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Abstract: Metal contamination, especially in river floodplain soils, can have detrimental effects on
human health. Much research has been conducted to describe the distribution patterns of metals and
the factors involved in these patterns. However, most studies focus on the distribution of individual
metals in soils, not on the co-occurrence of metals, and on a selection of metals associated with
anthropogenic sources known to have especially severe effects; this had led to a lack of knowledge
about many other metals with potentially harmful effects. Therefore, this study aimed to identify
the multi-metal distribution patterns of 38 metals in the Sacramento River floodplain and find their
controlling factors. We found 484 significant correlations between metal distributions. Less commonly
studied metals, such as gallium, lanthanum, scandium, and vanadium, had more than 25 correlations
each. In total, 13 individual metal patterns described the spatial distribution of 22 metals. Three multi-
metal patterns were extracted, explaining 86.9% of the spatial variation of the individual patterns. The
most important factors were the distance to specific streams due to emission and transport processes
in their watersheds, and local soil properties. We conclude that multi-metal distribution patterns
hold more information than individual metal patterns, contributing to the gathering of information
about less commonly sampled metals and allowing more specific source identification.

Keywords: soil metal concentrations; floodplain soils; heavy metals; metal transport; spatial patterns

1. Introduction

Floodplains are intermediary areas between a river and the surrounding landscape.
They are formed and dominated by fluvial processes and have been the preferred setting for
human settlement and development since ancient times. Floodplains can also function as
sinks for materials transported into and through them by different processes. In particular,
soils in the floodplains can store matter, such as carbon, salts, or metals [1,2]. Since
many floodplains are used for food production [3,4], metal contamination of soils can be
detrimental to human health [5,6]. Studies on metals such as cadmium (Cd), chromium (Cr),
nickel (Ni), lead (Pb) and zinc (Zn) have shown that they affect soil biota and can accumulate
in plants growing in the soils, potentially entering the human food chain [7–9]. Once metals
enter the soil, they may migrate along the soil column and into the groundwater, thus
affecting the environment [10,11]. Furthermore, soils in floodplains that have functioned
as sinks for long periods can become sources of metals when conditions (such as pH) or
processes (such as erosion and deposition) change [12–14]. Under these changed conditions,
significant amounts of metals may be released back into the streams and cause adverse
effects to aquatic and connected terrestrial ecosystems [15]. Therefore, understanding the
distribution of metals in floodplain soils and their controlling factors is essential.
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Metals in floodplain soils are not distributed homogeneously, but rather show spatial
patterns in their distribution [16,17]. These spatial patterns result from transport, deposition,
and accumulation processes that depend on environmental factors [18,19]. Factors that
affect metal concentrations in soils are geology, land cover, hydrology, terrain, and emission
sources [20–22]. As these factors are not homogeneously distributed along a floodplain but
vary with location, so do their effects on metal accumulation in floodplain soils [23–26].
Knowledge of these patterns can be used to identify areas for specific use cases, remediation
measures, or scientific studies on the effects of metal concentrations.

Much research has been undertaken to find and describe the patterns of metal accu-
mulation and the factors that cause them. For example, bank morphology affected heavy
metal accumulation in soils along rivers [27]. The spatial distribution patterns of metals in
floodplain soils were found to depend on flooding and sedimentation frequency [28]. This
accumulation in the floodplain soils was controlled by the emission from the parent mate-
rial of soil formation [29,30] and affected by human activity and land cover patterns [31,32].
While these studies researched metal patterns and the processes that lead to them, they
focused on the distribution patterns of individual metals in soils, not or only seldom on the
co-occurrence of different metals in soils, i.e., multi-metal distribution patterns. Depending
on the processes that lead to these metals’ release, transport, and accumulation, the spatial
distribution of several metals may show similar patterns. Finding these similarities between
different metals and linking them with the underlying processes may allow for several
improvements, such as inferring information about less commonly sampled metals from
more commonly sampled metals or from existing datasets, or increasing the efficiency
of combined soil quality improvement measures. Additionally, identifying the specific
combination of metals in certain locations may improve the association of the metals with
their most probable sources, as different combinations of metals may point to different
emission and transport pathways.

Furthermore, most of the existing studies focus on a relatively small selection of
metals; these are commonly a subset of Cd, copper (Cu), iron (Fe), Pb, magnesium (Mg),
manganese (Mn), Ni, or Zn. This is due to the abundance of these metals, the role of
anthropogenic factors in their release into the environment, and their known potential
toxicity to ecosystems and humans. Nevertheless, many more metals come from different
sources that can accumulate in soils, have toxic effects, or are suspected of having toxic
effects, such as barium (Ba), gallium (Ga), lanthanum (La), scandium (Sc) or vanadium
(V) [33–35]. These metals often receive less attention, or have only recently become a
research topic as climate and industrial processes change and environmental awareness
develops [36–38].

Therefore, this study focuses on the multi-metal distribution patterns of a large num-
ber of different metals in the soils of the Sacramento River floodplain in California, USA, to
identify individual metal patterns to represent groups of metals, multi-metal distribution
patterns, and the controlling features that explain the spatial variability of these patterns.
This study site is especially suitable for this research since it has a very high density of
existing data sets from soil samples and a wide range of measured soil metal concentra-
tions [39,40]. This richness of data makes this floodplain well suited for a fundamental
investigation of multi-metal distribution patterns. In the first step, groupings of individual
metal distribution patterns were identified. Then, a principal component analysis was
conducted to reduce the complexity of the metal concentration data and identify multi-
metal distribution patterns. Finally, the environmental factors best describing the spatial
variance of these patterns were identified using variable importance in spatial Random
Forest models. In selecting the factors, the focus was on those assumed to be stable over
long periods, such as soil, vegetation, and terrain.

