Dynamic Characteristic Analysis of Permanent Magnet Brushless DC Motor System with Rolling Rotor
Abstract
:1. Introduction
2. Dynamic Model of the Rotor–Bearing–Stator System for the BLDCM
2.1. Model of the BLDCM
2.2. Oil-Film Force of Sliding Bearing
2.3. Electric Magnetization Analysis of the BLDCM
2.4. Equations of Motion
3. Dynamic Response of the BLDCM System
3.1. Analysis of the Effects of Rotational Speed
3.2. Analysis of the Effects of the Eccentric Distance
3.3. Analysis of the Effects of the Bearing Clearance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Matrixes M, C and K
Appendix B. 3D Dynamic Response Curves
References
- Cheng, M.; Hua, W.; Zhang, J.; Zhao, W. Overview of Stator-Permanent Magnet Brushless Machines. IEEE Trans. Ind. Electron. 2011, 58, 5087–5101. [Google Scholar] [CrossRef]
- Amor, M.B.; Tounsi, S.; Bouhlel, M.S. Design and Optimization of Axial Flux Brushless DC Motor Dedicated to Electric Traction. Am. J. Electr. Power Energy Syst. 2015, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.N.; Suthar, B.N. Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor for Electrical Vehicle Based on Genetic Algorithm. Int. J. Eng. 2018, 31, 1050–1056. [Google Scholar]
- Mi, C.; Filippa, M.; Liu, W.; Ma, R. Analytical Method for Predicting the Air-Gap Flux of Interior-Type Permanent-Magnet Machines. IEEE Trans. Magn. 2004, 40, 50–58. [Google Scholar] [CrossRef]
- Dubas, F.; Espanet, C. Analytical Solution of the Magnetic Field in Permanent-Magnet Motors Taking into Account Slotting Effect: No-Load Vector Potential and Flux Density Calculation. IEEE Trans. Magn. 2009, 45, 2097–2109. [Google Scholar] [CrossRef]
- Lubin, T. Two-Dimensional Analytical Calculation of Magnetic Field and Electromagnetic Torque for Surface-Inset Permanent-Magnet Motors. IEEE Trans. Magn. 2012, 48, 2080–2091. [Google Scholar] [CrossRef]
- Olejnik, P.; Adamski, P.; Batory, D.; Awrejcewicz, J. Adaptive Tracking PID and FOPID Speed Control of an Elastically Attached Load Driven by a DC Motor at Almost Step Disturbance of Loading Torque and Parametric Excitation. Appl. Sci. 2021, 11, 679. [Google Scholar] [CrossRef]
- Darba, A.; Belie, F.D.; D’Haese, P.; Melkebeek, J.A. Improved Dynamic Behavior in BLDC Drives Using Model Predictive Speed and Current Control. IEEE Trans. Ind. Electron. 2016, 63, 728–740. [Google Scholar] [CrossRef]
- Santra, S.B.; Chatterjee, A.; Chatterjee, D.; Padmanaban, S.; Bhattacharya, K. High Efficiency Operation of Brushless DC Motor Drive Using Optimized Harmonic Minimization Based Switching Technique. IEEE Trans. Ind. Appl. 2022, 58, 2122–2133. [Google Scholar] [CrossRef]
- Ha, D.H.; Kim, R. Nonlinear Optimal Position Control with Observer for Position Tracking of Surfaced Mounded Permanent Magnet Synchronous Motors. Appl. Sci. 2021, 11, 10992. [Google Scholar] [CrossRef]
- Park, J.K.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors. IEEE Trans. Ind. Electron. 2016, 63, 1771–1780. [Google Scholar] [CrossRef]
- Shifat, T.A.; Hur, J.W. EEMD Assisted Supervised Learning for the Fault Diagnosis of BLDC Motor Using Vibration Signal. J. Mech. Sci. Technol. 2020, 34, 3981–3990. [Google Scholar] [CrossRef]
- Pindoriya, R.M.; Mishra, A.K.; Rajpurohit, B.S.; Kumar, R. An Analysis of Vibration and Acoustic Noise of BLDC Motor Drive. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018. [Google Scholar]
- Nakata, K.; Hiramoto, K.; Sanada, M.; Morimoto, S.; Takeda, Y. Noise Reduction for Switched Reluctance Motor with a Hole. In Proceedings of the Power Conversion Conference, Osaka, Japan, 2–5 April 2002. [Google Scholar]
- Unlersen, M.F.; Balci, S.; Aslan, M.F.; Sabanci, K. The Speed Estimation via BiLSTM-Based Network of a BLDC Motor Drive for Fan Applications. Arab. J. Sci. Eng. 2022, 47, 2639–2648. [Google Scholar] [CrossRef]
- Hao, Z.; Zhao, R.X.; Zhu, M.L.; Omori, H.; Gamo, K. A Novel Control Strategy for Vibration Reduction in the Permanent Magnet Motor Drive System with Eccentric Load. In Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), Tokyo, Japan, 15–18 November 2009. [Google Scholar]
