Characterization of Sorghum Processed through Dry Heat Treatment and Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Functional Properties
Hydration Capacity (HC)
Oil-Absorption Capacity (OAC)
Water-Retention Capacity (WRC)
Swelling Power (SP)
Emulsion Activity (EA) and Stability (ES)
2.2.2. Proximate Composition
2.2.3. Optimization of Sorghum Dry Heat Treatment
2.2.4. Characterization of Optimal Samples
Color Evaluation
Starch Digestibility
Total Polyphenols and Antiradical Activity
Starch and Protein Molecular Characteristics
2.2.5. Statistics
3. Results and Discussion
3.1. Functional Properties and Proximate Composition
3.1.1. Influence of Factors
3.1.2. Pearson Correlations between Variables
3.1.3. Optimization and Model Validation
3.2. Characterization of the Optimal Samples
3.2.1. Total Polyphenols, DPPH Antiradical Activity (AA), and Starch Digestibility
3.2.2. Color and Molecular Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tasie, M.M.; Gebreyes, B.G. Characterization of Nutritional, Antinutritional, and Mineral Contents of Thirty-Five Sorghum Varieties Grown in Ethiopia. Int. J. Food Sci. 2020, 2020, 8243617. [Google Scholar] [CrossRef] [PubMed]
- World Agricultural Production World Sorghum Production 2021/2022. Available online: http://www.worldagriculturalproduction.com/crops/sorghum.aspx (accessed on 10 May 2022).
- National Institute of Statistics. Romanian Statistical Yearbook; National Institute of Statistics: Bucharest, Romania, 2022.
- Popescu, A.; Condei, R. Some considerations on the prospects of sorghum crop. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2014, 14, 295–304. [Google Scholar]
- Liu, L.; Herald, T.J.; Wang, D.; Wilson, J.D.; Bean, S.R.; Aramouni, F.M. Characterization of sorghum grain and evaluation of sorghum flour in a Chinese egg noodle system. J. Cereal Sci. 2012, 55, 31–36. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Belton, P.S.; Beta, T.; Duodu, K.G. Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci. 2014, 59, 257–275. [Google Scholar] [CrossRef]
- Medina Martinez, O.D.; Lopes Toledo, R.C.; Vieira Queiroz, V.A.; Pirozi, M.R.; Duarte Martino, H.S.; Ribeiro de Barros, F.A. Mixed sorghum and quinoa flour improves protein quality and increases antioxidant capacity in vivo. LWT 2020, 129, 109597. [Google Scholar] [CrossRef]
- Zhu, L.; Song, X.; Pan, F.; Tuersuntuoheti, T.; Zheng, F.; Li, Q.; Hu, S.; Zhao, F.; Sun, J.; Sun, B. Interaction mechanism of kafirin with ferulic acid and tetramethyl pyrazine: Multiple spectroscopic and molecular modeling studies. Food Chem. 2021, 363, 130298. [Google Scholar] [CrossRef]
- Mir, S.A.; Manickavasagan, A.; Shah, M.A. Whole Grains: Processing, Product Development, and Nutritional Aspects; CRC Press: Boca Raton, FL, USA, 2019; ISBN 1351104756. [Google Scholar]
- Kim, E.; Kim, S.; Park, Y. Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. Int. J. Food Sci. Nutr. 2015, 66, 308–313. [Google Scholar] [CrossRef]
- Kulamarva, A.G.; Sosle, V.R.; Raghavan, G.S.V. Nutritional and rheological properties of sorghum. Int. J. Food Prop. 2009, 12, 55–69. [Google Scholar] [CrossRef]
- Taylor, J.; Duodu, K.G. Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes; Elsevier: Duxford, UK, 2018; ISBN 0128115289. [Google Scholar]
- Taylor, J.R.N.; Emmambux, M.N. 13—Products containing other speciality grains: Sorghum, the millets and pseudocereals. In Technology of Functional Cereal Products; Hamaker, B.R., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2008; pp. 281–335. ISBN 978-1-84569-177-6. [Google Scholar]
- Sharanagat, V.S.; Suhag, R.; Anand, P.; Deswal, G.; Kumar, R.; Chaudhary, A.; Singh, L.; Singh Kushwah, O.; Mani, S.; Kumar, Y.; et al. Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J. Cereal Sci. 2019, 85, 111–119. [Google Scholar] [CrossRef]