2. Materials and Methods

The research area is located in the northern part of the Central Valley in California,
USA. This part of the Central Valley, also called the Sacramento Valley, is dominated by the
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Sacramento River (Figure 1). In addition, several smaller streams that have their catchments
in the surrounding mountain ranges discharge into the Sacramento River. The largest part
of the study area in the Sacramento Valley is covered by agricultural land, with several
larger cities in the floodplain, such as Sacramento, east of the Sacramento River.

Figure 1. Overview of the research area in the Sacramento River floodplain in California, USA.
Indicated are the soil sample sites, traffic routes, and rivers.

Multiple datasets were combined to form the basis for the analysis. First, the soil chem-
ical concentration data were obtained from the National Geochemical Database (NGDB)
soil database [41]. All samples were taken from the topsoil (0–25 cm depth) at various
locations. From the available samples, only those located in the floodplain defined by the
GFPLAIN250m dataset [42] were selected for this study. The mean distance between the
resulting 411 sample sites was 2904.4 m. The geochemical data described the concentration
of 38 different metals in the soil samples.

For the location of each soil sample, environmental features data was collected.
The resulting variables were grouped into five groups. Group terrain: elevation, slope,
and Topographic Wetness Index (TWI) were extracted or calculated from SRTM 30 m
data [43–46]. TWI is an index that expresses the terrain-controlled wetness of any given
grid cell in a digital elevation model. Group input streams: the SRTM dataset was also used
to delineate the five streams that enter the floodplain from the neighbouring mountainous
areas. For brevity, they were called west-1 (Cache Creek), west-2 (Putah Creek), east-1
(American River), east-2 (Cosumnes River), and east-3 (Mokelumne River), as indicated
in Figure 1. Raster grids containing the proximity to each of the five streams were created
based on inverse Euclidean distance. The Euclidean distance grids and density grids of the
Sacramento River (Group Sacramento River) were created based on vector data [47]. Group
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soil: additional soil data, such as sand, silt, and clay percentages of the fine soil fraction,
were obtained from a database based on the STATSGO2 soil database, pre-processed for
use in the Soil And Water Assessment Tool (SWAT) model [48]. This database was chosen
because it contains derived parameters expected to affect soil metal concentrations. The
selected features were soil bulk density (g/cm3), the available water capacity (AWC), mea-
suring the soil volume that can be filled with water (mm/mm), hydraulic conductivity
K (mm/h), the carbon, rock, sand, silt and clay content (%), the soil albedo (%), and the
Universal Soil Loss Equation (USLE) factor K, measuring erodibility. Group vegetation:
the vegetation indices Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) were calculated based on Landsat-5 imagery captured in September
1986 (Landsat-5 image courtesy of the U.S. Geological Survey). NDVI and EVI are based on
the near-infrared reflectance of the Earth’s surface and are indicators of land cover type
and vegetation health status [49]. Table 1 shows a summary statistic of the environmental
features used in this study. Maps of the factors for the study area can be found in the
Supplementary Figures S1–S3.

Table 1. The 22 environmental features used in the respective RF models.

Category Variable (Unit) Min Max Mean

Sacramento River
River density 0 0.21 0.04

River distance (m) 0 45,137.02 9465.59

Soil

Bulk density (g/cm3) 0.98 1.72 1.32
AWC (mm/mm) 0.09 0.35 0.18

K (mm/h) 0.13 290 13.54
Carbon cont. (%) 0 9.88 2.09

Clay cont. (%) 10 65 34.13
Silt cont. (%) 18.02 67.71 37.71

Sand cont. (%) 9.42 67.46 28.28
Rock cont. (%) 0 22.72 0.72

Soil albedo 0.01 0.23 0.03
USLE K 0.1 0.49 0.29

Input streams
(proximity)

Stream east 1 (m) 96,021 180,608 147,041.9
Stream east 2 (m) 98,659.79 205,235 162,519.3
Stream east 3 (m) 89,314.97 215,096 164,437.1
Stream west 1 (m) 77,141.8 192,200 143,473.7
Stream west 2 (m) 134,473.6 202,403 173,751.1

Terrain
Elevation (m) −9 44 7.12

Slope (%) 0 16.57 2.47
TWI 9.99 16.64 11.81

Vegetation EVI −0.09 0.8 0.2
NDVI −0.31 0.85 0.33

AWC = available water capacity, K = hydraulic conductivity, USLE K = Universal Soil Loss Equation erosion factor
K, TWI = Terrain Wetness index.

The input data pre-processing, raster arithmetic, and sampling for each soil sample
location were performed in ArcGIS (version 10.4, Esri, Redlands, CA, USA), QGIS (version
3.16.4, QGIS Association, Gruet, Switzerland), and SAGA GIS (version 2.3.2, SAGA User
Group Association, Hamburg, Germany). The data analysis was performed in the R
statistical programming language (version 4.0.5, R Core Team, Vienna, Austria) in the
RStudio development environment (version 2022.02.3+492, RStudio, Boston, MA, USA).

One of the core methods of the analysis was the machine learning algorithm Random
Forest (RF), for which the spatialRF package in R was used [50]. This package is based on
the ranger RF package [51]. RF is a popular algorithm since it can find linear and non-linear
relationships and patterns in large datasets that contain many features. RF is a large collection
of decision trees, individually trained on a random subset of the full training dataset, and tested
against the remaining data. This process is called out-of-bag training (OOB) and makes the
algorithm robust against overfitting [52]. RF has been used in numerous scientific studies on soil
research [53,54] and metal concentrations specifically [55–58]. The target variables and features
were tested for spatial autocorrelation in the present study. Autocorrelation can lead to errors
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in the prediction, and spatialRF incorporates spatial predictors into the model to overcome
these issues.

Figure 2 gives an overview of the workflow of this study. There were two phases of
complexity reduction in the methodology. The first step was to create a model with each of
the 38 metal concentrations as the dependent variable and all other metal concentrations as
independent features to identify relationships between the distributions of metals.

