Multi-Metal Distribution Patterns in Soils of the Sacramento River Floodplain and Their Controlling Factors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, T.J.; Hamilton, E.M.; Watts, M.J.; Ponting, J.; Sizmur, T. The Effect of Flooding and Drainage Duration on the Release of Trace Elements from Floodplain Soils. Environ. Toxicol. Chem. 2020, 39, 2124–2135. [Google Scholar] [CrossRef]
- Lebed’-Sharlevich, Y.I.; Kulachkova, S.A.; Mozharova, N. Generation, sink, and emission of greenhouse gases by urban soils at different stages of the floodplain development in Moscow. J. Soils Sediments 2019, 19, 3204–3216. [Google Scholar] [CrossRef]
- Brémond, P.; Grelot, F.; Agenais, A.-L. Review Article: Economic evaluation of flood damage to agriculture—Review and analysis of existing methods. Nat. Hazards Earth Syst. Sci. 2013, 13, 2493–2512. [Google Scholar] [CrossRef]
- Levesque, A.-B.; Dupras, J.; Bissonnette, J.F. The pitchfork or the fishhook: A multi-stakeholder perspective towards intensive farming in floodplains. J. Environ. Plan. Manag. 2019, 63, 1987–2003. [Google Scholar] [CrossRef]
- Li, R.; Yuan, Y.; Li, C.; Sun, W.-L.; Yang, M.; Wang, X.-R. Environmental Health and Ecological Risk Assessment of Soil Heavy Metal Pollution in the Coastal Cities of Estuarine Bay—A Case Study of Hangzhou Bay, China. Toxics 2020, 8, 75. [Google Scholar] [CrossRef]
- Kumar, D.; Malik, D.; Patel, S.l.; Gupta, V.K. Human health risk assessment and mitigation of heavy metal pollution in agriculture and environment. Contam. Agric. Environ. Health Risks Remediat. 2019, 1, 66–75. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 5, 46. [Google Scholar] [CrossRef]
- Meena, V.; Dotaniya, M.L.; Saha, J.K.; Das, H.; Patra, A.K. Impact of Lead Contamination on Agroecosystem and Human Health. In Radionuclides and Heavy Metals in the Environment; Gupta, D., Chatterjee, S., Walther, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–16. [Google Scholar]
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.L.; Kundu, S.; Patra, A.K. Assessment of Heavy Metals Contamination in Soil. In Soil Pollution—An Emerging Threat to Agriculture; Saha, J.K., Selladurai, R., Coumar, M.V., Dotaniya, M.L., Kundu, S., Patra, A.K., Eds.; Environmental Chemistry for a Sustainable World; Springer: Singapore, 2017; pp. 155–191. [Google Scholar]
- Chandrasekar, T.; Keesari, T.; Gopalakrishnan, G.; Karuppannan, S.; Senapathi, V.; Sabarathinam, C.; Viswanathan, P.M. Occurrence of Heavy Metals in Groundwater Along the Lithological Interface of K/T Boundary, Peninsular India: A Special Focus on Source, Geochemical Mobility and Health Risk. Arch. Environ. Contam. Toxicol. 2021, 80, 183–207. [Google Scholar] [CrossRef]
- Ciszewski, D.; Aleksander-Kwaterczak, U. Metal Mobility in a Mine-Affected Floodplain. Minerals 2020, 10, 814. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Elznicová, J.; Kiss, T.; Smith, H.G. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena 2016, 144, 109–129. [Google Scholar] [CrossRef]
- Beier, T.; Opp, C.; Hahn, J.; Zitzer, N. Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany. Appl. Sci. 2022, 12, 6354. [Google Scholar] [CrossRef]
- Schwarz, A.; Wilcke, W.; Zech, W.; Styk, J. Heavy Metal Release from Soils in Batch pHstat Experiments. Soil Sci. Soc. Am. J. 1999, 63, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Tota, O.; Huqi, B.; Skuraj, E.; Sallaku, F.; Moisiu, A. An investigation of the spatial variability of heavy metal concentrations in floodplain sediments around the metallurgical combine of Elbasani, Albania. Res. J. Agric. Sci. 2010, 42, 340–346. [Google Scholar]
- Zimmer, D.; Kiersch, K.; Baum, C.; Meissner, R.; Müller, R.; Jandl, G.; Leinweber, P. Scale-Dependent Variability of As and Heavy Metals in a River Elbe Floodplain. Clean-Soil Air Water 2011, 39, 328–337. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Wang, H. Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environ. Monit. Assess. 2019, 191, 246. [Google Scholar] [CrossRef]
- Jia, Z.; Zhou, S.; Su, Q.; Yi, H.; Wang, J. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network. Int. J. Environ. Res. Public Health 2017, 15, 34. [Google Scholar] [CrossRef] [Green Version]
- Lotz, T.; Opp, C. Ranking of Basin-Scale Factors Affecting Metal Concentrations in River Sediment. Appl. Sci. 2022, 12, 2805. [Google Scholar] [CrossRef]
