Interfacial Microstructure and Properties of Clad Rebar Prepared by Clean-Interface Assembly and Vacuum Hot-Rolling
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Selection of Inner and Outer Material
2.2. Introduction to Net-Interface Grouping and Rolling Process for Clad Rebars
2.2.1. Clean-Interface Assembly Forming Process
2.2.2. Rolling Process of Clad Rebar
2.3. Microstructural Study and Performance Testing
3. Results and Discussion
3.1. Analysis of Cladding-Thickness Uniformity
3.2. Composite-Interface Metallographic Analysis
3.3. Diffusion Analysis of Composite Interface Elements
3.4. Microstructural Analysis of the Composite Interface
3.5. Microhardness Analysis of the Composite Interface
3.6. Analysis of the Clad Rebar Tensile Properties
3.7. Analysis of the Clad Rebar Bonding Properties
3.8. Analysis of the Clad Rebar Bending Performance
3.9. Analysis of Clad Rebar End-Seal Technology
3.10. Analysis of Clad Rebar Corrosion-Resistance
3.11. Analysis of Clad Rebar Connection Techniques
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, A.R.; Fang, Z.C.; Pan, D.L.; Wang, Y.; Pan, B.P. Engineering practices on surface damage inspection and performance evaluation of concrete bridges in China. Struct. Concr. 2022, 23, 16–31. [Google Scholar] [CrossRef]
- Zhou, H.J.; Chen, S.Y.; Du, Y.L.; Lin, Z.Y.; Liang, X.B.; Liu, J.; Xing, F. Field test of a reinforced concrete bridge under marine environmental corrosion. Eng. Fail. Anal. 2020, 115, 104669. [Google Scholar] [CrossRef]
- Pang, B.; Yang, P.C.; Wang, Y.F.; Kendall, A.; Xie, H.B.; Zhang, Y.R. Life cycle environmental impact assessment of a bridge with different strengthening schemes. Int. J. Life Cycle Assess. 2015, 20, 1300–1311. [Google Scholar] [CrossRef]
- Mulholland, E.; Feyen, L. Increased risk of extreme heat to European roads and railways with global warming. Clim. Risk Manag. 2021, 34, 100365. [Google Scholar] [CrossRef]
- Wang, C.J.; Yao, C.R.; Zhao, S.G.; Zhao, S.D.; Li, Y.D. A Comparative Study of a Fully-Connected Artificial Neural Network and a Convolutional Neural Network in Predicting Bridge Maintenance Costs. Appl. Sci. 2022, 12, 3595. [Google Scholar] [CrossRef]
- Cadenazzi, T.; Dotelli, G.; Rossini, M.; Nolan, S.; Nanni, A.S. Cost and environmental analyses of reinforcement alternatives for a concrete bridge. Struct. Infrastruct. Eng. 2020, 16, 787–802. [Google Scholar] [CrossRef]
- Blunt, J.; Jen, G.; Ostertag, C.P. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete. Corros. Sci. 2015, 92, 182–191. [Google Scholar] [CrossRef]
- Klarak, J.; Andok, R.; Hricko, J.; Klackova, I.; Tsai, H.Y. Design of the Automated Calibration Process for an Experimental Laser Inspection Stand. Sensors 2022, 22, 5306. [Google Scholar] [CrossRef]
- Matalkah, F.; Salem, T.; Soroushian, P. Acid resistance and corrosion protection potential of concrete prepared with alkali aluminosilicate cement. J. Build. Eng. 2018, 20, 705–711. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Sun, W.; Zhang, Y.M. Corrosion performance of reinforcing steel in concrete under simultaneous flexural load and chlorides attack. Constr. Build. Mater. 2017, 149, 315–326. [Google Scholar] [CrossRef]
- Uthaman, S.; George, R.P.; Vishwakarma, V.; Harilal, M.; Philip, J. Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete. Constr. Build. Mater. 2019, 221, 232–243. [Google Scholar] [CrossRef]
- Al-Negheimish, A.; Hussain, R.R.; Alhozaimy, A.; Singh, D.D.N. Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment. Constr. Build. Mater. 2021, 274, 121921. [Google Scholar] [CrossRef]
