annuus, Hibiscus rosa-sinensis, Hibiscus sabdariffa L., Jasminum sambac (L.) Ait, Iris japonica, Lantana camara, Lavandula angustifolia, Lilium brownii, Limonium sinuatum, Lorpetalum chindense var. rubrum, Malvaviscus arboreus, Matricaria recutita, Mentha aquatic, Myosotis sylvatica, Oncidium varicosum, Osmanthus fragrans, Oxalis corymbosa, Paeonia lactiflora Pall., Paeonia officinalis, Pelargonium hortorum, Perennial chamomile, Radix Gentianae, Redartfulplum tea, Rhododendron simsii Planch, Rhoeo discolor, Rosa canina, Rosa rugosa Thunb, Rosmarinus officinalis L., Siraitia grosvenorii, Strelitzia reginae Aiton, Wedelia trilobata |
Epicatechin |
Ageratum conyzoides, Allamanda cathartica, Allium ursinum, Bellis perennis, Bougainvillea spectabilis, Brassica campestris, Calendula officinalis L., Camellia japonica, Centaurea cyanus, Chaenomeles sinensis, Chimonanthus praecox, Chrysanthemum coronarium, Chrysanthemum morifolium, Cichorium intybus, Dendranthema morifolium, Dianthus caryophyllus, Dianthus chinensis, Dianthus pavonius, Erythrina variegate, Erythronium dens-canis, Flos chrysanthemi, Geranium sylvaticum, Gladiolus hybrids, Gomphrena globosa Linn., Helianthus annuus, Hibiscus sabdariffa L., Jasminum nudiflorum, Jasminum sambac (L.) Ait, Jatropha integerrima, Impatiens walleriana, Lavandula angustifolia, Ligustrum sinense, Lilium brownii, Limonium sinuatum, Lorpetalum chindense var. rubrum, Malvaviscus arboreus, Matricaria recutita, Mentha aquatic, Myosotis sylvatica, Orostachys fimbriatu, Osmanthus fragrans, Oxalis corymbosa, Paeonia lactiflora Pall., Paeonia officinalis, Perennial chamomile, Platycodon grandifloras, Primula veris, Primula vulgaris, Radix Gentianae, Redartfulplum tea, Rhapniolepis indica, Rhododendron simsii Planch, Robinia pseudoacacia, Rosa hybrid, Rosa canina, Rosa pendulina, Rosa rugosa Thunb, Rosmarinus officinalis L., Salvia pratensis, Sambucus nigra, Siraitia grosvenorii, Strelitzia reginae Aiton, Tagetes patula, Tropaeolum majus, Viola odorata, Wedelia trilobata, Zantedeschia aethiopica Spreng |
Flower | Total Tocopherol (mg/100 g DW) | α-Tocopherol (% of Total) | Reference |
---|---|---|---|
Calendula officinalis L. | 60.9 | 93 | [77] |
Viola × wittrockiana (yellow) | 24.9 | 89 | [72] |
Moringa oleifera Lam. (Quinhamel) | 21.0 | 90 | [78] |
Moringa oleifera Lam. (Bissau) | 19.9 | 87 | [78] |
Viola × wittrockiana (white) | 11.3 | 77 | [72] |
Urtica leptophylla | 11.1 | 63 | [70] |
Camellia japonica | 10.9 | 85 | [72] |
Lactuca canadensis L. | 9.7 | 63 | [82] |
Rosa damascene/R. gallica | 9.3 | 88 | [77] |
Dahlia mignon | 7.3 | 60 | [77] |
Aloe vera | 4.7 | - | [83] |
Borago officinalis L. | 3.2 | 69 | [79] |
Juglans Regia L. | 2.9 | 7 | [81] |
Centaurea cyanus L. | 2.4 | 52 | [79] |
