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Abstract: Metal(loid) pollution in vegetable field soils has become increasingly severe and affects
the safety of vegetable crops. Research in China has mainly focused on greenhouse vegetables
(GV), while open field vegetables (OV) and the spatial distribution patterns of metal(loid)s in the
surrounding soils have rarely been assessed. In the present study, spatial analysis methods combining
Geographic Information Systems (GIS) and Moran’s I were applied to analyze the effects of vegetable
fields on metal(loid) accumulation in soils. Overall, vegetable fields affected the spatial distribution
of metal(loid)s in soils. In long-term vegetable production, the use of large amounts of organic
fertilizer led to the bioconcentration of cadmium (Cd) and mercury (Hg), and long-term fertilization
resulted in a significant pH decrease and consequent transformation and migration of chromium
(Cr), lead (Pb), and arsenic (As). Thus, OV fields with a long history of planting had lower average
pH and Cd, and higher average As, Cr, Hg, and Pb than GV fields, reached 0.93%, 10.1%, 5.8%,
3.0%, 80.8%, and 0.43% respectively. Due to the migration and transformation of metal(loid)s in OV
soils, these should be further investigated regarding their abilities to reduce the accumulation of
metal(loid)s in soils and protect the quality of the cultivated land.
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1. Introduction

The term “metal(loid)s” represents both metals and metalloids. Metal(loid) accumulation can lead
to the contamination of surface water, groundwater, organisms, sediments, and oceans. Metal(loid)
pollution in agricultural soils has become an urgent issue worldwide. This is of particular concern
in China due to its rapid economic growth over the past 40 years, and metal(loid) pollution in soils
is now being considered of high-risk to the environment and human health [1]; the consequential
environmental problems have also received widespread attention [2]. Some researchers have employed
multivariate statistical analysis and geostatistical analysis for qualitative or quantitative research to
determine the heavy metal sources in soils; however, it is generally believed that natural sources and
human activities are the two major providers of heavy metals [3–5]. Natural sources include rock
components [6–8], soil parent material [9], and atmospheric sediments from soil formation processes,
and these are concentrated in soils after weathering and leaching, attaining high geological background
values. Human activities mainly comprise industrial activities such as mining, industrial emissions,
coal combustion, point source emissions [10–15], agricultural production from the long-term and
massive application of fertilizers [16,17], and life activities.
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Vegetables from agricultural production are essential. However, the excessive use of chemicals to
promote vegetable growth may lead to an increase in the concentrations of metal(loid)s in soils, which
threatens human health through the food chain and should be investigated further. Due to market
demand and economic incentives, large-scale agricultural greenhouse vegetable (GV) production is
rapidly expanding worldwide, especially in developing countries [18–20]. Under such circumstances,
research has begun to link GV production with trace metal accumulation in soils [7,21]. China is the
world’s largest producer and consumer of vegetables, with the planting area and production both
accounting for more than 40% of the global totals [22]. In China, intensive planting of vegetables
involves the massive use of fertilizer for the purpose of high yields. The traditional vegetable planting
management mode, i.e., “more fertilizer, higher yields,” leads to soil nutrient bioconcentration and
metal(loid) accumulation, thereby causing soil acidification, salinization, and groundwater pollution.
This results in the biological activity and decomposing ability of soils being reduced, leading to the
deterioration of vegetable quality and to severe economic and environmental impacts [23]. According
to the survey data of the National Bureau of Statistics of China and to published literature, the total
area for vegetable cultivation in China was 19.981 million hectares in 2017 [24]; the GV production
area reached 3.7 million hectares [25], while the open vegetable fields still accounted for 81.5% of the
total vegetable cultivation area in China, reaching 16.3 million hectares. Although some studies have
reported the spatial distribution [26], time variation [27], and environmental quality assessment [19]
of trace metals in greenhouse vegetables in China, vegetables from open fields are more likely to be
contaminated than those grown in greenhouses, as without any greenhouse or film protection open
fields are more exposed to the migration and transformation of soil attributes such as nutrients and
metal(loid)s, which greatly affect the soil environment. However, little research has been done to
analyze the effects of open vegetable (OV) fields on the spatial distribution patterns of metal(loid)s in
the surrounding soils. Therefore, whether OV fields are the pollution sources or sinks of metal(loid)s
in soils of the surrounding land is unknown.

In the present study, Feidong County, Hefei, Anhui was selected as the subject area because it
has witnessed rapid economic development, has a large agricultural area, of which a large portion is
for vegetable production, and has no record of pollution sources. The object-oriented method was
used to perform remote-sensing classification of the GV fields in this area and to obtain their spatial
distribution in 2019. The official agricultural survey data of Feidong County were used to obtain
the spatial distribution of vegetable fields in this area in 2018. There were 375 surface soil samples
obtained from the agricultural pollution survey of the County. The spatial interpolation method was
used to simulate the spatial distributions of one metalloid, arsenic (As), and the four heavy metals
including cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb). Geographic Information
Systems (GIS) and local Moran’s I were used to analyze whether vegetable fields had an effect on
the spatial distribution patterns of metal(loid)s in soils, whether the concentrations of metal(loid)s in
agricultural soils increased due to the excessive use of fertilizers, and whether OV fields and protected
agriculture led to the bioconcentration of metal(loid)s in the surrounding soils. This study provides
data to support the management and protection of agricultural soil quality and toxicity, and it is of
great scientific and practical significance.