- Karimi, A.; Haghnia, G.H.; Ayoubi, S.; Safari, T. Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran. J. Appl. Geophys. 2017, 138, 127–134. [Google Scholar] [CrossRef]
- Khan, S.; Rehman, S.; Zeb Khan, A.; Amjad Khan, M.; Tahir Shah, M. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf. 2010, 73, 1820–1827. [Google Scholar] [CrossRef]
- Palmer, S.; Cox, S.F.; McKinley, J.M.; Ofterdinger, U. Soil-geochemical factors controlling the distribution and oral bioaccessibility of nickel, vanadium and chromium in soil. Appl. Geochem. 2014, 51, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Li, Y.; Li, F.; Feng, J.-Y.; Shen, J.; Shi, Z. Impacts of Land Use and Landscape Patterns on Heavy Metal Accumulation in Soil. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 2471–2482. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, J.; Wang, L.; Liang, T.; Guo, Q.; Guan, Y.; Rinklebe, J. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. 2020, 260, 114065. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Jian, H.; Yang, F.; Liu, Q.; Yao, Q. Impact of water-sediment regulation on the concentration and transport of dissolved heavy metals in the middle and lower reaches of the Yellow River. Sci. Total Environ. 2022, 806, 150535. [Google Scholar] [CrossRef] [PubMed]
- Szabó, Z.; Buró, B.; Szabó, J.; Tóth, C.A.; Baranyai, E.; Herman, P.; Prokisch, J.; Tomor, T.; Szabó, S. Geomorphology as a Driver of Heavy Metal Accumulation Patterns in a Floodplain. Water 2020, 12, 563. [Google Scholar] [CrossRef] [Green Version]
- Middelkoop, H. Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Neth. J. Geosci.-Geol. En Mijnb. 2016, 79, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Chen, Z.; Zhao, K.; Ye, Z.; Zhang, L.; Dong, J.; Shao, Y.; Zhang, C.; Fu, W. Spatial Patterns of Potentially Hazardous Metals in Soils of Lin’an City, Southeastern China. Int. J. Environ. Res. Public Health 2019, 16, 246. [Google Scholar] [CrossRef] [Green Version]
- Hahn, J.; Bui, T.-K.L.; Kessler, M.; Weber, C.J.; Beier, T.H.; Mildenberger, A.; Traub, M.; Opp, C. Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions. Appl. Sci. 2022, 12, 2277. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Combatt, E.M.; Bravo, A.G.; Díez, S. Flood-induced metal contamination in the topsoil of floodplain agricultural soils: A case-study in Colombia. Land Degrad. Dev. 2019, 30, 2139–2149. [Google Scholar] [CrossRef]
- Kobierski, M. Evaluation of the Content of Heavy Metals in Fluvisols of Floodplain Area Depending on the Type of Land Use. J. Ecol. Eng. 2015, 16, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.T.; Matanitobua, V.; Palanisami, T.; Megharaj, M.; Naidu, R. Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environ. Sci. Technol. 2013, 47, 4670–4676. [Google Scholar] [CrossRef] [PubMed]
- Syu, C.H.; Chen, L.; Lee, D.-Y. The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-contaminated soils. Sci. Total Environ. 2020, 759, 143943. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-H.; Wang, G.; Zhang, S.; Li, T.-x.; Xu, X.; Deng, O.; Luo, L.; He, Y.; Zhou, W. Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils. Environ. Pollut. 2021, 296, 118766. [Google Scholar] [CrossRef] [PubMed]
- Paltseva, A.A.; Neaman, A. An Emerging Frontier: Metal(loid) Soil Pollution Threat Under Global Climate Change. Environ. Toxicol. Chem. 2020, 39, 1653–1654. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, D.; Guo, Y.; Zhang, S.; Chang, L.-L.; Qi, Y.; Li, X.-H.; Liu, J.-G.; Guo, W.; Zhao, J.J.; et al. Comparative insights into influences of co-contamination by rare-earth elements and heavy metals on soil bacterial and fungal communities. J. Soils Sediments 2022, 22, 2499–2515. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Morrison, J.M.; Goldhaber, M.B.; Mills, C.T.; Breit, G.N.; Hooper, R.L.; Holloway, J.M.; Diehl, S.F.; Ranville, J.F. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. Appl. Geochem. 2015, 61, 72–86. [Google Scholar] [CrossRef]
- Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F. A regional-scale study of chromium and nickel in soils of northern California, USA. Appl. Geochem. 2009, 24, 1500–1511. [Google Scholar] [CrossRef]
- USGS. National Geochemical Database: Soil; USGS: Reston, VA, USA, 2016.
