Design of Test Equipment for Hydrostatic Transducers and Hydraulic Fluids
Abstract
:1. Introduction
2. Materials and Methods
- Q = f(p)n dependence of flow on pressure at constant speed rotation;
- Q = f(n)p dependence of flow on speed at constant pressure.
2.1. Methodology of Design of Test Equipment for Hydrostatic Transducers
- (a)
- gear hydrogenerator,
- (b)
- gear hydraulic motor,
- (c)
- safety pressure valve,
- (d)
- shut-off valve,
- (e)
- throttle valve with stabilization,
- (f)
- electro-hydraulic proportional valve,
- (g)
- switchboard,
- (h)
- three-way valve,
- (i)
- filter,
- (j)
- cooler,
- (k)
- reservoir.
- Determining the exact requirements placed on the system—what activity should the hydrostatic transducers perform, under what conditions and required parameters (forces, moments, revolutions, ambient temperature, working environment, service quality, etc.).
- Before starting work on the project, it is necessary to have sufficient technical information about the elements of the hydraulic circuit that will be connected in the test facility. The elements in the circuit should be optimally used, but not overloaded.
- When designing the hydraulic circuit, we start from the optimal system of hydraulic elements for the given requirements and the simplest possible control. The entire hydraulic circuit must be checked by calculating the load forces, moments, and work pressure. Furthermore, it is necessary to check the speed of movement of hydraulic elements and currents, pressure losses, efficiency, power input and output, heat balance, and tank size.
- We mark the elements in the functional diagram with symbols according to DIN ISO 1219 (this avoids errors in connection).
- The design of the laboratory test equipment project also includes the calculation of the required power and revolutions during dynamic loading of the transducers, the appropriate choice of frequency converter, tank volume, hydraulic fluid cooling system, and determination of line clearance.
- We use the working fluid only as recommended by the manufacturer of the hydraulic circuit elements.
- During the verification measurement of the hydraulic circuit, we follow the instructions and requirements of the manufacturer of hydraulic elements.
- During the test run, we constantly monitor the oil temperature, the state of the oil level in the tank, and the function and tightness of the entire circuit.
2.1.1. Characteristics of the Measured Object for Verification Measurement
2.1.2. Theoretical Assumptions for Leading Hydrostatic Transducers with Constant and Operating Pressure
2.2. Monitoring of Selected Parameters
2.2.1. Monitoring of Pressure, Flow and Temperature
2.2.2. Monitoring of Torque and Speed Rotation
3. Results
3.1. Implementation of the Developed Experimental Device
3.2. Calculation and Desing of the Drive of a Laboratory Hydraulic Test Equipment
3.3. Verification Measurement of the Flow Characteristics of the Transducer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markiewicz, P.M.; Kaszkowiak, J.; Borowski, S. The analysis of the Problems with Management of Wastes Generated by a Transport Company. Logistyka 2016, 5, 1135–1142. [Google Scholar]
- Hujo, Ľ.; Kangalov, P.G.; Kosiba, J. Laboratory Test Devices for Evaluating the Lifetime of Tractor Hydraulic Components: Proceedings, Methods and Application; Angel Kanchev University of Ruse: Ruse, Bulgaria, 2015. [Google Scholar]
- Kúčik, P. Excessive Noise from the Hydraulic System. 2018. Available online: http://fluidconsult.sk/nadmerny-hluk-hydraulickeho-systemu/ (accessed on 15 December 2021).
