Characteristics of Urban Heat Island in China and Its Influences on Building Energy Consumption
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Weather Data
2.2. Calculation of UHII
2.3. Heating/Cooling Load-Related Electricity or Coal Consumption
3. Results and Discussion
3.1. Spatial and Temporal Variation of UHII in Main Chinese Cities
3.2. Electricity and Coal Consumption Induced by the Cooling and Heating Load
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Cities and Pollution; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Yang, X.; Li, Y.; Yang, L. Predicting and understanding temporal 3D exterior surface temperature distribution in an ideal courtyard. Build. Environ. 2012, 57, 38–48. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Clim. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, D. Research progress and prospect of urban heat island effect. J. Meteorol. Res. 2012, 70, 338–353. [Google Scholar]
- Yang, X.C.; Zhang, Y.L.; Liu, L.S.; Zhang, W.; Ding, M.J.; Wang, Z.F. Sensitivity of surface air temperature change to land use/cover types in China. China Sci. 2009, 39, 638–646. [Google Scholar] [CrossRef]
- Han, S.; Tang, Q.; Xu, D.; Yang, Z. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006. Theor. Appl. Climatol. 2019, 135, 1595–1607. [Google Scholar] [CrossRef]
- Howard, L. Climate of London Deduced from Metrological Observations (Volume 1); Harvey and Dorton Press: Lexington, KY, USA, 1833; Volume 348. [Google Scholar]
- Manley, G. On the Frequency of Snowfall in Metropolitan England. Q. J. R. Meteorol. Soc. 1958, 84, 70–72. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete—ScienceDirect. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liao, W.; Rigden, A.J.; Liu, X.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martilli, A.; Krayenhoff, E.S.; Nazarian, N. Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Clim. 2020, 31, 100541. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Q.; Allam, M.; Hu, D.; Zhang, L.; Menenti, M. Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecol. Indic. 2021, 128, 107845. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Bejan, A.; Wang, Y.; Yang, A.X. Horizontal extent of the urban heat dome flow. Sci. Rep. 2017, 7, 11681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Li, Y.; Yin, S. Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city. Int. J. Heat Mass Transf. 2018, 124, 233–246. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Yin, S. Interaction of multiple urban heat island circulations under idealised settings. Build. Environ. 2018, 134, 10–20. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Hang, J.; Wang, K.; Yang, X. Natural convection flows along a 16-storey high-rise building. Build. Environ. 2016, 107, 215–225. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Hang, J.; Wang, K. Diurnal variation of natural convective wall flows and the resulting air change rate in a homogeneous urban canopy layer. Energy Build. 2017, 153, 201–208. [Google Scholar] [CrossRef]
- Fan, Y.; Zhao, Y.; Torres, J.F.; Xu, F.; Lei, C.; Li, Y.; Carmeliet, J. Natural convection over vertical and horizontal heated flat surfaces: A review of recent progress focusing on underpinnings and implications for heat transfer and environmental applications. Phys. Fluids 2021, 33, 101301. [Google Scholar] [CrossRef]
- Hang, J.; Xian, Z.; Wang, D.; Mak, C.M.; Wang, B.; Fan, Y. The impacts of viaduct settings and street aspect ratios on personal intake fraction in three-dimensional urban-like geometries. Build. Environ. 2018, 143, 138–162. [Google Scholar] [CrossRef]
- Yang, H.; Chen, T.; Lin, Y.; Buccolieri, R.; Mattsson, M.; Zhang, M.; Hang, J.; Wang, Q. Integrated impacts of tree planting and street aspect ratios on CO dispersion and personal exposure in full-scale street canyons. Build. Environ. 2019, 169, 106529. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, G.; Wang, X.; Liu, S.; Mak, C.M.; Fan, Y.; Hang, J. Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons. Sci. Total Environ. 2018, 653, 968–994. [Google Scholar] [CrossRef] [PubMed]
- Arifwidodo, S.; Chandrasiri, O. Urban Heat Island and Household Energy Consumption in Bangkok, Thailand. Energy Procedia 2015, 79, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Pang, H.; Guo, W. Impact of the urban heat island on residents’ energy consumption: A case study of Qingdao. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 032026. [Google Scholar] [CrossRef]
- Tian, L.; Lu, J.; Li, Y.; Bu, D.; Liao, Y.; Wang, J. Temporal characteristics of urban heat island and its response to heat waves and energy consumption in the mountainous Chongqing, China. Sustain. Cities Soc. 2021, 75, 103260. [Google Scholar] [CrossRef]
- Sharifi, E.; Larbi, M.; Omrany, H.; Boland, J. Climate change adaptation and carbon emissions in green urban spaces: Case study of Adelaide. J. Clean. Prod. 2020, 254, 120035. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Mu, H.; Dong, G.; Shi, J. Influences of Urban Temperature on the Electricity Consumption of Shanghai. Adv. Clim. Change Res. 2014, 5, 74–80. [Google Scholar]
- Street, M.; Reinhart, C.; Norford, L.; Ochsendorf, J. Urban heat island in boston—An evaluation of urban airtemperature models for predicting building energy use. In Proceedings of the BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013. [Google Scholar]