- Nardi, F.; Annis, A.; Di Baldassarre, G.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Sci. Data 2019, 6, 180309. [Google Scholar] [CrossRef]
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2011, 81, 583–585. [Google Scholar] [CrossRef]
- NASA. NASA Shuttle Radar Topography Mission Global 1 Arc Second [Data Set]; NASA: Washington, DA, USA, 2013. [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Naturalearthdata. Free Vector and Raster Map Data at 1:10m, 1:50m, and 1:110m Scales. Available online: https://www.naturalearthdata.com/ (accessed on 5 October 2021).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. Swat Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Didan, K. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006 [Data set]; LAADS: Greenbelt, MD, USA, 2015. [CrossRef]
- Benito, B. BlasBenito/spatialRF: SpatialRF: Easy Spatial Regression with Random Forest. Zenodo 2021. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, G.; Chen, S.; Rasmussen, C.; Liu, B. Assessing soil thickness in a black soil watershed in northeast China using random forest and field observations. Int. Soil Water Conserv. Res. 2021, 9, 49–57. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Hegde, R. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Manag. 2020, 38, 135–149. [Google Scholar] [CrossRef]
- Li, X.; Geng, T.; Shen, W.; Zhang, J.; Zhou, Y. Quantifying the influencing factors and multi-factor interactions affecting cadmium accumulation in limestone-derived agricultural soil using random forest (RF) approach. Ecotoxicol. Environ. Saf. 2021, 209, 111773. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Wu, F.; Du, Q. Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 2019, 191, 446. [Google Scholar] [CrossRef]
- Wang, H.; Yilihamu, Q.; Yuan, M.; Bai, H.; Xu, H.; Wu, J. Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest. Ecol. Indic. 2020, 119, 106801. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, H.; Fei, Y.; Wang, C.; Mo, L.; Shu, M. Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by Industry. Sustainability 2021, 13, 511. [Google Scholar] [CrossRef]
- Hafezi Moghaddas, N.; Hajizadeh Namaghi, H.; Ghorbani, H.; Dahrazma, B. The effects of agricultural practice and land-use on the distribution and origin of some potentially toxic metals in the soils of Golestan province, Iran. Environ. Earth Sci. 2012, 68, 487–497. [Google Scholar] [CrossRef]
- Ennaji, W.; Barakat, A.; El Baghdadi, M.; Rais, J. Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. J. Sediment. Environ. 2020, 5, 307–320. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.; Hu, L.; Liu, M.; Wang, L.; Zhang, X.; Fan, D. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas. Sci. Total Environ. 2017, 580, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): An epitomised review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Akther, S.M.; Hossain, M.F.; Parveen, Z. Spatial distribution and ecological risk assessment of potentially toxic metals in the Sundarbans mangrove soils of Bangladesh. Sci. Rep. 2022, 12, 10422. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Hou, J.; Rusuli, Y. Assessment of Soil Salinization Risk by Remote Sensing-Based Ecological Index (RSEI) in the Bosten Lake Watershed, Xinjiang in Northwest China. Sustainability 2022, 14, 7118. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Liu, Y.; Li, K.; Xiao, L.; Li, M.; Tian, Y.; Wu, F. Assessment of Anthropogenic Sources of Potentially Toxic Elements in Soil from Arable Land Using Multivariate Statistical Analysis and Random Forest Analysis. Sustainability 2020, 12, 8538. [Google Scholar] [CrossRef]