- Kosiba, J.; Čorňák, Š.; Glos, J. Monitoring Oil Degradation During Operating Tests. Agron. Res. 2016, 14, 1626–1634. [Google Scholar]
- Baroška, J. Hydrostatic Mechanisms; Hydropneutech, s.r.o.: Žilina, Slovakia, 2021; 388p, ISBN 978-80-970-8972-6. [Google Scholar]
- Winston, L.M. Fluid Power. Hydraulics & Pneumatics; Publisher Winston LM Smashwords Edition; Broadway: Oklahoma City, OK, USA, 2014; 159p, ISBN 978-13-101-6485-9. [Google Scholar]
- Mobley, K. Fluid Power Dynamics; Elsevier Sciens. & Tech.: Oxford, UK, 2000; 288p, ISBN 978-07-506-7174-3. [Google Scholar]
- Kim, J.; Sung-Gaun, K.A. Study of the Approximate Model of the Flow Rate Characteristics in External Gear Pump for EHPS. J. Korea Acad. Ind. Coop. Soc. 2013, 12, 548–553. [Google Scholar]
- Casoli, P.; Vacca, A.; Franzoni, G.A. Numerical Model for the Simulation of External Gear Pumps. In Proceedings of the 6th JFPS International Symposium on Fluid Power, Parma, Italy, 7–10 November 2005; pp. 705–710. [Google Scholar]
- Hujo, Ľ.; Jablonický, J.; Tkáč, Z. Design of Innovative Laboratory Simulation Device for Testing of Hydrostatic Transducers and Hydraulic Fluids; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2017. [Google Scholar]
- Drabant, Š.; Tkáč, Z.; Petranský, I. Measurement and Testing of Hydrostatic Elements and Systems; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2008. [Google Scholar]
- Petranský, I.; Drabant, Š.; Tkáč, Z.; Žikla, A.; Bolla, M.; Kleineder, P. Test Stands for Life Tests of Hydrostatic Converter; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2004. [Google Scholar]
- Tkáč, Z.; Drabant, Š.; Majdan, R.; Cvíčela, P. Testing Stands for Laboratory Tests of Hydrostatic Pump of Agricultural Machinery. Res. Agric. Eng. 2008, 54, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Čorňák, Š. Identification of Operating Fluids with Fingerprint Method Utilization. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018; pp. 2035–2048. [Google Scholar]
- Hujo, Ľ.; Tkáč, Z.; Tulík, J.; Kosiba, J.; Uhrinová, D.; Jánošová, M. Monitoring of Operation Loading of Three-Point Linkage During Ploughing. Res. Agric. Eng. 2016, 62, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Hujo, Ľ.; Čorňák, Š.; Tkáč, Z.; Jánošová, M. Laboratory Research of Transmission-Hydraulic Fluid. In Proceedings of the 7th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, 17–20 September 2019; pp. 17–20. [Google Scholar]
- Hujo, Ľ.; Jablonický, J.; Markovič, J.; Tulík, J.; Simikić, M.; Zastempowski, M.; Janoušková, R. Design of Laboratory Test Equipment for Automotive Oil Filters to Evaluate the Technical Life of Engine Oil. Appl. Sci. 2021, 11, 483. [Google Scholar] [CrossRef]
- Hujo, Ľ.; Nosian, J.; Zastempowski, M.; Kosiba, J.; Kaszkowiak, J.; Michalides, M. Laboratory Test of the Hydraulic Pump Operating Load with Monitoring of Changes in the Physical Properties. Meas. Control. 2021, 54, 243–251. [Google Scholar] [CrossRef]
- Majdan, R.; Tkáč, Z.; Abrahám, R.; Szabó, M.; Halenár, M.; Rášo, M.; Ševčík, P. Proposal for Filtration System for Biodegradable Lubricants in Agricultural Tractors. Agron. Res. 2016, 14, 1395–1405. [Google Scholar]
- Simikić, M.; Dedović, N.; Savin, L.; Tomić, M.; Ponjičan, O. Power Delivery Efficiency of a Wheeled Tractor at Oblique Drawbar Force. Soil Tillage Res. 2014, 141, 32–43. [Google Scholar] [CrossRef]
- Cvíčela, P.; Majdan, R.; Abrahám, R. Operating load of the Zetor Forterra tractor hydrogenerator. In Proceedings of the 34th International Conference of Departments of Transport, Handling Construction and Agricultural Machinery, Ostrava, Czech Republic, 24–26 September 2008; pp. 24–26. [Google Scholar]
- Janoško, I.; Polonec, T.; Lindák, S. Performance Parameters Monitoring of the Hydraulic System with Bio-Oil. Res. Agric. Eng. 2014, 60, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Kučera, M.; Aleš, Z.; Pexa, M. Detection and Characterization of Wear Particles of Universal Tractor Oil Using of Particles Size Analyser. Agron. Res. 2016, 14, 1351–1360. [Google Scholar]