2. Materials and Methods

2.1. Study Area

Feidong County, located in the central part of Anhui Province (Figure 1) and on the east side of
Hefei (the capital of Anhui Province), is one of the most important areas for vegetable agriculture in
Hefei. The total area of the county is about 221,200 hectares, most of which belongs to the Chaohu Lake
Basin. The cultivated land area is about 76,700 hectares, accounting for 35% of the total area. The total
population is about 1.1 million, of which 970,000 are employed by the agricultural industry, evidencing
that Feidong is an agricultural county. According to the morphological characteristics, the county
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can be divided into four areas: low mountainous area in the east, low hilly area in the north, wavy
plain area in the middle, and lakeside plain area in the south. Feidong County belongs to the north
subtropical monsoon climate zone, with abundant sunshine, mild climate, four distinct seasons, and
moderate rainfall. Paddy soils and yellow cinnamon soils are the two primary soil types, accounting
for 72.72% and 20.33% of the area, respectively (Table 1 and Figure 2). The total area of vegetable fields
(including OV and GV fields) was 6159.126 hectares. The soil type data and vegetable field data were
obtained from the Anhui Provincial Agriculture Committee.
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Figure 1. Relative location of Feidong County in Anhui Province, China, and distribution of the
sampling sites in Feidong County.

Table 1. Importance of the soil types in Feidong County (data from Anhui Provincial Agriculture
Committee).

Soil Type Area (km2) Percentage

Paddy soils 1653 72.72
Yellow cinnamon soils 462 20.33

Lakes and waters 64 2.82
Yellow–brown earths 34 1.50

Skeletal soils 31 1.36
Cultivated loessial soils 11 0.48

Limestone soils 10 0.44
Fluvo-aquic soils 5 0.22

Purplish soils 3 0.13
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Figure 2. Distribution of the soil types in Feidong County (data from Anhui Provincial
Agriculture Committee).

From July to December 2017, 375 0–20 cm topsoil samples were collected across Feidong County
(Figure 1) using bamboo shovels. During the sampling, areas with new and locally contaminated soils
were avoided, and the geographic coordinates of the sampling sites were recorded. After sampling,
the GPS-measured sampling points with coordinate records were converted into points with spatial
coordinates using ArcGIS 10.2 (Environmental Systems Research Institute, Inc, RedLands, CA,
USA) and projection transformation was applied to generate a sample distribution map with soil
metal(loid) information.

2.2. Data Sources and Technical Paths

2.2.1. Vegetable Field Types

Among the vegetable field types, the greenhouse vegetables are an area covered with a greenhouse
facility. The location and area of greenhouse facilities in 2019 were extracted by the four spatial
attributes of area, length, rectangular_fit, and major_Length with the Rule-based Classification step in
the ENVI software from the Google Earth Level 17 data, as shown on the left and middle in Figure 3.
The overall accuracy was 77.439% and the kappa coefficient was 0.618, then the extraction results were
modified manually. The open field vegetables are the vegetable fields without greenhouse facilities
minus the greenhouse vegetable areas, to reduce the impact of different types of vegetable fields, as
shown on the right in Figure 3.
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The obtained spatial distribution was intersected with the spatial distribution of the total vegetable
fields from Feidong’s agricultural survey data in 2016 to obtain the spatial distributions of the OV and
GV fields (Figure 4).

Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 5 of 22 

The obtained spatial distribution was intersected with the spatial distribution of the total 
vegetable fields from Feidong’s agricultural survey data in 2016 to obtain the spatial 
distributions of the OV and GV fields (Figure 4). 

   
Figure 3. Spatial extraction of different types of vegetable fields. 

 
Figure 4. Spatial distributions of different types of vegetable fields. 

2.2.2. Soil Sampling and Analysis 

The soil tests were completed at the Anhui Institute of Geological Experiment. After the 
samples were digested by HCl–HNO3–HClO4–HF, the concentrations of Cd, Pb, and Cr were 
determined by inductively coupled plasma mass spectrometry (ICP-MS 7700, Agilent 
Technologies, Santa Clara, CA, USA); the concentrations of Hg and As were determined by 
atomic fluorescence spectrometry (AFS-8220, JiTian Technologies, Beijing, China) after 
digestion by aqua regia; the soil pH was measured using a pH meter (SG8, METTLER 
TOLEDO, Zurich, Switzerland). The laboratory used national standard materials and repeated 
sample tests for quality monitoring. The accuracy, precision, and reported percent of the 
various indicators were controlled at 0.10–0.12, 10–20%, and over 98%, respectively. 

Figure 4. Spatial distributions of different types of vegetable fields.

2.2.2. Soil Sampling and Analysis

The soil tests were completed at the Anhui Institute of Geological Experiment. After the samples
were digested by HCl–HNO3–HClO4–HF, the concentrations of Cd, Pb, and Cr were determined by
inductively coupled plasma mass spectrometry (ICP-MS 7700, Agilent Technologies, Santa Clara, CA,
USA); the concentrations of Hg and As were determined by atomic fluorescence spectrometry (AFS-8220,
JiTian Technologies, Beijing, China) after digestion by aqua regia; the soil pH was measured using a
pH meter (SG8, METTLER TOLEDO, Zurich, Switzerland). The laboratory used national standard
materials and repeated sample tests for quality monitoring. The accuracy, precision, and reported
percent of the various indicators were controlled at 0.10–0.12, 10–20%, and over 98%, respectively.
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2.3. Geostatistical Interpolation and Kernel Density Simulation