- Shaheen, A.; Iqbal, J. Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm. Sustainability 2018, 10, 799. [Google Scholar] [CrossRef] [Green Version]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; Ahmed, N.; Mosa, A.; Niazi, N.K.; Yousaf, B.; Sharma, A.; Sarkar, B.; Cai, Y.; Chang, S.X. Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. J. Hazard. Mater. 2021, 419, 126421. [Google Scholar] [CrossRef] [PubMed]
- Poznanović Spahić, M.M.; Sakan, S.; Glavaš-Trbić, B.M.; Tančić, P.; Škrivanj, S.; Kovacevic, J.; Manojlović, D.D. Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia). J. Environ. Sci. Health Part A 2019, 54, 219–230. [Google Scholar] [CrossRef]
- Cappuyns, V.; Slabbinck, E. Occurrence of Vanadium in Belgian and European Alluvial Soils. Appl. Environ. Soil Sci. 2012, 2012, 979501. [Google Scholar] [CrossRef]
- Guagliardi, I.; Cicchella, D.; Rosa, R.D.; Ricca, N.; Buttafuoco, G. Geochemical sources of vanadium in soils: Evidences in a southern Italy area. J. Geochem. Explor. 2018, 184, 358–364. [Google Scholar] [CrossRef]
- Yu, H.S.; Liao, W.T. Gallium: Environmental Pollution and Health Effects. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, NJ, USA, 2011; pp. 829–833. [Google Scholar]
- Kolawole, T.O.; Olatunji, O.S.; Ajibade, O.M.; Oyelami, C.A. Sources and Level of Rare Earth Element Contamination of Atmospheric Dust in Nigeria. J. Health Pollut. 2021, 11, 210611. [Google Scholar] [CrossRef]
- Anke, M.K.; Angelov, L. Rubidium. In Elements and Their Compounds in the Environment; Wiley-VCH: Weinheim, Germany, 2004; pp. 547–563. [Google Scholar]
- Pyrzyńska, K.; Kilian, K.; Pęgier, M. Separation and purification of scandium: From industry to medicine. Sep. Purif. Rev. 2019, 48, 65–77. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Yan, M.; Yang, L.; Lei, J.; Liu, H. Surface soil metal elements variability affected by environmental and soil properties. PLoS ONE 2021, 16, e0254928. [Google Scholar] [CrossRef]
- Liu, Y.-l.; Tian, X.; Liu, R.; Liu, S.; Zuza, A.V. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China. Catena 2021, 196, 104926. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Processes Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef] [PubMed]
- Sungur, A.; Soylak, M.; Yılmaz, E.; Yilmaz, S.; Ozcan, H. Characterization of Heavy Metal Fractions in Agricultural Soils by Sequential Extraction Procedure: The Relationship Between Soil Properties and Heavy Metal Fractions. Soil Sediment Contam. Int. J. 2015, 24, 1–15. [Google Scholar] [CrossRef]
- Alpers, C.N.; Antweiler, R.C.; Taylor, H.E.; Dileanis, P.D.; Domagalski, J.L. Metals transport in the Sacramento River, California, 1996–1997; Volume 2, Interpretation of metal loads. Water-Resour. Investig. Rep. 2000, 2, 1–56. [Google Scholar] [CrossRef]
- Cain, D.J.; Carter, J.L.; Fend, S.V.; Luoma, S.N.; Alpers, C.N.; Taylor, H.E. Metal exposure in a benthic macroinvertebrate, Hydropsyche californica, related to mine drainage in the Sacramento River. Can. J. Fish. Aquat. Sci. 2000, 57, 380–390. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Chen, L.; Zhao, F.; Sun, L. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environ. Sci. Pollut. Res. 2018, 26, 1615–1627. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.; Zheng, M.; Han, F.X.; Ma, Y. Effects of Vegetable Fields on the Spatial Distribution Patterns of Metal(loid)s in Soils Based on GIS and Moran’s I. Int. J. Environ. Res. Public Health 2019, 16, 4095. [Google Scholar] [CrossRef] [Green Version]