Figure 2. Overview of the research process, detailing the different steps and input data.

All models that achieved an OOB R2 of >0.7 were selected for further study. The most
important variable, i.e., the metal with the closest relationship to the target metal of the
respective model, was recorded. This step resulted in 13 individual metal distribution
patterns (IMDP). The 13 IMDP were then treated with a Principal Component Analysis
(PCA) to reduce complexity further and describe multi-metal distribution patterns (MMDP).
The variability of the MMDP was then explained with another set of RF models. In these
models, 22 environmental features were included as independent variables. The importance
of the variables in these models was used to rank the factors affecting the MMDP.

3. Results

A correlation between all 38 metals was performed to understand the relationships
between the different metals. As shown in Figure 3, of the 722 possible unique correlations,
484 (67%) were significant (p < 0.05), consisting of 364 positive correlations and 120 negative
correlations. Tungsten (W), Ga, and thallium (Tl) had more than 28 positive correlations
each, while 21 metals had 20 or more positive correlations (Figure 3). The least positive
correlations were found for sodium (Na) and tin (Sn), which had eight positive correlations,
and Cd, which only had seven. Na had the most significant negative correlations, totalling
20. Ni, strontium (Sr), Cr, calcium (Ca), Co, Mg, niobium (Nb), potassium (K), and lithium
(Li) had more than ten negative correlations. Three metals, i.e., Ba, Cd, and Sn, had no
significant negative correlations. Additionally, these three metals also had relatively few
positive correlations. The results of the correlation study showed that there are moderate
to strong relationships between the individual metals in the Sacramento River floodplain.
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Figure 3. Correlation matrix of the 38 metals studied in the soil samples of the research area. The
size and colour of the circles indicate the direction and strength of the correlation (larger indicating
stronger correlations, red indicating negative, and green indicating positive correlations). Non-
significant correlations are marked with an ×.

Due to a large number of significant correlations, we next aimed to find a more
condensed representation of the relationships between the metals and describe more
generalized distribution patterns. In this first step of complexity reduction, the RF model
analysis for each of the 38 metals resulted in 13 IMDPs, each named after the individual
metal best describing the distribution pattern (Table 2). Model results were only considered
when the OOB R2 reached 0.7, and 22 models remained. The IMDP “Ni”, defined by the
distribution pattern of nickel, best described the distribution of four metals (Ni, Co, Cr,
and Mg). V was IMDP for three other metals, while Ga, La, Li, rubidium (Rb), and Sc
were IMDP for two metals each. Aluminium (Al), Ca, cerium (Ce), caesium (Cs), K, and
Sr were each IMDP for a single other metal. The correlation values between the IMDP
and the metals were all medium to very strong (correlation coefficients 0.61 to 0.98) and
positive. The only negative IMDP relationship with metal was between the IMDP V and
the metal Na.

Table 2. The 22 metals for which the RF model performance exceeded an R2 of 0.7.

IMDP Al Ca Ce Cs Ga K La Li
Described Metal Ga Sr La Li Al Be Rb Ce Nb Cs Ni

RF R2 0.89 0.83 0.92 0.93 0.86 0.76 0.81 0.91 0.84 0.92 0.90
Correlation 0.86 0.89 0.98 0.90 0.86 0.70 0.73 0.98 0.84 0.90 0.78

IMDP Ni Rb Sc Sr V
Described Metal Co Cr Mg K Tl V Y Ca Fe Na Sc

RF R2 0.88 0.77 0.83 0.85 0.72 0.90 0.80 0.77 0.88 0.87 0.94
Correlation 0.69 0.73 0.74 0.73 0.73 0.92 0.61 0.89 0.86 −0.70 0.92
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The IMDP showed clear spatial patterns, as shown in the kriging maps in Figure 4.
The IMDP Ca, Ce, K, La, and Sr showed similar patterns, with the highest concentrations
in the southeast of the floodplain. Al, Ga, and Rb had similarly high concentrations in
the south and central region and differing higher concentrations in the north. Cs, Li, Ni,
Sc, and V had very low concentrations in the southeast. Sc and V had an almost identical
distribution along the north–south axis of the research area. Cs, Li, and Ni had higher
concentrations in the areas along the floodplain’s western side.

Figure 4. The 13 individual metal distribution patterns are named after the respective metal concen-
trations in the topsoil of the Sacramento River floodplain.

Next, using PCA, multi-metal distribution patterns were created to extract compre-
hensive spatial patterns that describe most of the metal distributions in the Sacramento
River floodplain. After performing the PCA, three principal components (PC) with an
eigenvalue (the square of the standard deviation) over 1.0 were considered for further study
(Table 3). PC1 described 41% of the variation in the input data, PC2 described 31%, and
PC3 described 13%. Together, all three PC reflected 86.9% of the variation in the data. The
relationship between the respective IMDP and the three PC is shown in the Supplementary
Figures S4–S16.

Table 3. Results of the principal component analysis with information about the three utilized
principal components.

PC1 PC2 PC3

Standard deviation 2.3225 2.0286 1.3387
Proportion of variance 0.4149 0.3165 0.1379
Cumulative proportion 0.4149 0.7315 0.8693

The respective spatial distribution patterns of the rotated values of the PC, i.e., the
multi-metal distribution patterns (MMDP), are shown in Figure 5. The higher values of
MMDP1 were concentrated in the western regions of the floodplain, while the eastern side
showed very low values. MMDP2 showed a northern region of high values and a southern
region of higher values focused on the floodplain’s central areas. MMDP3 was similar to
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the distribution of MMDP1, but the band of low values in the east was broader, the western
region with high values did not stretch south as far, and there was a patch of high values in
the southeast of the floodplain.

Figure 5. The three resulting multi-metal distribution patterns describe the generalized metal accu-
mulation in the Sacramento River floodplain.