- Tessmann, K.R. Qualification of Hydraulic Fluid through Pump Testing. In Proceedings of the International Fluid Power Exposition and Technical Conference, Chicago, IL, USA, 8–12 April 1996. [Google Scholar]
- Turza, J.; Kopiláková, B. Combined stand for measuring of hydraulic elements. J. Hydraul. Pneum. Autom. Technol. 2011, 1–2, 60–64. [Google Scholar]
- Tkáč, Z.; Majdan, R.; Drabant, Š.; Jablonický, J.; Abrahám, R.; Cvíčela, P. The accelerated laboratory test of biodegradable fluid type “ertto”. Res. Agric. Eng. 2010, 56, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Dobrota, D.; Lalič, B.; Oršulič, M. Experimental Modeling of Volumetric Utility High Pressure Gear Pumps with External Gear. Naše More Znan. Časopis More Pomor. 2010, 57, 235–240. [Google Scholar]
- Yoshida, N.; Inaguma, Y. Mathematical Analysis of Efficiencies in Hydraulic Pumps for Automatic Transmissions. JTEKT Eng. J. 2014, 1011E, 64–73. [Google Scholar]
- Libra, M.; Poulek, V. Energy Sources and Their Use; Czech University of Life Sciences Prague: Prague, Czech Republic, 2014. [Google Scholar]
- Jablonický, J.; Simikić, M.; Tulík, J.; Tomić, M.; Hujo, Ľ.; Kosiba, J. Monitoring of Selected Physical and Chemical Parameters of Test Oil in the Wet Disc Brake System. Acta Technol. Agric. 2020, 23, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Máchal, P.; Tkáč, Z.; Kosiba, J.; Jablonický, J.; Hujo, Ľ.; Kučera, M.; Tulik, J. Design of a Laboratory Hydraulic Device for Testing of Hydraulic Pumps. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Kaszkowiak, J.; Borowski, S.; Kaszkowiak, E.; Dulcet, E.; Zastempowski, M.; Hujo, Ľ. Air filtering systems in power supply systems of internal combustion engines in working machines. Logistyka 2015, 4, 1893–1898. [Google Scholar]
- Nosian, J.; Hujo, Ľ.; Zastempowski, M.; Janoušková, R. Design of Laboratory Test Equipment for Testing the Hydrostatic Transducers. Acta Technol. Agric. 2021, 24, 35–40. [Google Scholar] [CrossRef]
- Kučera, M.; Majdan, R.; Abrahám, R.; Kučera, M.; Haas, P. Analysis of the effect of loading process on tribological system properties. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 825–833. [Google Scholar]
- Tóth, F.; Fürstenzeller, A.; Rusnák, J.; Bošanský, M.; Kadnár, M. The Possibilities of Using Ecological Liquids in Tribological Gliding Systems with a Selected Surface Created by the Radial Welding Technology. Acta Technol. Agric. 2019, 22, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Majdan, R.; Tkáč, Z.; Abrahám, R.; Kollárová, K.; Vitázek, I.; Halenár, M. Filtration Systems Design for Universal Oils in Agricultural Tractors. Tribol. Ind. 2017, 39, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Halenár, M.; Kuchar, P. Research of Biodegradable Fluid During Operating Test. In Proceedings of the 24th International PhD Students Conference (MendelNet), Brno, Czech Republic, 8–9 November 2017. [Google Scholar]
- Tkáč, Z.; Čorňák, Š.; Cviklovič, V.; Kosiba, J.; Glos, J.; Jablonický, J.; Bernát, R. Research of Biodegradable Fluid Impacts on Operation of Tractor Hydraulic System. Acta Technol. Agric. 2017, 20, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Zastempowski, M. Test Stands with Energy Recovery System for Machines and Hydraulic Transmissions. Agric. Eng. Res. 2013, 58, 188–191. [Google Scholar]
- Kopiláková, B.; Turza, J.; Hujo, Ľ.; Kosiba, J. Evaluation of Hydraulic Resistance in Various Liquids and Temperature. Tribol. Ind. 2017, 39, 129–135. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Value | |
---|---|---|---|
Actual displacement | cm3 | 17.39 | |
Pressure at inlet maximum | MPa | 0.05 | |
Pressure at outlet maximum | MPa | 30.00 | |
Rotation speed | Nominal | rpm | 1500 |
Minimum | rpm | 400 | |
Maximum | rpm | 3200 | |
Sense of rotation | - | right | |
Flow at maximum speed rotation | dm3 min−1 | 54.5 |
Parameter | Unit | Value | |
---|---|---|---|
Actual displacement | cm3 | 16.951 | |
Pressure at inlet maximum | MPa | 0.06 | |
Pressure at outlet maximum | MPa | 30.00 | |
Rotation speed | Nominal | rpm | 1500 |
Minimum | rpm | 350 | |