The ARCMAP10.2 platform (Environmental Systems Research Institute, Redlands, CA, USA),
designed by the Environmental Systems Research Institute (ESRI), was used for the geostatistical
interpolation of metal(loid)s and the kernel density simulation of vegetable fields. The equations of the
two techniques used were:

(1) Ordinary Kriging

According to the ordinary kriging interpolation technique, if the attribute value of variable Z(x)
for study area a at point xi ∈ A (i = 1, 2, . . . , n) was Z(xi), then the kriging interpolation result of the
attribute value Z∗(x0) at the to-be-interpolated point x0 ∈ A was the weighted sum of the attribute
values Z(xi)(i = 1, 2, . . . , n) of the most neighboring known sample points, namely:

Z∗(x0) =
n∑

i=1

λiZ(xi) (1)

where λi is the weight assigned to each Z(xi) value, with their sum being 1, and n is the amount of the
most neighboring sampled data points used for the estimation.

(2) Kernel Density

Kernel density estimation is a particularly useful method of density estimation. A set of data can
be used to continuously replace discrete histograms to create a smooth curve. The universal equation
of kernel density estimation is mathematically expressed as follows:

∧
pn(x) =

1
nh

n∑
1

k
(Xi − x

h

)
(2)

where k(x) is the kernel function, which is usually a smooth symmetric function, such as a Gaussian
function, and h is the smoothing bandwidth if it is greater than 0, which controls the amount of
smoothing. Kernel density estimation smooths each data point Xi into a small density bump and then
adds all of the small bumps to obtain a final density estimate.

2.4. Statistical Analyses

Statistical analyses were performed using SPSS 19.0 (International Business Machines Corporation,
Armonk, NY, USA) [28]. Pearson’s correlation analysis was used to measure the linear relationship
between the two variables by detecting if two phenomena (statistics) are correlated. In this study,
Pearson’s correlations were performed to verify if the distributions of the soil metal(loid)s were closely
related to the locations of the vegetable fields.

2.5. Spatial Autocorrelation Analysis

Moran’s I is the most commonly used method for calculating spatial autocorrelation, both global
and local spatial autocorrelations [1,29,30].

The global Moran’s I is derived from the covariance relationship between correlation coefficients.
The value of the covariate also represents the correlation between the two sets of values. The global
Moran’s I is expressed as follows:

I =
n

n∑
i=1

n∑
j=1

W ji
×

n∑
i=1

n∑
j=1

Wij(xi − x)
(
x j − x

)
n∑

i=1
(xi − x)2

(3)
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where Wij is the spatial adjacency weight matrix of each spatial unit i and the spatial unit j
( j = {1, 2, 3, . . . , n } ) in the study area (1 indicates that i is adjacent to j, while 0 indicates that i
and j are not adjacent), xi is the value of each variable in a variable set, with their average being x, and
yi is the value of each variable in another variable set, with their average being y.

The local Moran’s I is a local measure of spatial autocorrelation, which is used to identify the
locations of spatial clusters and spatial outliers. It is calculated as follows:

Ii =

n(xi − x)
n∑

j=1
Wij

(
x j − x

)
n∑

i=1
(xi − x)2

(4)

The definition of each variable is similar to that provided for the above equation. The Moran’s
I value calculated according Equation (4) is between −1 and 1. If the value is greater than 0, the
correlation is positive. If the value is less than 0, the correlation is negative. A larger value indicates
a greater spatial distribution correlation, i.e., the spatial distribution is clustered. A smaller value
indicates a small spatial distribution correlation. When the value tends to be 0, the spatial distribution
is random.

The global and local Moran’s I were analyzed in GeoDa [31], which is a user-friendly software
with a wide set of spatial analysis methods, by which the global Moran’s I value and its significance
can be obtained, as well as the local spatial autocorrelation classification results of local Moran’s I
statistical analysis.

2.6. Technical Path

A geographic polygon database was created in ArcMap (Environmental Systems Research
Institute, Inc, RedLands, CA, USA). The data for the metal(loid)s in soils, including the soil metal(loid)
concentrations and latitude/longitude information, were imported into the database. The Kernel
Density tool in ArcMap was used to obtain the kernel density estimate of vegetable field data in the
study area. A 1 × 1 km grid was created for the entire study area. The join association method in
ArcGIS was then used to correlate the metal(loid) concentrations with the kernel density of vegetable
fields based on spatial locations, and the correlated grid data were finally exported. Then, a spatial
weight matrix was constructed in GeoDa (GeoDa Center for Geospatial Analysis in the University of
Chicago, Chicago, IL, USA), and the bivariate local Moran’s I was used to generate a cluster map. The
generated type results were saved to the data file for subsequent operations and analyses in ArcGIS.

3. Results and Discussion

3.1. Geostatistical Analysis of the Spatial Patterns of Metal(loid)s

3.1.1. Variations and Correlations of Soil Heavy Metals

The analysis of the raw sampling data (Table 2) indicated that the coefficient of variation of soil Hg
was the highest (85.597%), followed by soil Cd (41.804%), and soil As (35.081%), which may be related
to human activities. The variation intensity of soil pH was the lowest. The coefficient of variation
can only qualitatively reflect the overall level of soil attributes and their changing trends but cannot
reflect changes in their spatial characteristics. Neither can it quantitatively describe how soil attributes
change with sampling sites or determine whether structural or random factors are the most influential
on variation. Semivariogram features are needed to explain the above characteristics.