- Meera, M.S.; Bhashyam, M.K.; Ali, S.Z. Effect of heat treatment of sorghum grains on storage stability of flour. LWT Food Sci. Technol. 2011, 44, 2199–2204. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int. 2011, 44, 235–240. [Google Scholar] [CrossRef]
- Schlörmann, W.; Zetzmann, S.; Wiege, B.; Haase, N.U.; Greiling, A.; Lorkowski, S.; Dawczynski, C.; Glei, M. Impact of different roasting conditions on sensory properties and health-related compounds of oat products. Food Chem. 2020, 307, 125548. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, S.R.; Guha, M. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem. 2011, 126, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.C.; Mullan, B.P.; Pluske, J.R. A comparison of waxy versus non-waxy wheats in diets for weaner pigs: Effects of particle size, enzyme supplementation, and collection day on total tract apparent digestibility and pig performance. Anim. Feed Sci. Technol. 2005, 120, 51–65. [Google Scholar] [CrossRef]
- Mahasukhonthachat, K.; Sopade, P.A.; Gidley, M.J. Kinetics of starch digestion in sorghum as affected by particle size. J. Food Eng. 2010, 96, 18–28. [Google Scholar] [CrossRef]
- Alvarenga, I.C.; Ou, Z.; Thiele, S.; Alavi, S.; Aldrich, C.G. Effects of milling sorghum into fractions on yield, nutrient composition, and their performance in extrusion of dog food. J. Cereal Sci. 2018, 82, 121–128. [Google Scholar] [CrossRef]
- Rumler, R.; Bender, D.; Speranza, S.; Frauenlob, J.; Gamper, L.; Hoek, J.; Jäger, H.; Schönlechner, R. Chemical and physical characterization of sorghum milling fractions and sorghum whole meal flours obtained via stone or roller milling. Foods 2021, 10, 870. [Google Scholar] [CrossRef]
- Bordei, D.; Bahrim, G.; Pâslaru, V.; Gasparotti, C.; Elisei, A.; Banu, I.; Ionescu, L.; Codină, G. Quality Control in the Bakery Industry-Analysis Methods. Galați Acad. 2007, 1, 203–212. [Google Scholar]
- Elkhalifa, A.E.O.; Bernhardt, R. Combination Effect of Germination and Fermentation on Functional Properties of Sorghum Flour. Curr. J. Appl. Sci. Technol. 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Super fi ne grinding improves functional properties and antioxidant capacities of bran dietary fi bre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. J. Cereal Sci. 2015, 65, 43–47. [Google Scholar] [CrossRef]
- FAO. Chapter 4: Summary—Integration of Analytical Methods and Food Energy Conversion Factors. Available online: https://www.fao.org/3/y5022e/y5022e05.htm#bm5 (accessed on 7 April 2022).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Gao, X.; Tong, J.; Guo, L.; Yu, L.; Li, S.; Yang, B.; Wang, L.; Liu, Y.; Li, F.; Guo, J.; et al. Influence of gluten and starch granules interactions on dough mixing properties in wheat (Triticum aestivum L.). Food Hydrocoll. 2020, 106, 105885. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Application of heat moisture treatment in wheat pasta production. Food Control 2021, 128, 108176. [Google Scholar] [CrossRef]
- Jacobs, P.J.; Hemdane, S.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Study of hydration properties of wheat bran as a function of particle size. Food Chem. 2015, 179, 296–304. [Google Scholar] [CrossRef]
- Almaiman, S.A.; Albadr, N.A.; Alsulaim, S.; Alhuthayli, H.F.; Osman, M.A.; Hassan, A.B. Effects of microwave heat treatment on fungal growth, functional properties, total phenolic content, and antioxidant activity of sorghum (Sorghum bicolor L.) grain. Food Chem. 2021, 348, 128979. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Extrusion of Hulled Barley Affecting β-Glucan and Properties of Extrudates. Food Bioprocess Technol. 2013, 6, 1374–1389. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Shivhare, U.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Res. Int. 2015, 76, 11–18. [Google Scholar] [CrossRef]