Another correlation was performed to identify the relationship between the three
MMPD and the respective metal distributions in the soil. Figure 6 shows the correlation
coefficients between the three MMDP and the 13 IMDP. MMPD1 showed strong negative
correlations with the IMDP Ca, Ce, La, and Sr, and relatively strong positive correlations
with Ni, Li, and Cs. MMDP2 had positive correlations with the metal concentrations,
except for a very weak negative correlation with Sr. The correlations with Al and Ga were
very strong, followed by Cs, Rb, Sc, and V. The correlations between MMDP3 and the
IMDP were generally weaker than those of MMDP1 and MMDP2; the strongest positive
correlation was with K, and the strongest negative correlations were with Sc and V.

Figure 6. Correlation of the three MMDP with the 13 IMDP. Non-significant correlations are displayed
in white.

After defining the multi-metal spatial patterns of soil metal concentrations in the
Sacramento River floodplain, the goal was to identify the environmental factors of these
patterns. To achieve this, three RF models were used. Where necessary, spatial predictors
were included to overcome the effects of spatial autocorrelation (Supplementary Figure
S17). The R2 values of the RF model for MMDP1, MMDP2, and MMDP3 were 0.87, 0.36,
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and 0.72, respectively. Figure 7 shows the respective six most important variables of the
three RF models. Changes in these variables had the highest effect on the prediction power
of the model. The most important feature in the MMDP1 RF model was the proximity
to stream west-1, followed by the proximity to stream east-3. The next most important
variables all belonged to the Soil category, especially soil hydraulic conductivity and soil
rock and sand percentages. Three categories, Input streams, Sacramento River, and Soil,
were present in the most important features in the MMDP2 model. The most important
feature was the proximity to stream west-1, followed by river distance (the distance to the
Sacramento River). Soil hydraulic conductivity was the third most important feature. The
most important feature in the MMDP3 model was river distance, followed by river density
and proximity to streams west-1, west-2, and east-3.

Figure 7. The six most important variables for each of the three MMDP RF models. The colours of
the bars indicate the group to which each variable belongs.

4. Discussion

We found many significant correlations between the initial set of 38 metals, most of
which were positive. No significant correlation between Cu and Pb was found in our study.
In contrast, a significant positive correlation between Cu and Pb was found in four other
studies [27,29,32,59], and one study found a significant negative correlation [60]. Deposit
and accumulation processes are site-specific, and Cu and Pb may primarily stem from
different sources in the research area [61,62]. We found a significant positive correlation
between Cu and Zn, which agrees with the six studies’ results [27,29,32,59,60,63]. Similarly,
our study found a significant positive correlation between Pb and Zn, as did four other
studies [27,29,32,59]. Na was found to have a very large number of significant negative
correlations (with 20 metals), and most of the higher Na values are concentrated in the
southeast of the floodplain where most other metals have low values. It is possible that
there is a natural or anthropogenic Na source in that region of the study area [64,65].
Similarly, Ba, Cd, and Sn were generally found to have only a few significant correlations
in our study; this is probably caused by their relatively homogeneous distribution over
the study area, without a clear concentration pattern. The high number of significant
correlations highlighted the fact that close relationships exist between many metals, which
potentially hold valuable information about their distributions. Additionally, the high
number of significant correlations for less commonly studied metals such as Ga (31), La (25),
Sc (27), and V (28) showed that the research of these metals can be supported by studying
metal relationships.

The underlying reasons for correlations and relationships in any direction are simi-
larities in the source and the processes of transport and accumulation of the metals. The
results show the need for a reduction in complexity. In our study, RF was used as a first
step in identifying 13 individual metal distribution patterns named after the respective
metal describing them. These IMDP were the most important variables for describing the
distribution of 1 or more of the remaining 22 metals. Here, the IMDP may not necessarily
be that of the metal with the strongest correlation in earlier results, as seen in Figure 3, since
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the relationship between the IMDP and the respective metal may be non-linear. Model
variable importance can be a powerful tool in finding relationships between variables,
especially if these relationships may be non-linear [66,67]. The IMDP Ni and V described
the distribution of three metals each. Ga, La, Li, Rb, and Sc described that of two metals
each. This means that the IMDP are representative of several metals’ distribution. There
are several sources of Ni in the environment. Among the natural sources is the release
from the weathering of rocks and minerals and volcanic activities. Anthropogenic sources
include fuel combustion, mining and smelting, industrial and domestic wastewater, and
effluent from landfills [40,68–70]. The origin of V is similar. It can be released from natural
sources, such as the weathering of rocks, but also by human activities, such as from metal-
related industries, fuel combustion, and due to its use as a catalyst in different production
techniques [71,72]. Generally, the sources of Ga, La, Li, Rb, and Sc sources are also similar.
They are either released from weathering minerals and rocks, as by-products in industrial
processes, or from waste products [73–76]. The results of our study reflect the same close
relationship between these metals. The allocation to each of the sources is site-specific, and
similar patterns are formed for different metals.

To reduce the complexity of the IMDP and to study comprehensive underlying pat-
terns, the 13 IMDP were combined using PCA, resulting in three multi-metal distribution
patterns. PCA was used in other studies and was an adequate tool to describe the un-
derlying complexity of soil metal concentrations and their factors [77,78]. However, the
explicit interpretation of PCA rotated values as spatial patterns indicative of soil metal
concentrations, as achieved in our study, appears to be a novel approach. Three MMDPs
were found to describe a large proportion of the variation in the IMDP. Two models (those
for MMDP1 and MMDP3) performed reasonably well, with OOB R2 values of 0.87 and 0.72,
respectively, while the model for MMDP2 had an R2 of 0.36. The high portion of the distri-
bution variance explained by the three MMDP shows that these multi-metal distribution
patterns may hold information that exceeds that of individual distribution patterns.