The nugget effect, one of the features of the semivariogram, is the ratio of the nugget value to the
sill value, i.e., C0/(C0 + C), which indicates the proportion of the spatial variability due to randomness
in the total variation of the system. It falls into three grades according to the spatial correlation degrees
of the region-specific variables. If the nugget coefficient is <25%, the spatial correlation is strong. If the
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nugget coefficient is 25–75%, the spatial correlation is moderate. If the nugget effect is >75%, the spatial
correlation is weak. It can be seen from Table 3 that the soil As showed a strong spatial correlation,
while the other soil attributes showed a moderate spatial correlation.

3.1.2. Spatial Distribution of Metal(loid)s—Kriging Model Interpolation

The concentrations of the five metal(loid)s examined here (Table 2) were compared with the soil
pollution risk values of agricultural lands published in China’s Environmental Quality Standard for
Soils [32]. The average concentrations of the five metal(loid)s did not exceed Grade II soil quality.
However, the concentrations of the five metal(loid)s exceeded the soil background value in some areas,
indicating that the farmland soils in the study area may have been contaminated by metal(loid)s to
different degrees. Combining the results of the spatial distribution of vegetable fields with that of
metal(loid)s, it can be depicted that the locations of the vegetable fields were closely related to soil pH
and heavy metal spatial distributions.

For the purpose of understanding the spatial distribution regularities of the different metal(loid)s,
the kriging interpolation method of the geostatistical module in ArcGIS was used to assess the
metal(loid) concentrations in each type of soil in the study area. Based on this, a spatial distribution
map of the heavy metal concentrations in the soil was created (Figure 4). The spatial distributions
of Cr, Pb, Cd, As, and Hg, as well as the pH of sampled areas showed an increasing or decreasing
trend, and all these attributes had obvious high-value areas. All metal(loid)s showed high values in
the south-eastern area, possibly due to phosphate mining. The concentrations of Cr, Pb, and Hg were
generally low in the study area. While Cr was clustered in several small sites of the north-eastern
area, possibly due to local paint factories, the concentration of As was high in the north-western area
possibly due to building material and paint factories. High Hg concentrations were found in the
south-eastern area, mainly due to mining plants, and Cd was mainly distributed in the southern area
due to cities and mines, and in the north-western area due to agriculture, especially vegetable fields.
Lead and Cr were mainly distributed in the western area, possibly due to agricultural production
rather than industry and mining. Since long-term vegetable planting caused soil acidification, high
pH values (Figure 5) were found to be negatively correlated with the spatial distribution of vegetable
fields (Figure 4).

3.1.3. The Vegetable Field Kernel Density

The probability density of different vegetable field types in the study area was obtained by
kernel density analysis method. The centroid of each polygon was extracted as the point data for the
kernel density calculation. The default search radius (bandwidth) was calculated based on the spatial
configuration and number of input points. The bandwidth was calculated by dividing the minimum
value of the width or the height of the output range in the study area by 30. For example, the east-west
width of the study area is 47,670 m, and the default bandwidth is 1589. This approach to calculate the
default radius generally avoids the “ring around the points” phenomenon that often occurs with sparse
datasets. This approach corrects for spatial outliers—input points that are very far away from the
rest—so they will not make the search radius unreasonably large. The results show that both vegetable
fields have spatial agglomeration characteristics, mostly around villages and towns (Figure 6).
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Table 2. Analysis of raw sampling data.

Soil Attribute Minimum
Value (mg/kg)

Maximum
Value (mg/kg)

Average
Value (mg/kg)

Median
(mg/kg)

Standard
Deviation

Coefficient of
Variation (%) Skewness Kurtosis

As 4.161 38.238 8.262 7.852 2.898 35.081 5.418 50.906
Cd 0.042 0.374 0.128 0.114 0.053 41.804 1.158 4.479
Cr 25.377 243.460 65.027 62.460 17.617 27.092 3.586 31.975
Hg 0.013 4.619 0.059 0.051 0.050 85.597 7.858 340.520
Pb 16.870 84.668 27.190 26.697 5.468 20.108 3.897 37.165
pH 4.430 7.231 5.887 5.870 0.481 8.174 0.105 3.277

Samples (n = 375).

Table 3. Semivariogram parameters for soil attributes.

Soil Attribute
Range (m) Long-Axis

Angle (◦)
Nugget (C0) Structural

Variance (C)
Sill (C0 + C) Nugget/Sill

(%)
Root-Mean-Square

Deviation
Average Standard

DeviationLong Axis Short Axis

As 1849.340 815.360 76.640 0.007 0.035 0.042 16.667 1.044 1.852
Cd 2498.280 1778.250 6.150 0.035 0.098 0.133 26.316 0.964 0.034
Cr 2400.770 1709.370 136.230 0.026 0.025 0.050 50.996 0.920 11.672
Hg 2180.640 1237.300 112.140 0.050 0.133 0.183 27.322 1.366 0.057
Pb 528.920 393.810 13.530 0.006 0.013 0.019 31.579 1.286 4.491
pH 8841.320 425.870 55.540 0.076 0.097 0.173 43.931 1.087 0.390

Samples (n = 375).
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3.2. Statistical Analyses

3.2.1. Correlation Analysis

The effects of the vegetable fields on the geochemical characteristics of soil metal(loid)s and
pH were analyzed, but the normality test did not pass for the Kolmogorov-Smirnova test and the
Shapiro-Wilk test in Table 4. Thus, the original data were transformed by the bloom method and
then were assessed by examining Pearson’s correlations between metal(loid) interpolation data and
vegetable field kernel density in the 2276 1 × 1 km grids across the study area.