Amaranthus caudatus L. | 2.0 | 24 | [80] |
Centaurea cyanus L. | 1.3 | 78 | [84] |
Viola × wittrockiana (white) | 1.1 | 63 | [72] |
Centaurea cyanus L. | 0.8 | 65 | [77] |
Narcissus poeticus L. | 1.5 1 | - | [85] |
Cynara cardunculus | 0.6 1 | - | [86] |
Terpene | Flower |
---|---|
Linalool | Jasminum sambac L. (59%) a, Cananga odorata (29%) b, Lavandula hybrid (37%) c, Crocus sativus (26%) d |
α-Pinene | Hypericum lydium Boiss (71%) e, Myrtus communis var. italica L. (18%) f, Chrysanthemum coronarium (15%) g, Prangos ferulacea (21%) h |
1,8-Cineole | Myrtus communis var. italica L. (13%) f, Santolina rosmarinifolia (13%) i, Ocotea quixos (8%) j, Crocus sativus (44%) d |
Eugenol | Myrtus communis var. italica L. (10%) f, Eugenia caryophyllata (80%) k |
Camphor | Chrysanthemum flos (11%) l, Chrysanthemum coronarium (29%) g, Santolina rosmarinifolia (8%) i, Rosmarinus officinalis (36%) m |
Camphene | Prangos ferulacea (12%) h, Cistus ladanifer (6%) n |
Flower | FRAP | ABTS | Flower | FRAP | ABTS | Flower | FRAP | ABTS |
---|---|---|---|---|---|---|---|---|
Agave salmiana | 25 d | Dianthus caryophyllus | 98 a | 100 | Myosotis sylvatica | 839 a | 261 | |
Aglaia odorata | 202 a | 167 | Dianthus L. | 101 b | Myrtillocactus geometrizans | 820 d | ||
Albizzia julibrissin | 159 a | 109 | Epipremnum aureum | 68 a | 89 | Nelumbo nucifera | 308 a | 248 |
Allium schoneoprasum L. | 55 b | Eriobotrya japonica | 163 a | 90 | Nymphaea stellata | 736 a | 442 | |
Aloe vera | 26 d | Erythrina americana | 28 d | Oroxylum indicum | 210 a | 142 | ||
Amygdalus persica | 311 a | 192 | Florists chrysanthemum (yellow) | 224 a | 180 | Osmanthus fragrans | 1196 a | 430 |
Armeniaca mume | 499 a | 220 | Florists chrysanthemum (white) | 154 a | 106 | Osmanthus fragrans (Thunb.) Lour. | 914 c | 689 |
Bauhinia variegata | 223 a | 273 | Gomphrena globosa | 95 a | 22 | Paeonia lactiflora Pall. | 837 c | 2078 |
Begonia tuberhybrida Voss. | 317b | Gomphrena globosa Linn. | 8 c | 46 | Paeonia suffruticosa | 1893 a | 859 | |
Bombax ceiba | 200 a | 121 | Hedychium coronarium | 75 a | 28 | Panax pseudoginseng | 44 a | 17 |
Calendula officinalis | 182 a | 74 | Helichrysum bracteatum | 565 a | 336 | Perennial chamomile | 328 c | 215 |
Calendula officinalis L. | 84 b | Hemerocallis citrina | 333 a | 41 | Plumeria rubra Acutifolia | 127 a | 118 | |
Calendula officinalis L. | 58 c | 71 | Hemerocallis hybrida hort | 67 b | Plumeria rubra Linn. Sp. | 330 a | 169 | |
Camellia azalea | 843 a | 305 | Hibiscus sabdariffa L. | 166 c | 260 | Prunella vulgaris | 122 a | 31 |
Camellia japonica | 197 a | 166 | Hibiscus sabdariffa | 155 a | 67 | Punica granatum | 1275 a | 460 |
Campsis grandiflora | 271 a | 206 | Hylocereus undatus | 42 a | 91 | Radix Gentianae | 118 c | 153 |