- Huang, S.; Aydin, M.; Lipo, T.A. Electromagnetic Vibration and Noise Assessment for Surface Mounted PM Machines. In Proceedings of the Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 15–19 July 2001. [Google Scholar]
- Guo, D.; Chu, F.; Chen, D. The Unbalanced Magnetic Pull and Its Effects on Vibration in a Three-phase Generator with Eccentric Rotor. J. Sound Vib. 2002, 254, 297–312. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, Z.; Wu, L.; Jewell, G.W. Analytical Modeling and Finite-Element Computation of Radial Vibration Force in Fractional-Slot Permanent-Magnet Brushless Machines. IEEE Trans. Ind. Appl. 2010, 46, 1908–1918. [Google Scholar] [CrossRef]
- Hur, J.; Reu, J.; Kim, B.; Kang, G. Vibration Reduction of IPM-Type BLDC Motor Using Negative Third Harmonic Elimination Method of Air-Gap Flux Density. IEEE Trans. Ind. Appl. 2011, 47, 1300–1309. [Google Scholar]
- Ma, C.; Zuo, S.; He, L.; Meng, S.; Sun, Q. Analytical Calculation of Electromagnetic Torque in Permanent Magnet Synchronous Motor for Electric Vehicles. J. Vib. Meas. Diagn. 2012, 32, 756–761. [Google Scholar]
- Mohammed, J. Modeling and Dynamic Performance Analysis of PMBLDC Motor. Eng. Technol. J. 2010, 28, 6091–6107. [Google Scholar]
- Im, H.; Hong, H.; Chung, J. Dynamic Analysis of a BLDC Motor with Mechanical and Electromagnetic Interaction due to Air Gap Variation. J. Sound Vib. 2011, 330, 1680–1691. [Google Scholar] [CrossRef]
- Im, H.; Bae, D.S.; Chung, J. Design Sensitivity Analysis of Dynamic Responses for a BLDC Motor with Mechanical and Electromagnetic Interactions. J. Sound Vib. 2012, 331, 2070–2079. [Google Scholar] [CrossRef]
- Zhang, A.; Bai, Y.; Yang, B.; Li, H. Analysis of Nonlinear Vibration in Permanent Magnet Synchronous Motors under Unbalanced Magnetic Pull. Appl. Sci. 2018, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, H.; Xu, X.; Cai, Y.; Sun, X. Analysis on Electromechanical Coupling Vibration Characteristics of In-wheel Motor in Electric Vehicles Considering Air Gap Eccentricity. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 851–862. [Google Scholar]
- Fu, C.; Sinou, J.; Zhu, W.; Lu, K.; Yang, Y. A State-Of-The-Art Review on Uncertainty Analysis of Rotor Systems. Mech. Syst. Signal Process. 2023, 183, 109619. [Google Scholar] [CrossRef]
- Xia, Y.; Wan, Y.; Liu, Z. Bifurcation and Chaos Analysis for a Spur Gear Pair System with Friction. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 529. [Google Scholar] [CrossRef]
- Wei, W.; Guo, W.; Wu, X.; Wu, Q. Stability Analysis on Sliding Bearing with Consideration of Clearance. Lubr. Eng. 2018, 43, 18–22. [Google Scholar]
Parameters | Value |
---|---|
Rated power (kw) | 1.5 |
Mass of rotor m1 (kg) | 0.84 |
Mass of rolling rotor m2 (kg) | 0.23 |
Mass of left shaft neck m3l (kg) | 0.05 |
Mass of left sliding bearing m4l (kg) | 0.19 |
Mass of left support m5l (kg) | 0.89 |
Mass of shell m6 (kg) | 5.33 |
Stiffness k1, 2 (N/m) | 3.07 × 105 |
Stiffness k4r, 4l (N/m) | 1.7 × 105 |
Stiffness k5r, 5l (N/m) | 3.6 × 105 |
Stiffness k6 (N/m) | 2.8 × 105 |
Damping c1, 2 (N/(m·s)) | 800 |
Damping c4r, 4l (N/(m·s)) | 660 |
Damping c5r, 5l (N/(m·s)) | 540 |
Damping c6 (N/(m·s)) | 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Li, Z.; Xia, Y.; Gong, F.; Chen, F. Dynamic Characteristic Analysis of Permanent Magnet Brushless DC Motor System with Rolling Rotor. Appl. Sci. 2022, 12, 10049. https://doi.org/10.3390/app121910049
Wan Y, Li Z, Xia Y, Gong F, Chen F. Dynamic Characteristic Analysis of Permanent Magnet Brushless DC Motor System with Rolling Rotor. Applied Sciences. 2022; 12(19):10049. https://doi.org/10.3390/app121910049
Chicago/Turabian StyleWan, Yi, Zhengyang Li, Yan Xia, Fangbin Gong, and Fei Chen. 2022. "Dynamic Characteristic Analysis of Permanent Magnet Brushless DC Motor System with Rolling Rotor" Applied Sciences 12, no. 19: 10049. https://doi.org/10.3390/app121910049
APA StyleWan, Y., Li, Z., Xia, Y., Gong, F., & Chen, F. (2022). Dynamic Characteristic Analysis of Permanent Magnet Brushless DC Motor System with Rolling Rotor. Applied Sciences, 12(19), 10049. https://doi.org/10.3390/app121910049