Table 4. Normality test.

Title
Kolmogorov-Smirnova Shapiro-Wilk

Statistics df Sig. Statistics df Sig.

OV_KernelDensity 0.513 2276 0 0.075 2276 0
GV_KernelDensity 0.333 2276 0 0.471 2276 0

As 0.329 2276 0 0.333 2276 0
Cd 0.532 2276 0 0.2 2276 0
Cr 0.232 2276 0 0.679 2276 0
Hg 0.511 2276 0 0.233 2276 0
Pb 0.251 2276 0 0.584 2276 0
pH 0.378 2276 0 0.431 2276 0

Samples (n = 2276).

The correlation coefficients are listed in Table 5. The p-values lower than 0.01 evidenced the
significant correlation between soil Cr, Pb, Cd, As, Hg concentrations, and pH with the density of OV
and GV fields. Since the planting times of GV fields varied greatly, there was no obvious regularity of
their effects on metal(loid) concentrations. Open field vegetables showed high significant correlations
with soil attributes due to their long-term planting history, and these were positive for Cd and Hg, and
negative for Cr, Pb, As, and pH. This was primarily because in OV fields, the massive use of organic
fertilizers resulted in bioconcentrations of Cd and Hg, and long-term fertilization significantly reduced
the pH, leading to the transformation and migration of Cr, Pb, and As.

Table 5. Correlation analysis between the kernel density and soil heavy metal concentrations on open
and greenhouse vegetable fields (OV and GV, respectively).

OV GV As Cd Cr Hg Pb pH

OV 1 −0.042 * −0.113 ** 0.474 ** −0.384 ** 0.468 ** −0.334 ** −0.385 **
GV −0.042 * 1 −0.065 ** −0.089 ** 0.014 −0.098 ** 0.055 ** 0.105 **
As −0.113 ** −0.065 ** 1 −0.234 ** −0.068 ** −0.082 ** −0.409 ** −0.316 **
Cd 0.474 ** −0.089 ** −0.234 ** 1 −0.803 ** 0.983 ** −0.696 ** −0.806 **
Cr −0.384 ** 0.014 −0.068 ** −0.803 ** 1 −0.842 ** 0.815 ** 0.850 **
Hg 0.468 ** −0.098 ** −0.082 ** 0.983 ** −0.842 ** 1 −0.786 ** −0.883 **
Pb −0.334 ** 0.055 ** −0.409 ** −0.696 ** 0.815 ** −0.786 ** 1 0.925 **
pH −0.385 ** 0.105 ** −0.316 ** −0.806 ** 0.850 ** −0.883 ** 0.925 ** 1

Samples (n = 2276); * indicates a significant relationship at p < 0.05. ** indicates a significant relationship at p < 0.01.

3.2.2. Heavy Metal Concentrations on the Different Types of Soil and Vegetable Fields

To analyze whether heavy metal accumulation in the soil was related to the soil type and vegetable
field type, the ArcGIS statistical data tool (Zonal Statistics as Table) was used to superimpose the soil
type, vegetable field type, and heavy metal grid data to obtain the number, mean, standard deviation,
etc., of pixels in the type-specific statistically framed areas.

Table 6 and Figure 7 show the average concentrations of metal(loid)s in the different types of
soils. The average concentrations of all metal(loid)s were low and did not reach the soil pollution
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background values of Anhui. However, the heavy metal concentrations in the different types of soils
varied significantly, which was related to the soil background values. In the limestone and skeletal soils,
the concentrations of the four metal(loid)s other than Cd were high. In paddy soils, the concentration
of Cd was high, while that of the other four metal(loid)s were low, which may be related to soil
fertilization characteristics.

Table 6. Average concentrations of metal(loid)s and pH in the different types of soils.

Type pH As (mg/kg) Cd (mg/kg) Cr (mg/kg) Hg (mg/kg) Pb (mg/kg)

Cultivated loessial soils 5.4704 8.0111 0.0890 62.7960 0.0362 26.9889
Fluvo–aquic soils 6.1199 9.2413 0.1071 63.3214 0.0784 28.2519
Limestone soils 5.5975 12.0172 0.1043 67.7190 0.0931 28.1897

Paddy soils 5.7602 8.2770 0.1203 63.3104 0.0683 25.6234
Purplish soils 5.5017 8.2490 0.1173 63.0286 0.0187 27.6239
Skeletal soils 5.8965 11.2538 0.1525 63.3785 2.0277 28.2820

Yellow cinnamon soils 5.7111 9.1123 0.1112 67.0106 0.0917 25.6263
Yellow-brown earths 5.5385 11.1875 0.1032 76.8729 0.0423 28.0242

Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 13 of 22 

superimpose the soil type, vegetable field type, and heavy metal grid data to obtain the 
number, mean, standard deviation, etc., of pixels in the type-specific statistically framed areas. 

Table 6 and Figure 7 show the average concentrations of metal(loid)s in the different 
types of soils. The average concentrations of all metal(loid)s were low and did not reach the 
soil pollution background values of Anhui. However, the heavy metal concentrations in the 
different types of soils varied significantly, which was related to the soil background values. 
In the limestone and skeletal soils, the concentrations of the four metal(loid)s other than Cd 
were high. In paddy soils, the concentration of Cd was high, while that of the other four 
metal(loid)s were low, which may be related to soil fertilization characteristics. 