- Kukreja, D.N.; Napier, C.S. Trial Use of a Stainless Steel-Clad Steel Bar in a New Concrete Bridge Deck in Virginia; No. FHWA/VTRC 04-R5; Virginia Transportation Research Council: Charlottesville, VA, USA, 2003. [Google Scholar]
- Venkatesan, P.; Palaniswamy, N.; Rajagopal, K. Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment. Prog. Org. Coat. 2006, 56, 8–12. [Google Scholar] [CrossRef]
- Sawicki, S.; Dyja, H. Production of Bimetallic Bars Steel-steel Resistant to Corrosion of the Method Explosive Cladding. Metall. Min. Ind. 2011, 7, 63–73. [Google Scholar]
- Sawicki, S. Properties of Bimetallic “Carbon Steel-Stainless-steel” Bars with Periodic Texture Obtained by Explosive Cladding and Rolling. Met. Sci. Heat Treat. 2012, 54, 303–308. [Google Scholar] [CrossRef]
- Kazuyuki, N. Method of Manufacturing Clad Bar. U.S. Patent 5004143, 2 April 1991. [Google Scholar]
- Pak, S.; Rigdal, S.; Karlsson, L.; Gustavsson, A.C. Electroslag and submerged arc stainless steel strip cladding. Anti-Corros. Methods Mater. 1998, 45, 41–47. [Google Scholar] [CrossRef]
- Liu, X.; Feng, G.; Liu, X.; Wang, B.; Zhang, H.; Ma, J. Interface Characteristics and Properties of a High-Strength Corrosion-Resistant Stainless Steel Clad Rebar. Metals 2020, 10, 373. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Yu, H.; Luo, Z.A.; Misra, R.D.K.; Xie, G.M. The Impact of Process Parameters on Microstructure and Mechanical Properties of Stainless Steel/Carbon Steel Clad Rebar. Materials 2019, 12, 2968. [Google Scholar] [CrossRef]
- Zhang, S.K.; Xiao, H.; Xie, H.; Gu, L. The preparation and property research of the stainless steel/iron scrap clad plate. J. Mater. Process. Technol. 2014, 214, 1205–1210. [Google Scholar] [CrossRef]
- Muralimohan, C.H.; Ashfaq, M.; Ashiri, R.; Muthupandi, V.; Sivaprasad, K. Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 Austenitic Stainless Steel. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2016, 47, 347–359. [Google Scholar] [CrossRef]
- Yu, H.L.; Tieu, A.K.; Lu, C.; Liu, X.; Godbole, A.; Li, H.J.; Kong, C.; Qin, Q.H. A deformation mechanism of hard metal surrounded by soft metal during roll forming. Sci. Rep. 2014, 4, 5017. [Google Scholar] [CrossRef] [Green Version]
- Nowicke, F., Jr.; Zavaliangos, A.; Rogers, H.C. The effffect of roll and clad sheet geometry on the necking instability during rolling of clad sheet metals. Int. J. Mech. Sci. 2006, 48, 858–877. [Google Scholar] [CrossRef]
- Liu, B.X.; Huang, L.J.; Geng, L.; Kaveendran, B.; Wang, B.; Song, X.Q.; Cui, X.P. Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing. Mater. Sci. Eng. A 2014, 595, 257–265. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.S.; Kang, M.; Sohn, S.; Cho, W.; Kim, H.; Lee, S. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel. Sci. Rep. 2017, 7, 40231. [Google Scholar] [CrossRef]
- Mas, F.; Tassin, C.; Valle, N.; Robaut, F.; Charlot, F.; Yescas, M.; Roch, F.; Todeschini, P.; Brechet, Y. Metallurgical characterization of coupled carbon diffffusion and precipitation in dissimilar steel welds. J. Mater. Sci. 2016, 51, 4846–4879. [Google Scholar] [CrossRef]
- Gamsjäger, E.; Svoboda, J.; Fischer, F.D. Austenite-to-ferrite phase transformation in low-alloyed steels. Comp. Mater. Sci. 2005, 32, 360–369. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Fang, W.; Yin, F.X.; Chen, C.X. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate. Mater. Charact. 2019, 148, 17–25. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, H.; Luo, Z.A.; Xie, G.M. Interfacial microstructure and mechanical properties of stainless steel clad plate prepared by vacuum hot rolling. J. Iron. Steel. Res. Int. 2018, 25, 732–738. [Google Scholar] [CrossRef]