Canna edulis | 254 a | 47 | Jasminum sambac | 67 a | 84 | Redartfulplum tea | 19 c | 87 |
Centaurea cyanus L. | 64 b | Jasminum sambac (L.) Ait | 48 c | 97 | Rhododendron simsii planch | 2226 a | 765 | |
Chamomilia | 287 c | 285 | Lavandula angustifolia | 202 a | 141 | Rosa centifolia | 1543 a | 495 |
Chimonanthus praecox | 354 a | 182 | Lavandula angustifolia Mill. | 278 c | 261 | Rosa chinensis | 3620 a | 309 |
Chimonanthus praecox | 111 c | 188 | Lavandula angustifolia Mill. | 185 b | Rosa gallica | 1292 a | 530 | |
Chrysanthemum indicum | 248 a | 209 | Lilium brownie | 246 a | 234 | Rosa rugosa (rose) | 2657 a | 1037 |
Chrysanthemum indicum | 466 a | 211 | Lilium brownii var. viridulum | 68 c | 160 | Rosa rugosa (white-rose) | 363 a | 239 |
Chrysanthemum lavandulifolium | 356 a | 116 | Lilium bulbiferum | 93 a | 33 | Rosa rugosa Thunb (pink) | 122 c | 358 |
Chrysanthemum morifolium ramat | 215 a | 135 | Lonicera japonica | 701 a | 349 | Rosa rugosa Thunb (purple) | 331 c | 818 |
Chrysanthemum morifolium | 183 c | 103 | Magnolia denudate | 79 a | 30 | Rosa rugosa | 56 b | |
Citrus aurantium | 155 a | 126 | Magnolia grandiflora | 112 a | 35 | Rosmarinus officinalis L. | 226 c | 274 |
Coreopsis tinctoria | 1235 a | 392 | Malus pumila | 184 a | 231 | Sambucus nigra L. | 175 b | |
Crocus sativus L. | 133 a | 28 | Malus spectabilis | 60 a | 26 | Siraitia grosvenorii | 134 a | 141 |
Cucumis sativus Linn. | 43 a | 13 | Matricaria recutita | 224 a | 129 | Siraitia grosvenorii | 49 c | 151 |
Cucurbita pepo L. | 54 b | Matricaria recutita | 326 c | 316 | Sophora japonica L. | 1364 a | 289 | |
Cymbidium sinense | 150 a | 48 | Matthiola incana | 133 a | 74 | Tagates L. | 1328 b | |
Dendranthema morifolium | 189 c | 210 | Michelia alba | 155 a | 112 | Tropaeolum majus | 838 a | 208 |
Dianthus caryophyllus | 48 c | 122 | Myosotis sylvatica | 172 c | 215 | Tropaeolum majus | 117 b | |
Viola tricolor L. | 465 b |
Flower | FRAP | ABTS | Flower | FRAP | ABTS | Flower | FRAP | ABTS |
---|---|---|---|---|---|---|---|---|
Ageratum conyzoides | 27 a | 8 | Flos chrysanthemi | 18 a | 8 | Oxalis corymbosa | 15 a | 29 |
Allamanda cathartica | 24 a | 9 | Geranium sylvaticum | 267 b | 55 | Paeonia officinalis | 304 b | 55 |
Allium ursinum | 4 b | 1 | Gerbera jamesonii Bolus | 27 a | 12 | Pelargonium hortorum | 213 a | 132 |
Bauhinia purpurea | 38 a | 23 | Gladiolus hybrids | 13 a | 6 | Phaseolus vulgaris | 6 a | 8 |
Bellis perennis | 82 b | 13 | Helianthus annuus | 11 a | 7 | Platycodon grandiflorus | 12 a | 6 |
Bidens pilosa | 64 a | 31 | Hibiscus rosa-sinensis | 89 a | 40 | Primula veris | 230 b | 39 |
Bombax malabaricum | 32 a | 15 | Impatiens walleriana | 76 a | 36 | Primula vulgaris | 127 b | 22 |
Borago officinalis | 30 b | 4 | Ipomoea cairica | 12 a | 4 | Rhapniolepis indica | 59 a | 33 |