Maximum | rpm | 3400 | |
Sense of rotation | - | right | |
Flow at maximum speed rotation | dm3 min−1 | 56.5 |
Parameter | Unit | Value | |
---|---|---|---|
Actual displacement | cm3 | 17.24 | |
Pressure at inlet maximum | MPa | 0.05 | |
Pressure at outlet maximum | MPa | 29.00 | |
Rotation speed | Nominal | rpm | 1500 |
Minimum | rpm | 350 | |
Maximum | rpm | 3200 | |
Sense of rotation | - | right | |
Flow at maximum speed rotation | dm3 min−1 | 54.3 |
Parameter | Unit | Value |
---|---|---|
Torque nominal | Nm | 2 |
Speed rotation maximum | rpm | 12,000 |
Voltage | V | 10 |
Voltage in start mode | A | <4 |
Voltage in measuring mode | A | <1 |
Parameter | Unit | Value | |
---|---|---|---|
Nominal combustion engine speed rotation | rpm | 2200 | |
Actual displacement | cm3 | 16.28 | |
Flow through hydraulic pump | dm3/min | 22.22 | |
Rotation speed | Nominal | rpm | 1500 |
Minimum | rpm | 400 | |
Maximum | rpm | 3200 | |
Pressure in hydraulic circuit | Permanent | MPa | 25 |
Maximum | MPa | 26 | |
Efficiency | Volume | - | 0.91 |
Mechanical | - | 0.85 | |
Overall | - | 0.77 |
Parameter | Unit | Value | |
---|---|---|---|
Flow through hydraulic pump at | Minimum speed rotations | rpm | 6.67 |
Nominal speed rotations | rpm | 22.22 | |
Maximum speed rotations | rpm | 47.41 | |
Torque at | Minimum speed rotations | Nm | 79.30 |
Nominal speed rotations | |||
Maximum speed rotations | |||
Power | Minimum speed rotations | kW | 4.10 |
Nominal speed rotations | kW | 13.68 | |
Maximum speed rotations | kW | 29.19 |
Parameter | Unit | Value |
---|---|---|
Power | kW | 30 |
Torque | Nm | 80 |
Speed rotations minimum | rpm | 450 |
Speed rotations maximum | rpm | 2950 |
Protection class acc. To DIN 40050 | IP | 55 |
Voltage | - | 400/690 V |
Efficiency | % | 92 |
Flow Rate Q | Average | Median | Mode | Minimum | Maximum | Distraction | Standard Deviation | Variation Coefficient |
---|---|---|---|---|---|---|---|---|
Rotation speed | Me | Mo | xmin | xmax | σ2 | σ | Vk | |
500 | 7.6446 | 7.65 | 7.77 | 7.21 | 7.99 | 0.033 | 0.182 | 2.388 |
750 | 11.753 | 11.77 | 11.74 | 11.27 | 12.26 | 0.043 | 0.207 | 1.766 |
1000 | 16.032 | 16.03 | 16.21 | 15.25 | 16.84 | 0.093 | 0.305 | 1.903 |
1250 | 20.080 | 20.08 | 20.06 | 19.41 | 20.88 | 0.088 | 0.297 | 1.480 |
1500 | 24.098 | 24.10 | 24.02 | 23.36 | 24.93 | 0.106 | 0.326 | 1.354 |
1750 | 28.192 | 28.19 | 28.25 | 27.43 | 28.96 | 0.108 | 0.328 | 1.166 |
2000 | 32.323 | 32.32 | 32.34 | 31.60 | 33.03 | 0.100 | 0.317 | 0.981 |
Flow Rate Q | Average | Median | Mode | Minimum | Maximum | Distraction | Standard Deviation | Variation Coefficient |
---|---|---|---|---|---|---|---|---|
Rotation speed | Me | Mo | xmin | xmax | σ2 | σ | Vk | |
500 | 7.52 | 7.51 | 7.53 | 7.44 | 7.60 | 0.0007 | 0.026 | 0.351 |
750 | 11.71 | 11.71 | 11.68 | 11.57 | 11.80 | 0.001 | 0.030 | 0.263 |
1000 | 15.94 | 15.91 | 15.94 | 15.65 | 16.20 | 0.0013 | 0.036 | 0.227 |
1250 | 20.14 | 20.14 | 20.08 | 19.62 | 20.77 | 0.0591 | 0.243 | 1.207 |
1500 | 24.40 | 24.39 | 24.28 | 23.77 | 24.92 | 0.0960 | 0.309 | 1.270 |
1750 | 28.60 | 28.62 | 28.45 | 28.10 | 29.07 | 0.0733 | 0.270 | 0.946 |
2000 | 32.76 | 32.76 | 32.81 | 32.32 | 33.16 | 0.05002 | 0.223 | 0.682 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hujo, Ľ.; Jablonický, J.; Tkáč, Z.; Tulík, J. Design of Test Equipment for Hydrostatic Transducers and Hydraulic Fluids. Appl. Sci. 2022, 12, 7777. https://doi.org/10.3390/app12157777
Hujo Ľ, Jablonický J, Tkáč Z, Tulík J. Design of Test Equipment for Hydrostatic Transducers and Hydraulic Fluids. Applied Sciences. 2022; 12(15):7777. https://doi.org/10.3390/app12157777
Chicago/Turabian StyleHujo, Ľubomír, Juraj Jablonický, Zdenko Tkáč, and Juraj Tulík. 2022. "Design of Test Equipment for Hydrostatic Transducers and Hydraulic Fluids" Applied Sciences 12, no. 15: 7777. https://doi.org/10.3390/app12157777
APA StyleHujo, Ľ., Jablonický, J., Tkáč, Z., & Tulík, J. (2022). Design of Test Equipment for Hydrostatic Transducers and Hydraulic Fluids. Applied Sciences, 12(15), 7777. https://doi.org/10.3390/app12157777