- Di, X.; Zhong, Z.; Deng, C.-Y.; Wang, D.; Guo, X. Microstructural evolution of transition zone of clad X70 with duplex stainless steel. Mater. Des. 2016, 95, 231–236. [Google Scholar] [CrossRef]
20MnSiV/316L Steel Bar | 316L Stainless Steel Bar | Galvanized Steel Bar | Epoxy Resin Steel Bar | |
---|---|---|---|---|
Price (yuan/ton) | 12,000 | 35,000 | 6500 | 7000 |
Material | C | Si | Mn | P | S | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|
20MnSiV | 0.22 | 0.35 | 1.37 | 0.008 | 0.005 | 0.2 | 0.04 | / | Bal. |
316L | 0.021 | 0.65 | 1.81 | 0.018 | 0.008 | 17.9 | 13.5 | 2.1 | Bal. |
Type of Reinforcement | Rust-Removal Solutions | Rust-Removal Temperature (°C) | Rust-Removal Time (min) |
---|---|---|---|
Carbon reinforcement, epoxy reinforcement | 5 L hydrochloric acid (HCl, ρ = 1.19 g/mL) + 35 g hexamethyltetramine + 5 L distilled water | 25 | 30 |
Clad rebars, stainless steel round bars | 2 L nitric acid (HNO3, ρ = 1.42 g/mL) + 8 L distilled water | 60 | 60 |
Galvanised rebars | 2.5 kg ammonium acetate + 10 L distilled water | 25 | 5 |
Test Point Serial Number | Cr (%) | Mo (%) | Si (%) | Nb (%) | Ni (%) | C (%) | Mn (%) | Creq | Nieq |
---|---|---|---|---|---|---|---|---|---|
1 | 6.9 | 1.01 | 0.47 | 0.12 | 5.2 | 0.10 | 1.55 | 8.68 | 8.98 |
2 | 7.7 | 1.08 | 0.52 | 0.15 | 5.9 | 0.11 | 1.52 | 9.64 | 9.96 |
3 | 7.2 | 1.06 | 0.50 | 0.16 | 5.4 | 0.12 | 1.57 | 9.09 | 9.79 |
Size Specification | Yield Strength | Tensile Strength | Elongation |
---|---|---|---|
Φ25 × 450 mm | 480 MPa | 655 MPa | 30.2 |
Testing Serial Number | Results (MPa) | Testing Serial Number | Results (MPa) | Testing Serial Number | Results (MPa) |
---|---|---|---|---|---|
1 | 421.22 | 4 | 416.55 | 7 | 421.49 |
2 | 416.8 | 5 | 416.66 | 8 | 423.68 |
3 | 422.43 | 6 | 419.84 | 9 | 425.15 |
Test average (MPa) | 420.42 |
Welding Passes | Type of Welding | Welding Rod Materials | Welding Voltage | Welding Current | Welding Rod Diameter |
---|---|---|---|---|---|
1 | Manual arc welding | J422 welding rod | 25 V | 230 A | 3 mm |
2 | Manual arc welding | 316L welding rod | 25 V | 230 A | 3 mm |
Type | Yield Strength | Tensile Strength | Elongation |
---|---|---|---|
Welded joint specimens | 485 MPa | 660 MPa | 29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Tan, J.; Qian, X.; Xiang, Y.; Zeng, L.; Zhao, Y. Interfacial Microstructure and Properties of Clad Rebar Prepared by Clean-Interface Assembly and Vacuum Hot-Rolling. Appl. Sci. 2022, 12, 9519. https://doi.org/10.3390/app12199519
Li Z, Tan J, Qian X, Xiang Y, Zeng L, Zhao Y. Interfacial Microstructure and Properties of Clad Rebar Prepared by Clean-Interface Assembly and Vacuum Hot-Rolling. Applied Sciences. 2022; 12(19):9519. https://doi.org/10.3390/app12199519
Chicago/Turabian StyleLi, Zhen, Jianping Tan, Xuehai Qian, Yong Xiang, Lei Zeng, and Yang Zhao. 2022. "Interfacial Microstructure and Properties of Clad Rebar Prepared by Clean-Interface Assembly and Vacuum Hot-Rolling" Applied Sciences 12, no. 19: 9519. https://doi.org/10.3390/app12199519
APA StyleLi, Z., Tan, J., Qian, X., Xiang, Y., Zeng, L., & Zhao, Y. (2022). Interfacial Microstructure and Properties of Clad Rebar Prepared by Clean-Interface Assembly and Vacuum Hot-Rolling. Applied Sciences, 12(19), 9519. https://doi.org/10.3390/app12199519