Bougainvillea spectabilis | 57 a | 21 | Iris japonica | 0.2 a | 0.2 | Rhododendron simsii Planch | 65 a | 16 |
Brassica campestris | 17 a | 7 | Jasminum nudiflorum | 15 a | 5 | Rhoeo discolor | 16 a | 6 |
Brassica compestris | 24 a | 11 | Jatropha integerrima | 220 a | 115 | Robinia pseudoacacia | 16 b | 2 |
Brunfelsia acuminata | 16 a | 8 | Lantana camara | 22 a | 10 | Rosa canina | 258 b | 56 |
Calendula officinalis | 23 b | 9 | Lavandula angustifolia | 90 b | 14 | Rosa hybrida | 630 a | 175 |
Calliandra haematocephala | 149 a | 70 | Leucanthemum vulgare | 44 b | 11 | Rosa pendulina | 254 b | 56 |
Camellia japonica | 40 a | 26 | Ligustrum sinense | 35 a | 16 | Salvia pratensis | 39 b | 9 |
Centaurea cyanus | 68 b | 18 | Lilium brownii | 6 a | 6 | Salvia splendens | 19 a | 9 |
Chaenomeles sinensis | 98 a | 70 | Limonium sinuatum | 500 a | 157 | Sambucus nigra | 79 b | 18 |
Chrysanthemum coronarium | 28 a | 8 | Lorpetalum chindense var.rubrum | 107 a | 54 | Strelitzia reginae Aiton | 49 a | 49 |
Cichorium intybus | 138 b | 27 | Magnolia soulangeana | 25 a | 9 | Tagetes patula | 144 b | 23 |
Dianthus caryophyllus | 14 a | 8 | Malvaviscus arboreus | 18 a | 10 | Taraxacum officinale | 13 b | 3 |
Dianthus carthusianorum | 222 b | 34 | Matthiola incana | 8 a | 8 | Trifolium alpinum | 92 b | 20 |
Dianthus chinensis | 40 a | 17 | Mentha aquatica | 256 b | 43 | Tropaeolum majus | 45 b | 13 |
Dianthus pavonius | 176 b | 24 | Oncidium varicosum | 22 a | 12 | Viola odorata | 66 b | 16 |
Ericaceae rhododendron | 54 a | 28 | Orostachys fimbriatu | 108 a | 62 | Wedelia trilobata | 31 a | 13 |
Erythrina variegata | 12 a | 5 | Osmanthus fragrans | 164 a | 72 | Youngia japonica | 2 a | 2 |
Erythronium dens-canis | 54 b | 14 | Zantedeschia aethiopica Spreng | 22 a | 9 |
Flower | DPPH | Flower | DPPH | Flower | DPPH |
---|---|---|---|---|---|
Aglaia odorata | 100 a | Dianthus L. | 28 b | Nelumbo nucifera | 273 a |
Albizzia julibrissin | 63 a | Epipremnum aureum | 24 a | Nymphaea stellata | 382 a |
Allium schoneoprasum L. | 5 b | Eriobotrya japonica | 129 a | Oroxylum indicum | 291 a |
Amygdalus persica | 171 a | Florists chrysanthemum (yellow) | 166 a | Osmanthus fragrans | 365 a |
Armeniaca mume | 174 a | Florists chrysanthemum (white) | 126 a | Osmanthus fragrans (Thunb.) Lour. | 476 c |
Bauhinia variegata | 108 a | Gomphrena globosa | 17 a | Paeonia lactiflora Pall. | 599 c |
Begonia tuberhybrida Voss. | 99 b | Gomphrena globosa Linn. | 30 c | Paeonia suffruticosa | 411 a |
Bombax ceiba | 66 a | Hedychium coronarium | 20 a | Panax pseudoginseng | 15 a |
Calendula officinalis | 38 a | Helichrysum bracteatum | 346 a | Perennial chamomile | 167 c |