Table 6. Average concentrations of metal(loid)s and pH in the different types of soils. 

Type pH As 
(mg/kg) 

Cd 
(mg/kg) 

Cr 
(mg/kg) 

Hg 
(mg/kg) 

Pb 
(mg/kg) 

Cultivated loessial soils 5.4704 8.0111  0.0890  62.7960  0.0362  26.9889  
Fluvo–aquic soils 6.1199 9.2413  0.1071  63.3214  0.0784  28.2519  
Limestone soils 5.5975 12.0172  0.1043  67.7190  0.0931  28.1897  

Paddy soils 5.7602 8.2770  0.1203  63.3104  0.0683  25.6234  
Purplish soils 5.5017 8.2490  0.1173  63.0286  0.0187  27.6239  
Skeletal soils 5.8965 11.2538  0.1525  63.3785  2.0277  28.2820  

Yellow cinnamon soils 5.7111 9.1123  0.1112  67.0106  0.0917  25.6263  
Yellow-brown earths 5.5385 11.1875  0.1032  76.8729  0.0423  28.0242  

 
Figure 7. Average concentrations of metal(loid)s in the different types of soils (shown at a 
uniform scale; Cd and Hg concentrations are magnified 100 times in the figure). 

Table 7 and Figure 8 show the average concentrations of metal(loid)s in the different 
vegetable fields. The average pH and Cd concentrations of OV fields were lower than those of 
the GV fields, whereas the average As, Cr, Hg, and Pb concentrations of the OV fields were 
higher than those of the GV fields. This was possibly because the long planting history of OV 

Figure 7. Average concentrations of metal(loid)s in the different types of soils (shown at a uniform
scale; Cd and Hg concentrations are magnified 100 times in the figure).

Table 7 and Figure 8 show the average concentrations of metal(loid)s in the different vegetable
fields. The average pH and Cd concentrations of OV fields were lower than those of the GV fields,
whereas the average As, Cr, Hg, and Pb concentrations of the OV fields were higher than those of the
GV fields. This was possibly because the long planting history of OV fields led to soil acidification
(low pH), and because OV fields are susceptible to atmospheric deposition of metal(loid)s. Therefore,
the As, Cr, Hg, and Pb concentrations of the OV fields were higher. The average concentration of Cd in
the GV fields was high, possibly because the amount of applied organic fertilizer in such fields far
exceeded that of the OV fields and resulted in Cd accumulation in the soils.
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Table 7. Average concentrations of metal(loid)s and pH in the open and greenhouse vegetable fields
(OV and GV, respectively).

Type pH As (mg/kg) Cd (mg/kg) Cr (mg/kg) Hg (mg/kg) Pb (mg/kg)

OV 5.7467 8.0250 0.1215 62.7534 0.1175 25.1793
GV 5.8005 7.5851 0.1352 60.9272 0.0650 25.0702
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The pH of the GV fields increased with the planting area (Table 8), which was related to the
latest compensation policy for greenhouse vegetable cultivation in Feidong, as described below. The
compensation standards vary with planting areas and the larger the planting area, the higher the
compensation. Compensation is given according to five levels of planting areas, i.e., 1 (0–1.3 ha),
2 (1.3–3.3 ha), 3 (3.3–5 ha), 4 (5–6.6 ha), and 5 (≥6.6 ha). Therefore, some large-scale GV fields have
emerged in recent years, but their soils are not severely damaged, and their pH is high due to the
short planting time. Level 1 GV fields were characterized by small planting areas and long planting
times, and vegetables were mostly for the collective consumption of a family or village, so the soil
pH was the lowest, posing a certain risk of migration. Level 2 and 3 GV fields used more fertilizer as
they produced vegetables for sale, resulting in higher metal(loid) concentrations in the soils. However,
the average metal(loid) concentrations varied with the use of different organic fertilizers. For Level 4
GV fields, the planting area was large, and the planting time was short; the use of organic fertilizers
increased the concentrations of As and Cd, and reduced Pb accumulation in soils.

Table 8. Average metal(loid) concentrations of greenhouse vegetable fields with different planting areas.

Area Class pH As (mg/kg) Cd (mg/kg) Cr (mg/kg) Hg (mg/kg) Pb (mg/kg)

1 5.788 7.640 0.127 61.591 0.056 24.533
2 5.840 7.527 0.147 60.202 0.077 25.760
3 5.985 7.612 0.175 62.507 0.046 27.245
4 6.128 6.996 0.101 61.787 0.055 27.651

Area classes are as mentioned in the text.
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No regularity was found in OV fields, which was possibly related to the size of the investigated
area and to differences in the fertilization habits. Level 1 OV fields were characterized by small planting
areas and had the highest pH. Their Cd and Hg concentrations were also the highest, probably because
the small vegetable fields, located on the roadsides for the convenience of vegetable growers, were
susceptible to automobile exhaust and atmospheric conditions. Level 5 OV fields were large, and had
the lowest pH, as well as the lowest Pb and Hg concentrations. Level 3 OV fields had the highest As
concentrations and level 4 OV fields had the highest Pb and Cr concentrations (Table 9).

Table 9. Average metal(loid) concentrations of open vegetable fields with different planting areas.