One of the study’s main goals was to identify the environmental factors that determine
the distribution of metals in floodplain soils. The most important variables of the respective
models showed that the spatial patterns of MMDP1, MMDP2, and MMDP3 depend on
different environmental factors. In the MMDP1 model, the proximity to the streams west-1
and east-3 was the most important, i.e., changes in these variables affected the model result
the most strongly. The rock and soil chemistry in the western mountain ranges is affected
by volcanic activity, and the metal-rich matter is transported into the floodplain [39,40]. The
results of our study support the idea that this transportation of matter from the mountains
has this effect on the floodplain soils. Other important variables came from the group of soil
parameters, especially soil hydraulic conductivity, and rock, and sand content. These soil
features have been found to affect the metal concentrations in soils in other studies [79,80].
The effects of the different groups in the MMDP2 model were not as distinctive. Most
of the variables were of similar importance. In the MMDP3 model, the most important
variables were the distance to the Sacramento River and the density of the main river
network. As another route by which metals are input and transported into the floodplain,
the Sacramento River may play a major role in metal accumulation [81,82]. The proximity
to the west and east streams played a role, while soil properties were the least important
for the variance of MMDP3. Vegetation, in the form of NDVI and EVI, did not play a major
role in the RF models, even though it has been found to affect metal concentrations in other
studies [83,84]. This is probably caused by the relative homogeneity of the vegetation in the
research area. Most of the Sacramento Valley is covered by agriculture. The results showed
that each metal had a relationship with each of the MMDPs, therefore, a relationship with
spatially varying factors.

The importance of the MMDP RF model features, in combination with the correlation
results in Figure 6, revealed further interesting connections. MMDP1 was negatively
correlated with 8 of the 13 IMDP, i.e., Al, Ca, Ce, Ga, K, La, Rb, and Sr. This result highlights
that the distribution of these metals is negatively affected by the specific environmental
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features that affect the distribution of MMDP1. These environmental features are attributes
belonging to the groups Input streams and Soil. The five other IMDP, Cs, Li, Ni, Sc, and V,
were positively correlated with the distribution of MMDP1. This means that the relationship
with the same factors of Input streams and Soil affecting MMDP1 is inverted for these
metals, when compared to the metals with a negative correlation. MMDP2 was positively
correlated to almost all IMDP, except Sr, which had a weak negative correlation. MMDP3
was positively correlated with five IMDPs and negatively correlated with four IMDPs.
Of the aforementioned, less commonly studied metals, Ga, Sc, and V were significantly
negatively correlated with MMDP3. This shows the importance of the distance to the
Sacramento River and to the input streams for these metals. The relationship hints at higher
metal concentrations closer to the Sacramento River and further away from the eastern
input streams. There was an overlap between MMDP3 and MMDP1, i.e., some IMDP (Ca,
Cs, Ga, Li and Ni) showed the same correlation for MMDP1 and MMDP3. Other IMDPs
(K, Rb, Sc and V) had opposite relationships with MMDP1 and MMDP3. The factors from
Input streams were important for explaining the variance in both patterns, while Soils was
only important for MMDP1. This shows that the metals are affected by distinctive features
and potentially by interactions between features. The effect of specific features is not the
same over the whole study area but also has a spatial characteristic, as has been shown
elsewhere [85]. This spatial variance in the effects of the controlling factors was visible in
other studies, as well [67,86].

While our study’s chosen methodology and datasets have been demonstrated to be
suitable, the application has certain potential issues. The predictive power of the MMDP2
RF model was not very high, which means that another feature may play a role in metal
distribution that has not been included in the study. Among other features explaining the
distribution of MMDP2 may be long-term stable factors belonging to vegetation, terrain, or
soil properties, but also factors that change more rapidly, such as emissions sources. Future
work identifying descriptive parameters for PC2 may be the basis for further research.
Furthermore, selecting the variables is important in studies involving Random Forest and
other methodologies. A certain knowledge of the local conditions and especially of the
potential effects of environmental features is necessary. Finally, although we performed
this study for the Sacramento River floodplain, the focus on stable, physical environmental
factors may improve the transferability of the results to other areas with a similar setup.

5. Conclusions

This study found clear spatial patterns in the distribution of 38 metals in the topsoil of
the Sacramento River floodplain. We found 484 significant correlations between the metal
patterns, and a high number of significant correlations for less commonly studied metals,
such as Ga, La, Sc and V, were observed. We found 13 individual patterns which described
the distribution of 22 metals. In addition, three multi-metal distribution patterns described
most of the variability in these thirteen patterns. The spatial variance of these patterns
was explained by the distance to the Sacramento River, different input streams, and soil
properties. Multi-metal distribution patterns hold information exceeding that contained in
individual metal patterns. This information can contribute to inferring information about
less commonly sampled metals. For example, depending on local conditions, existing
Ni and K screenings and mapping data may be used to identify potential sampling sites
for Ga or Rb. In addition, the relationship between different metals may allow for more
specific source identification based on the presence and absence of different metals in the
samples. Furthermore, these results can be used to identify areas for specific use cases or
the exclusion of use cases, such as food production, remediation measures, or scientific
studies on the effects of metal concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12178462/s1, Figure S1: Maps of the environmental features
in the study area—Land cover, elevation, slope, terrain wetness index, NDVI and EVI; Figure S2: Maps
of the environmental features in the study area—River distance, river density, proximity to streams
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west-1, west-2, east-1, east-2, east-3; Figure S3: Maps of the environmental features in the study
area—Sand, silt, clay, rock, bulk density, available water capacity, hydraulic conductivity, carbon
content, USLE K, soil albedo; Figure S4: The normalized Al values in relation to the three principal
components; Figure S5: The normalized Ca values in relation to the three principal components;
Figure S6: The normalized Ce values in relation to the three principal components; Figure S7: The
normalized Cs values in relation to the three principal components; Figure S8: The normalized
Ga values in relation to the three principal components; Figure S9: The normalized K values in
relation to the three principal components; Figure S10: The normalized La values in relation to the
three principal components; Figure S11: The normalized Li values in relation to the three principal
components; Figure S12: The normalized Ni values in relation to the three principal components;
Figure S13: The normalized Rb values in relation to the three principal components; Figure S14: The
normalized Sc values in relation to the three principal components; Figure S15: The normalized Sr
values in relation to the three principal components; Figure S16: The normalized V values in relation
to the three principal components; Figure S17: Spatial autoregression in the random forest models.
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provenance: The Ohře River, Czech Republic. Catena 2016, 144, 109–129. [CrossRef]
13. Beier, T.; Opp, C.; Hahn, J.; Zitzer, N. Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs

of the Ore Mountains, Saxony, Germany. Appl. Sci. 2022, 12, 6354. [CrossRef]

http://doi.org/10.1002/etc.4830
http://doi.org/10.1007/s11368-018-02239-6
http://doi.org/10.5194/nhess-13-2493-2013
http://doi.org/10.1080/09640568.2019.1694872
http://doi.org/10.3390/toxics8030075
http://doi.org/10.26832/aesa-2019-cae-0157-06
http://doi.org/10.3390/resources10050046
http://doi.org/10.1007/s00244-020-00803-1
http://doi.org/10.3390/min10090814
http://doi.org/10.1016/j.catena.2016.05.004
http://doi.org/10.3390/app12136354


Appl. Sci. 2022, 12, 8462 13 of 15

14. Schwarz, A.; Wilcke, W.; Zech, W.; Styk, J. Heavy Metal Release from Soils in Batch pHstat Experiments. Soil Sci. Soc. Am. J. 1999,
63, 290–296. [CrossRef]

15. Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from
urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [CrossRef]

16. Tota, O.; Huqi, B.; Skuraj, E.; Sallaku, F.; Moisiu, A. An investigation of the spatial variability of heavy metal concentrations in
floodplain sediments around the metallurgical combine of Elbasani, Albania. Res. J. Agric. Sci. 2010, 42, 340–346.

17. Zimmer, D.; Kiersch, K.; Baum, C.; Meissner, R.; Müller, R.; Jandl, G.; Leinweber, P. Scale-Dependent Variability of As and Heavy
Metals in a River Elbe Floodplain. Clean-Soil Air Water 2011, 39, 328–337. [CrossRef]

18. Adimalla, N.; Qian, H.; Wang, H. Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana,
India: An approach of spatial distribution and multivariate statistical analysis. Environ. Monit. Assess. 2019, 191, 246. [CrossRef]

19. Jia, Z.; Zhou, S.; Su, Q.; Yi, H.; Wang, J. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil
Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network. Int. J. Environ. Res. Public Health 2017, 15, 34.
[CrossRef]

20. Lotz, T.; Opp, C. Ranking of Basin-Scale Factors Affecting Metal Concentrations in River Sediment. Appl. Sci. 2022, 12, 2805.
[CrossRef]

21. Karimi, A.; Haghnia, G.H.; Ayoubi, S.; Safari, T. Impacts of geology and land use on magnetic susceptibility and selected heavy
metals in surface soils of Mashhad plain, northeastern Iran. J. Appl. Geophys. 2017, 138, 127–134. [CrossRef]

22. Khan, S.; Rehman, S.; Zeb Khan, A.; Amjad Khan, M.; Tahir Shah, M. Soil and vegetables enrichment with heavy metals from
geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf. 2010, 73, 1820–1827. [CrossRef]

23. Palmer, S.; Cox, S.F.; McKinley, J.M.; Ofterdinger, U. Soil-geochemical factors controlling the distribution and oral bioaccessibility
of nickel, vanadium and chromium in soil. Appl. Geochem. 2014, 51, 255–267. [CrossRef]

24. Shu, X.; Li, Y.; Li, F.; Feng, J.-Y.; Shen, J.; Shi, Z. Impacts of Land Use and Landscape Patterns on Heavy Metal Accumulation in
Soil. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 2471–2482. [CrossRef] [PubMed]

25. Wang, Z.; Xiao, J.; Wang, L.; Liang, T.; Guo, Q.; Guan, Y.; Rinklebe, J. Elucidating the differentiation of soil heavy metals
under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. 2020, 260, 114065.
[CrossRef] [PubMed]

26. Xue, S.; Jian, H.; Yang, F.; Liu, Q.; Yao, Q. Impact of water-sediment regulation on the concentration and transport of dissolved
heavy metals in the middle and lower reaches of the Yellow River. Sci. Total Environ. 2022, 806, 150535. [CrossRef] [PubMed]

27. Szabó, Z.; Buró, B.; Szabó, J.; Tóth, C.A.; Baranyai, E.; Herman, P.; Prokisch, J.; Tomor, T.; Szabó, S. Geomorphology as a Driver of
Heavy Metal Accumulation Patterns in a Floodplain. Water 2020, 12, 563. [CrossRef]

28. Middelkoop, H. Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Neth. J. Geosci.-Geol. En
Mijnb. 2016, 79, 411–427. [CrossRef]

29. Yu, S.; Chen, Z.; Zhao, K.; Ye, Z.; Zhang, L.; Dong, J.; Shao, Y.; Zhang, C.; Fu, W. Spatial Patterns of Potentially Hazardous Metals
in Soils of Lin’an City, Southeastern China. Int. J. Environ. Res. Public Health 2019, 16, 246. [CrossRef]

30. Hahn, J.; Bui, T.-K.L.; Kessler, M.; Weber, C.J.; Beier, T.H.; Mildenberger, A.; Traub, M.; Opp, C. Catchment Soil Properties Affect
Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions. Appl. Sci. 2022, 12, 2277. [CrossRef]