- Allafta, H.; Opp, C. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Sci. Rep. 2020, 10, 6979. [Google Scholar] [CrossRef]
- Huang, S.; Shao, G.; Wang, L.; Tang, L. Spatial Distribution and Potential Sources of Five Heavy Metals and One Metalloid in the Soils of Xiamen City, China. Bull. Environ. Contam. Toxicol. 2019, 103, 308–315. [Google Scholar] [CrossRef]
Category | Variable (Unit) | Min | Max | Mean |
---|---|---|---|---|
Sacramento River | River density | 0 | 0.21 | 0.04 |
River distance (m) | 0 | 45,137.02 | 9465.59 | |
Soil | Bulk density (g/cm3) | 0.98 | 1.72 | 1.32 |
AWC (mm/mm) | 0.09 | 0.35 | 0.18 | |
K (mm/h) | 0.13 | 290 | 13.54 | |
Carbon cont. (%) | 0 | 9.88 | 2.09 | |
Clay cont. (%) | 10 | 65 | 34.13 | |
Silt cont. (%) | 18.02 | 67.71 | 37.71 | |
Sand cont. (%) | 9.42 | 67.46 | 28.28 | |
Rock cont. (%) | 0 | 22.72 | 0.72 | |
Soil albedo | 0.01 | 0.23 | 0.03 | |
USLE K | 0.1 | 0.49 | 0.29 | |
Input streams (proximity) | Stream east 1 (m) | 96,021 | 180,608 | 147,041.9 |
Stream east 2 (m) | 98,659.79 | 205,235 | 162,519.3 | |
Stream east 3 (m) | 89,314.97 | 215,096 | 164,437.1 | |
Stream west 1 (m) | 77,141.8 | 192,200 | 143,473.7 | |
Stream west 2 (m) | 134,473.6 | 202,403 | 173,751.1 | |
Terrain | Elevation (m) | −9 | 44 | 7.12 |
Slope (%) | 0 | 16.57 | 2.47 | |
TWI | 9.99 | 16.64 | 11.81 | |
Vegetation | EVI | −0.09 | 0.8 | 0.2 |
NDVI | −0.31 | 0.85 | 0.33 |
IMDP | Al | Ca | Ce | Cs | Ga | K | La | Li | |||
Described Metal | Ga | Sr | La | Li | Al | Be | Rb | Ce | Nb | Cs | Ni |
RF R2 | 0.89 | 0.83 | 0.92 | 0.93 | 0.86 | 0.76 | 0.81 | 0.91 | 0.84 | 0.92 | 0.90 |
Correlation | 0.86 | 0.89 | 0.98 | 0.90 | 0.86 | 0.70 | 0.73 | 0.98 | 0.84 | 0.90 | 0.78 |
IMDP | Ni | Rb | Sc | Sr | V | ||||||
Described Metal | Co | Cr | Mg | K | Tl | V | Y | Ca | Fe | Na | Sc |
RF R2 | 0.88 | 0.77 | 0.83 | 0.85 | 0.72 | 0.90 | 0.80 | 0.77 | 0.88 | 0.87 | 0.94 |
Correlation | 0.69 | 0.73 | 0.74 | 0.73 | 0.73 | 0.92 | 0.61 | 0.89 | 0.86 | −0.70 | 0.92 |
PC1 | PC2 | PC3 | |
---|---|---|---|
Standard deviation | 2.3225 | 2.0286 | 1.3387 |
Proportion of variance | 0.4149 | 0.3165 | 0.1379 |
Cumulative proportion | 0.4149 | 0.7315 | 0.8693 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotz, T.; Su, S.; Opp, C. Multi-Metal Distribution Patterns in Soils of the Sacramento River Floodplain and Their Controlling Factors. Appl. Sci. 2022, 12, 8462. https://doi.org/10.3390/app12178462
Lotz T, Su S, Opp C. Multi-Metal Distribution Patterns in Soils of the Sacramento River Floodplain and Their Controlling Factors. Applied Sciences. 2022; 12(17):8462. https://doi.org/10.3390/app12178462
Chicago/Turabian StyleLotz, Tom, Shoubao Su, and Christian Opp. 2022. "Multi-Metal Distribution Patterns in Soils of the Sacramento River Floodplain and Their Controlling Factors" Applied Sciences 12, no. 17: 8462. https://doi.org/10.3390/app12178462
APA StyleLotz, T., Su, S., & Opp, C. (2022). Multi-Metal Distribution Patterns in Soils of the Sacramento River Floodplain and Their Controlling Factors. Applied Sciences, 12(17), 8462. https://doi.org/10.3390/app12178462