Area Class pH As (mg/kg) Cd (mg/kg) Cr (mg/kg) Hg (mg/kg) Pb (mg/kg)

1 5.813 7.922 0.129 62.542 0.211 25.427
2 5.747 7.981 0.125 62.752 0.108 25.247
3 5.720 8.094 0.121 62.478 0.129 25.405
4 5.774 8.086 0.113 63.463 0.193 25.850
5 5.713 8.070 0.125 62.777 0.047 24.652

Area classes are as mentioned in the text.

Open vegetable fields had lower soil pH and higher soil As, Cr, and Hg concentrations than GV
fields in the same area. Only OV fields of levels 2, 3, and 4 had lower Cd and Pb than GV fields in
the same area. Heavy metal pollution in the OV fields was more severe than that in the GV fields.
Moreover, OV fields were subject to the external environment, resulting in the loss of metal(loid)s
(Figure 9).
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3.3. Spatial Autocorrelation Analysis of OV Fields and Spatial Pattern Analysis of Metal(loid)s

3.3.1. Spatial Autocorrelation Comparison between OV and GV

The global Moran’s I describes the overall distribution of a phenomenon and determines whether
this phenomenon has a spatial clustering characteristic. Generally, at the 5% significance level, if
Z(I) is greater than 1.96, it indicates that the distribution of the phenomenon has significant spatial
autocorrelation. If Z(I) is less than −1.96, it indicates that the distribution of the phenomenon within
the study area has negative spatial autocorrelation. The global Moran’s I values found here revealed
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that the five metal(loid)s and pH had significant spatial autocorrelations (all p < 0.01). The global
Moran’s I values were ranked in the following sequence: Pb > As > pH > Cr > Hg > Cd (Table 10).

Table 10. Global Moran’s I values for the metal(loid)s and pH.

Soil Attribute Global Moran’s I Z Value p-Value

As 0.765 70.348 0.001
Cd 0.563 53.043 0.001
Cr 0.737 69.170 0.001
Hg 0.623 58.404 0.001
Pb 0.794 73.554 0.001
pH 0.748 69.764 0.001

The bivariate local Moran’s I is a measure of the spatial autocorrelation between two variables.
Our results showed that the five metal(loid)s and pH had significant spatial autocorrelations (all
p < 0.01), as presented in Tables 11 and 12. When the absolute bivariate local Moran’s I of each soil
attribute were compared, OV fields showed greater correlations than GV fields, possibly because the
latter did not witness an apparent regularity in time and space. Open vegetable fields had a positive
spatial correlation with soil Hg and Cd concentrations, and a negative spatial correlation with soil Pb,
As, and Cr concentrations, possibly because the reduction in pH accelerated the loss of the latter three
metal(loid)s after activation.

Table 11. Bivariate local Moran’s I values between the different metal(loid)s and open vegetable fields.

Soil Attribute Bivariate Local Moran’s I Z Value p Value

As −0.261 −31.294 0.001
Cd 0.258 31.180 0.001
Cr −0.244 −30.163 0.001
Hg 0.277 33.734 0.001
Pb −0.236 −29.737 0.001
pH −0.261 −31.572 0.001

Table 12. Bivariate local Moran’s I values between the different metal(loid)s and greenhouse
vegetable fields.

Soil Attribute Bivariate Local Moran’s I Z Value p Value

As −0.075 −9.008 0.001
Cd −0.065 −8.543 0.001
Cr 0.000 −0.054 0.001
Hg −0.075 −9.780 0.001
Pb 0.038 5.168 0.001
pH 0.086 10.998 0.001

3.3.2. The Sensitivity Analysis of the Modifiable Areal Unit Problem (MAUP)

The modifiable area unit problem (MAUP), a term introduced by Openshaw and Taylor’s classic
paper [33], has long been recognized as a potentially troublesome feature of aggregated data. The
deviation between the statistical results and the spatial analysis results caused by the change of the
aggregated spatial units is often described by scale effect and zoning effect. In order to clarify the MAUP
effect in this paper, three scales of geographical units were selected to analyze the modifiable areal
unit problem sensitivities. The results of bivariate local Moran’s I value coefficients were calculated,
as shown in Table 13, which was sensitive and depended on the specific geographic unit used in the
study. The spatial autocorrelation coefficients of different geographic units were different, but there
was a scale (1000 × 1000 m grid) that could explain the spatial sensitivity reasonably. The other two
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scales, the positive correlation between pH and OV was obviously inconsistent with the survey results,
and the spatial relationship between other metal(loid)s and OV was difficult to explain. Therefore, the
follow-up analysis only analyzed the medium-scale (1 × 1 km).

Table 13. Bivariate local Moran’s I values of the different metal(loid)s and greenhouse vegetable fields
from three scales.

Soil
Attribute

Bivariate Local Moran’s I Z Value
p Value500 × 500 m

Grid
1000 × 1000 m

Grid
2000 × 2000 m

Grid
500 × 500 m

Grid
1000 × 1000 m

Grid
2000 × 2000 m

Grid

As 0 −0.261 −0.099 0 −31.294 −6.212 0.001
Cd 0.678 0.258 0.146 150.848 31.18 9.258 0.001
Cr 0.471 −0.244 −0.083 115.391 −30.163 −5.299 0.001
Hg 0.207 0.277 −0.006 53.765 33.734 −0.396 0.001
Pb 0.645 −0.236 −0.034 137.329 −29.737 −2.193 0.001
pH 0.162 −0.261 0.026 42.987 −31.572 1.6324 0.001

Although the global Moran’s I described the overall distribution of metal(loid)s and their spatial
clustering, it did not specify in which regions the metal(loid)s were clustered. On the other hand, the
bivariate local Moran’s I distribution map produced (Figure 10) evidenced four types of local spatial
correlations of variables in each region and surrounding regions:

(1) Areas with high Moran’s I for both soil metal(loid)s and OV fields (high-high areas): OV fields
were highly clustered and witnessed severe accumulation of metal(loid)s, showing a certain
clustering scale effect.