31. Marrugo-Negrete, J.; Pinedo-Hernández, J.; Combatt, E.M.; Bravo, A.G.; Díez, S. Flood-induced metal contamination in the
topsoil of floodplain agricultural soils: A case-study in Colombia. Land Degrad. Dev. 2019, 30, 2139–2149. [CrossRef]

32. Kobierski, M. Evaluation of the Content of Heavy Metals in Fluvisols of Floodplain Area Depending on the Type of Land Use. J.
Ecol. Eng. 2015, 16, 23–31. [CrossRef]

33. Lamb, D.T.; Matanitobua, V.; Palanisami, T.; Megharaj, M.; Naidu, R. Bioavailability of barium to plants and invertebrates in soils
contaminated by barite. Environ. Sci. Technol. 2013, 47, 4670–4676. [CrossRef] [PubMed]

34. Syu, C.H.; Chen, L.; Lee, D.-Y. The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-
contaminated soils. Sci. Total Environ. 2020, 759, 143943. [CrossRef] [PubMed]

35. Tang, W.-H.; Wang, G.; Zhang, S.; Li, T.-x.; Xu, X.; Deng, O.; Luo, L.; He, Y.; Zhou, W. Physiochemical responses of earthworms
(Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils. Environ.
Pollut. 2021, 296, 118766. [CrossRef] [PubMed]

36. Paltseva, A.A.; Neaman, A. An Emerging Frontier: Metal(loid) Soil Pollution Threat Under Global Climate Change. Environ.
Toxicol. Chem. 2020, 39, 1653–1654. [CrossRef] [PubMed]

37. Luo, Y.; Zhang, D.; Guo, Y.; Zhang, S.; Chang, L.-L.; Qi, Y.; Li, X.-H.; Liu, J.-G.; Guo, W.; Zhao, J.J.; et al. Comparative insights
into influences of co-contamination by rare-earth elements and heavy metals on soil bacterial and fungal communities. J. Soils
Sediments 2022, 22, 2499–2515. [CrossRef]

38. Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and
human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313.
[CrossRef]

39. Morrison, J.M.; Goldhaber, M.B.; Mills, C.T.; Breit, G.N.; Hooper, R.L.; Holloway, J.M.; Diehl, S.F.; Ranville, J.F. Weathering and
transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA. Appl.
Geochem. 2015, 61, 72–86. [CrossRef]

http://doi.org/10.2136/sssaj1999.03615995006300020006x
http://doi.org/10.1016/j.chemosphere.2017.05.155
http://doi.org/10.1002/clen.201000295
http://doi.org/10.1007/s10661-019-7408-1
http://doi.org/10.3390/ijerph15010034
http://doi.org/10.3390/app12062805
http://doi.org/10.1016/j.jappgeo.2017.01.022
http://doi.org/10.1016/j.ecoenv.2010.08.016
http://doi.org/10.1016/j.apgeochem.2014.10.010
http://doi.org/10.13227/j.hjkx.201809052
http://www.ncbi.nlm.nih.gov/pubmed/31087889
http://doi.org/10.1016/j.envpol.2020.114065
http://www.ncbi.nlm.nih.gov/pubmed/32041011
http://doi.org/10.1016/j.scitotenv.2021.150535
http://www.ncbi.nlm.nih.gov/pubmed/34582857
http://doi.org/10.3390/w12020563
http://doi.org/10.1017/S0016774600021910
http://doi.org/10.3390/ijerph16020246
http://doi.org/10.3390/app12052277
http://doi.org/10.1002/ldr.3398
http://doi.org/10.12911/22998993/582
http://doi.org/10.1021/es302053d
http://www.ncbi.nlm.nih.gov/pubmed/23484806
http://doi.org/10.1016/j.scitotenv.2020.143943
http://www.ncbi.nlm.nih.gov/pubmed/33340855
http://doi.org/10.1016/j.envpol.2021.118766
http://www.ncbi.nlm.nih.gov/pubmed/34973377
http://doi.org/10.1002/etc.4790
http://www.ncbi.nlm.nih.gov/pubmed/32483816
http://doi.org/10.1007/s11368-022-03241-9
http://doi.org/10.1016/j.scitotenv.2018.04.235
http://doi.org/10.1016/j.apgeochem.2015.05.018


Appl. Sci. 2022, 12, 8462 14 of 15

40. Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F. A regional-scale study of chromium
and nickel in soils of northern California, USA. Appl. Geochem. 2009, 24, 1500–1511. [CrossRef]

41. USGS. National Geochemical Database: Soil; USGS: Reston, VA, USA, 2016.
42. Nardi, F.; Annis, A.; Di Baldassarre, G.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s

floodplains. Sci. Data 2019, 6, 180309. [CrossRef]
43. Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle

Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [CrossRef]
44. Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2011, 81,

583–585. [CrossRef]
45. NASA. NASA Shuttle Radar Topography Mission Global 1 Arc Second [Data Set]; NASA: Washington, DA, USA, 2013. [CrossRef]
46. Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry.

Proc. IEEE 2000, 88, 333–382. [CrossRef]
47. Naturalearthdata. Free Vector and Raster Map Data at 1:10m, 1:50m, and 1:110m Scales. Available online: https://www.

naturalearthdata.com/ (accessed on 5 October 2021).
48. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven,

A.; Van Liew, M.W.; et al. Swat Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [CrossRef]
49. Didan, K. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006 [Data set]; LAADS: Greenbelt, MD,

USA, 2015. [CrossRef]
50. Benito, B. BlasBenito/spatialRF: SpatialRF: Easy Spatial Regression with Random Forest. Zenodo 2021. [CrossRef]
51. Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat.