Calendula officinalis L. | 16 b | Hemerocallis citrina | 11 a | Plumeria rubra Acutifolia | 29 a |
Calendula officinalis L. | 70 c | Hemerocallis hybrida hort | 32 b | Plumeria rubra Linn. Sp. | 153 a |
Camellia azalea | 216 a | Hibiscus sabdariffa L. | 113 c | Prunella vulgaris | 21 a |
Camellia japonica | 74 a | Hibiscus sabdariffa | 38 a | Punica granatum | 374 a |
Campsis grandiflora | 96 a | Hylocereus undatus | 16 a | Radix Gentianae | 89 c |
Canna edulis | 76 a | Jasminum sambac | 69 a | Redartfulplum tea | 21 c |
Centaurea cyanus L. | 33 b | Jasminum sambac (L.) Ait | 64 c | Rhododendron simsii planch | 368 a |
Chamomilia | 141 c | Lavandula angustifolia | 132 a | Rosa centifolia | 423 a |
Chimonanthus praecox | 90 a | Lavandula angustifolia Mill. | 185 c | Rosa chinensis | 414 a |
Chimonanthus praecox | 126 c | Lavandula angustifolia Mill. | 94 b | Rosa gallica | 243 a |
Chrysanthemum indicum | 163 a | Lilium brownie | 56 a | Rosa rugosa (rose) | 522 a |
Chrysanthemum indicum | 199 a | Lilium brownii var. viridulum | 82 c | Rosa rugosa (white-rose) | 270 a |
Chrysanthemum lavandulifolium | 155 a | Lilium bulbiferum | 27 a | Rosa rugosa Thunb (pink) | 176 c |
Chrysanthemum morifolium ramat | 162 a | Lonicera japonica | 204 a | Rosa rugosa Thunb (purple) | 562 c |
Chrysanthemum morifolium | 128 c | Magnolia denudate | 20 a | Rosa rugosa | 469 b |
Citrus aurantium | 27 a | Magnolia grandiflora | 20 a | Rosmarinus officinalis L. | 174 c |
Coreopsis tinctoria | 344 a | Malus pumila | 124 a | Sambucus nigra L. | 85 b |
Crocus sativus L. | 15 a | Malus spectabilis | 18 a | Siraitia grosvenorii | 21 a |
Cucumis sativus Linn. | 8 a | Matricaria recutita | 84 a | Siraitia grosvenorii | 65 c |
Cucurbita pepo L. | 11 b | Matricaria recutita | 183 c | Sophora japonica L. | 263 a |
Cymbidium sinense | 13 a | Matthiola incana | 82 a | Tagates L. | 520 b |
Dendranthema morifolium | 131 c | Michelia alba | 58 a | Tropaeolum majus | 206 a |
Dianthus caryophyllus | 53 c | Myosotis sylvatica | 206 c | Tropaeolum majus | 42 b |
Dianthus caryophyllus | 24 a | Myosotis sylvatica | 461 a | Viola tricolor L. | 294 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandylis, P. Phytochemicals and Antioxidant Properties of Edible Flowers. Appl. Sci. 2022, 12, 9937. https://doi.org/10.3390/app12199937
Kandylis P. Phytochemicals and Antioxidant Properties of Edible Flowers. Applied Sciences. 2022; 12(19):9937. https://doi.org/10.3390/app12199937
Chicago/Turabian StyleKandylis, Panagiotis. 2022. "Phytochemicals and Antioxidant Properties of Edible Flowers" Applied Sciences 12, no. 19: 9937. https://doi.org/10.3390/app12199937
APA StyleKandylis, P. (2022). Phytochemicals and Antioxidant Properties of Edible Flowers. Applied Sciences, 12(19), 9937. https://doi.org/10.3390/app12199937