- Kumari, P.; Garg, V.; Kumar, R.; Kumar, K. Impact of urban heat island formation on energy consumption in Delhi. Urban Clim. 2021, 36, 100763. [Google Scholar] [CrossRef]
- Meng, F.; Guo, J.; Ren, G.; Zhang, L.; Zhang, R. Impact of urban heat island on the variation of heating loads in residential and office buildings in Tianjin. Energy Build. 2020, 226, 110357. [Google Scholar] [CrossRef]
- Aboelata, A.; Sodoudi, S. Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings’ energy in dense built-up areas in Cairo. Build. Environ. 2019, 166, 106407. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Lin, T.-P.; Lin, F.-Y. Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect. J. Build. Eng. 2020, 32, 101726. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A. Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc. Urban Plan. 2018, 169, 92–104. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Aghamohammadi, N.; Fong, C.S.; Ghaffarianhoseini, A.; Wong, L.P.; Sulaiman, N.M. Empirical study on temporal variations of canopy-level Urban Heat Island effect in the tropical city of Greater Kuala Lumpur. Sustain. Cities Soc. 2018, 44, 748–762. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Liu, Y.; Niu, Z.; Wang, S.; Wang, L. Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Sci. Total Environ. 2021, 772, 145607. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Huang, Y.J.; Miller, N.; Schlegel, N.; Shen, P. Impacts of climate change on building heating and cooling energy patterns in California. Energy 2012, 44, 792–804. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X. Crowd sourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 2021, 7, eabb9569. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Feng, J.; Yan, Z.; Miao, S.; Zhang, Y.; Xia, J. Observational and modeling study of interactions between urban heat island and heatwave in Beijing. J. Clean. Prod. 2019, 247, 119169. [Google Scholar] [CrossRef]
- GB 50178-93; Standard for Climatic Regionalization for Building and Civil Engineering. China Planning Press: Beijing, China, 1993.
- Chuan, T.; Wu, J.; Zhao, D.; Yang, Q.; Fan, W.; Zhao, J. Fine structure analysis of urban heat island of a central city in low-latitude plateau of China. Urban Clim. 2022, 44, 101186. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giridharan, R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol. Energy 2008, 82, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Varentsova, S.A.; Varentsov, M.I. A new approach to study the long-term urban heat island evolution using time-dependent spectroscopy. Urban Clim. 2021, 40, 101026. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhuang, Z.; Yang, F.; Yu, Y.; Xie, X. Urban morphology on heat island and building energy consumption. Procedia Eng. 2017, 205, 2401–2406. [Google Scholar] [CrossRef]
- JGJ 134-2010; Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Cold Winter Zone. China Architecture & Building Press: Beijing, China, 2010.
- JGJ 75-2012; Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone. China Architecture & Building Press: Beijing, China, 2012.
- JGJ 26-2018; Design Standard for Energy Efficiency of Residential Buildings in severe Cold and Cold Zones. China Architecture & Building Press: Beijing, China, 2018.
- JGJ/T 449-2018; Standard for Green Performance Calculation of civil buildings. China Architecture & Building Press: Beijing, China, 2018.
- Tian, C.; Huang, G.; Piwowar, J.M.; Yeh, S.-C.; Lu, C.; Duan, R.; Ren, J. Stochastic RCM-driven cooling and heating energy demand analysis for residential building. Renew. Sustain. Energy Rev. 2022, 153, 111764. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T.; Eiho, J. Vertical atmospheric structure estimated by heat island intensity and temporal variations of methane concentrations in ambient air in an urban area in Japan. Atmos. Environ. 2006, 40, 4308–4315. [Google Scholar] [CrossRef]
Building Envelope Parameters | SCR | CR | HSCWR | HSWWR | MR |
---|---|---|---|---|---|
External wall
(W/m2 K) | 0.35 | 0.35 | 0.8 | 0.35 | 1.8 |
Roof
(W/m2 K) | 0.15 | 0.15 | 0.6 | 0.65 | 0.8 |
External window
(W/m2 K) | 2 | 2 | 3 | 6 | 3.5 |
Window–wall ratio | 0.25 | ||||
Air tightness
(ACH) | 0.5 | 0.5 | 1 | 1 | 0.5 |
Power density
(W/m2) | 5 | ||||
Heating/cooling temperature (°C) | 18/26 | 18/26 | 18/26 | 16/26 | 18/26 |
Building Climate Zones | Heating/Cooling | COP Values |
---|---|---|
SCR CR | For heating COPh | 1.6 |
For cooling COPc | 2.8 | |
HSCWR HSWWR MR | For heating COPh | 1.8 |
For cooling COPc | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Z.; Zhang, Y.; Fan, Y. Characteristics of Urban Heat Island in China and Its Influences on Building Energy Consumption. Appl. Sci. 2022, 12, 7678. https://doi.org/10.3390/app12157678
Wang S, Wang Z, Zhang Y, Fan Y. Characteristics of Urban Heat Island in China and Its Influences on Building Energy Consumption. Applied Sciences. 2022; 12(15):7678. https://doi.org/10.3390/app12157678
Chicago/Turabian StyleWang, Shaopeng, Zihan Wang, Yicheng Zhang, and Yifan Fan. 2022. "Characteristics of Urban Heat Island in China and Its Influences on Building Energy Consumption" Applied Sciences 12, no. 15: 7678. https://doi.org/10.3390/app12157678
APA StyleWang, S., Wang, Z., Zhang, Y., & Fan, Y. (2022). Characteristics of Urban Heat Island in China and Its Influences on Building Energy Consumption. Applied Sciences, 12(15), 7678. https://doi.org/10.3390/app12157678