(2) Areas with high Moran’s I for soil metal(loid)s and low Moran’s I for OV fields (high-low
area): OV fields were lowly clustered and witnessed severe accumulation of metal(loid)s. The
concentrations of metal(loid)s in soils were extremely high, possibly due to non-agricultural
production or other environmental factors such as soil parent material.

(3) Areas with low Moran’s I for soil metal(loid)s and high Moran’s I for OV fields (low-high area):
OV fields were highly clustered and witnessed no accumulation of metal(loid)s.

(4) Areas with low Moran’s I for both soil metal(loid)s and OV fields (low-low area): OV fields were
lowly clustered and witnessed a low accumulation of metal(loid)s.

(5) As shown in Figure 10, the results of spatial autocorrelation distribution of variables were quite
different due to different geographical units. The spatial autocorrelation of smaller geographical
units was much stronger than that of larger geographical units. Table 13 also shows that the
coefficient of bivariate local Moran’s I values decreased with the increase of larger spatial units.
The sensitivity analysis of the modifiable area unit problem illustrates the uncertainty caused by
the scale effect, and different scales may lead to some information loss or bias.

As the bivariate local Moran’s I values of the GV fields were low, this study only analyzed the
bivariate local Moran’s I distribution map of the OV fields (Figure 11). Their spatial distribution
characteristics showed that OV fields had different effects on the spatial distributions of the six soil
attributes. Concentrations of Pb and Cr and pH were highest in the soils of high–low areas, among
which the pH was the most significant. Open vegetable fields were lowly clustered, and their soil
pH was high, probably because vegetable planting in OV fields removed excessive base elements,
thereby leading to soil acidification. Concentrations of Pb and Cr showed a negative spatial correlation,
probably because the humus resulting from organic fertilizer decomposition caused soil acidification to
increase the activity of Pb and Cr in soils, thereby resulting in their loss via mobilization. Concentrations
of Hg and Cd were highest in the soils of low-low areas and showed no obvious negative spatial
correlations. Farmers in Feidong County used to apply organic fertilizers such as chicken manure and
cow dung to grow vegetables, generally 18,750 kg/hectares for common vegetables and tomatoes and
15,000 kg/hectares for lettuce, cabbage, Hangzhou pepper, and pepper. Such organic matter had a
certain reduction ability that enabled Hg and Cd in soil solutions to form sulfides and precipitate, so
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their migration was less important than that of Pb and Cr. The five metal(loid)s presented low values
in soils of high–high areas, i.e., the cumulative effects of OV fields and metal(loid)s were not obvious,
possibly because the bioconcentration of metal(loid)s in the soils was affected by many factors, such
as the application of fertilizers and pesticides, agricultural planting structure, sewage irrigation, soil
properties, different climatic conditions, and atmospheric deposition. Thus, OV fields alone cannot
explain all the spatial variability of metal(loid) bioconcentration.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 18 of 22 
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4. Conclusions

By combining GIS and Moran’s I spatial analysis to generate spatial autocorrelation distribution
maps, the spatial clustering (positive autocorrelation) and spatial anomaly (negative autocorrelation)
of vegetable fields and soil heavy metal concentrations were identified. It can be seen from GIS spatial
analysis that the spatial distributions of Cr, Pb, Cd, As, and Hg content and pH in the study area
showed a certain increasing or decreasing trend, and all showed spatial clustering to some extent. It
can be concluded that even though the background values of metal(loid)s in the soils of Feidong are
low, anthropogenic activities have contributed to an alarming increase of metal(loid) concentrations.
On this basis, spatial correlation analysis was performed to assess the effects of vegetable fields on
metal(loid) accumulation in soils, which is important for protecting soil quality and improving crop
quality. Long-term vegetable production in the study area involves the massive use of organic fertilizers,
which affects the spatial distribution of metal(loid)s in soils, resulting in the bioconcentration of Cd and
Hg. Long-term fertilization significantly reduced pH, thereby causing transformation and migration of
Cr, Pb, and As. The soil pH of the GV fields increased with the planting area, which was related to the
vegetable compensation policy in the study area. The planting history is short, but the accumulation
rate of Cd is faster, which has a certain migration risk. Open vegetable fields, with a long planting
history, had lower than average soil pH and Cd concentration than GV fields, and higher average soil
As, Cr, Hg, and Pb concentrations than GV fields. Metal(loid)s in soil samples caused potential hazards
through non-point source pollution transfer. Therefore, special attention should be paid to the type
and quantity of fertilizer in order to reduce the transformation and loss of metal(loid)s in soils.
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In the future, the three-dimensional spatial variability of metal(loid)s in soil will be focused on.
Through the study of metal(loid) migration and transformation in vertical and horizontal directions, we
can clarify the environmental impact of metal(loid)s in OV and GV to the groundwater and surrounding
ditches respectively.
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