Softw. 2017, 77, 1–17. [CrossRef]
52. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
53. Zhang, S.; Liu, G.; Chen, S.; Rasmussen, C.; Liu, B. Assessing soil thickness in a black soil watershed in northeast China using

random forest and field observations. Int. Soil Water Conserv. Res. 2021, 9, 49–57. [CrossRef]
54. Dharumarajan, S.; Hegde, R. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Manag.

2020, 38, 135–149. [CrossRef]
55. Li, X.; Geng, T.; Shen, W.; Zhang, J.; Zhou, Y. Quantifying the influencing factors and multi-factor interactions affecting cadmium

accumulation in limestone-derived agricultural soil using random forest (RF) approach. Ecotoxicol. Environ. Saf. 2021, 209, 111773.
[CrossRef]

56. Tan, K.; Ma, W.; Wu, F.; Du, Q. Random forest–based estimation of heavy metal concentration in agricultural soils with
hyperspectral sensor data. Environ. Monit. Assess. 2019, 191, 446. [CrossRef]

57. Wang, H.; Yilihamu, Q.; Yuan, M.; Bai, H.; Xu, H.; Wu, J. Prediction models of soil heavy metal(loid)s concentration for agricultural
land in Dongli: A comparison of regression and random forest. Ecol. Indic. 2020, 119, 106801. [CrossRef]

58. Xu, Y.; Shi, H.; Fei, Y.; Wang, C.; Mo, L.; Shu, M. Identification of Soil Heavy Metal Sources in a Large-Scale Area Affected by
Industry. Sustainability 2021, 13, 511. [CrossRef]

59. Hafezi Moghaddas, N.; Hajizadeh Namaghi, H.; Ghorbani, H.; Dahrazma, B. The effects of agricultural practice and land-use on
the distribution and origin of some potentially toxic metals in the soils of Golestan province, Iran. Environ. Earth Sci. 2012, 68,
487–497. [CrossRef]

60. Ennaji, W.; Barakat, A.; El Baghdadi, M.; Rais, J. Heavy metal contamination in agricultural soil and ecological risk assessment in
the northeast area of Tadla plain, Morocco. J. Sediment. Environ. 2020, 5, 307–320. [CrossRef]

61. Chen, B.; Liu, J.; Hu, L.; Liu, M.; Wang, L.; Zhang, X.; Fan, D. Spatio-temporal distribution and sources of Pb identified by stable
isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas. Sci. Total Environ. 2017, 580, 936–945. [CrossRef]
[PubMed]

62. Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and
Hg): An epitomised review. Environ. Monit. Assess. 2020, 192, 108. [CrossRef] [PubMed]

63. Islam, M.M.; Akther, S.M.; Hossain, M.F.; Parveen, Z. Spatial distribution and ecological risk assessment of potentially toxic
metals in the Sundarbans mangrove soils of Bangladesh. Sci. Rep. 2022, 12, 10422. [CrossRef] [PubMed]

64. Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century.
Nat. Commun. 2021, 12, 6663. [CrossRef]

65. Hou, J.; Rusuli, Y. Assessment of Soil Salinization Risk by Remote Sensing-Based Ecological Index (RSEI) in the Bosten Lake
Watershed, Xinjiang in Northwest China. Sustainability 2022, 14, 7118. [CrossRef]

66. Huang, H.; Zhou, Y.; Liu, Y.; Li, K.; Xiao, L.; Li, M.; Tian, Y.; Wu, F. Assessment of Anthropogenic Sources of Potentially Toxic
Elements in Soil from Arable Land Using Multivariate Statistical Analysis and Random Forest Analysis. Sustainability 2020, 12,
8538. [CrossRef]

67. Shaheen, A.; Iqbal, J. Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using
Geostatistics and Random Forest, Boruta Algorithm. Sustainability 2018, 10, 799. [CrossRef]

68. Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources,
essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [CrossRef] [PubMed]

http://doi.org/10.1016/j.apgeochem.2009.04.027
http://doi.org/10.1038/sdata.2018.309
http://doi.org/10.1029/2005RG000183
http://doi.org/10.1029/EO081i048p00583
http://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
http://doi.org/10.1109/5.838084
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
http://doi.org/10.13031/2013.42256
http://doi.org/10.5067/MODIS/MOD13A1.006
http://doi.org/10.5281/zenodo.4745207
http://doi.org/10.18637/jss.v077.i01
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.iswcr.2020.09.004
http://doi.org/10.1111/sum.12668
http://doi.org/10.1016/j.ecoenv.2020.111773
http://doi.org/10.1007/s10661-019-7510-4
http://doi.org/10.1016/j.ecolind.2020.106801
http://doi.org/10.3390/su13020511
http://doi.org/10.1007/s12665-012-1753-5
http://doi.org/10.1007/s43217-020-00020-9
http://doi.org/10.1016/j.scitotenv.2016.12.042
http://www.ncbi.nlm.nih.gov/pubmed/27988183
http://doi.org/10.1007/s10661-019-8060-5
http://www.ncbi.nlm.nih.gov/pubmed/31927632
http://doi.org/10.1038/s41598-022-13609-z
http://www.ncbi.nlm.nih.gov/pubmed/35729243
http://doi.org/10.1038/s41467-021-26907-3
http://doi.org/10.3390/su14127118
http://doi.org/10.3390/su12208538
http://doi.org/10.3390/su10030799
http://doi.org/10.1039/D2RA00378C
http://www.ncbi.nlm.nih.gov/pubmed/35424851


Appl. Sci. 2022, 12, 8462 15 of 15

69. El-Naggar, A.; Ahmed, N.; Mosa, A.; Niazi, N.K.; Yousaf, B.; Sharma, A.; Sarkar, B.; Cai, Y.; Chang, S.X. Nickel in soil and water:
Sources, biogeochemistry, and remediation using biochar. J. Hazard. Mater. 2021, 419, 126421. [CrossRef] [PubMed]
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