- Zou, J.; Xu, M.; Tang, W.; Wen, L.; Yang, B. Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chem. 2020, 309, 125733. [Google Scholar] [CrossRef]
- Caprita, R.; Caprita, A.; Cretescu, I. Effect of Heat Treatment and Digestive Enzymes on Cereal Water-Retention Capacity. Sci. Pap. Anim. Sci. Biotechnol. 2015, 48, 94–96. [Google Scholar]
- Hassan, A.B.; von Hoersten, D.; Mohamed Ahmed, I.A. Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chem. 2019, 271, 142–147. [Google Scholar] [CrossRef]
- Moraes, É.A.; Marineli, R.D.S.; Lenquiste, S.A.; Steel, C.J.; De Menezes, C.B.; Queiroz, V.A.V.; Maróstica Júnior, M.R. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem. 2015, 180, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum Grain: From Genotype, Nutrition, and Phenolic Profile to Its Health Benefits and Food Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, H.; Gupta, M. Nutritional, functional and rheological properties of processed sorghum and ragi grains. Cogent Food Agric. 2015, 1, 1109495. [Google Scholar] [CrossRef]
- Dharmaraj, U.; Malleshi, N.G. Changes in carbohydrates, proteins and lipids of finger millet after hydrothermal processing. LWT Food Sci. Technol. 2011, 44, 1636–1642. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Álvarez, J.Á.; Fernández-López, J. Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods Hum. Nutr. 2017, 72, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.U.; Liu, C.; Sathe, S.K. Functional properties of select seed flours. LWT 2015, 60, 325–331. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Z.; Qin, P.; Ren, G. Effects of processing on phytochemical profiles and biological activities for production of sorghum tea. Food Res. Int. 2013, 53, 678–685. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Zhang, X.; Liu, H. The Effects of Processing on Bioactive Compounds and Biological Activities of Sorghum Grains. Molecules 2022, 27, 3246. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.S.; Seo, M.C.; Kang, J.R.; Ko, J.Y.; Song, S.B.; Lee, J.S.; Oh, B.G.; Do Park, G.; Lee, Y.H.; Nam, M.H.; et al. Antioxidant compounds and antioxidant activities of the methanolic extracts from milling fractions of sorghum (Sorghum Bicolor L. Moench). J. Korean Soc. Food Sci. Nutr. 2010, 39, 1695–1699. [Google Scholar] [CrossRef]
- Cardoso, L.d.M.; Pinheiro, S.S.; de Carvalho, C.W.P.; Queiroz, V.A.V.; de Menezes, C.B.; Moreira, A.V.B.; de Barros, F.A.R.; Awika, J.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. J. Cereal Sci. 2015, 65, 220–226. [Google Scholar] [CrossRef]
- Silva, W.M.F.; Biduski, B.; Lima, K.O.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Dias, A.R.G. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chem. 2017, 219, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhong, F.; Yokoyama, W.; Huang, D.; Zhu, S.; Li, Y. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydr. Polym. 2020, 247, 116667. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, S.P.; Ponnambalam, D.; Antony, U. Effect of dry heat treatment on the development of resistant starch in rice (Oryza sativa) and barnyard millet (Echinochloa furmantacea). J. Food Process. Preserv. 2019, 43, e13965. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Olu-Owolabi, B.I.; Olayinka, O.O.; Lawal, O.S. Effect of heat moisture treatment and annealing on physicochemical properties of red sorghum starch. African J. Biotechnol. 2005, 4, 928–933. [Google Scholar] [CrossRef]
- Winger, M.; Khouryieh, H.; Aramouni, F.; Herald, T.; Al, M.W.E.T. Sorghum Flour characterization and evaluation in gluten-free flour tortilla. J. Food Qual. 2014, 37, 95–106. [Google Scholar] [CrossRef]
- Ratnavathi, C.; Patil, L.V.; Chavan, U. Sorghum Biochemistry: An Industrial Perspective; Academic Press: Oxford, UK, 2016; ISBN 9780415475976. [Google Scholar]
- Kamble, D.B.; Singh, R.; Rani, S.; Kaur, B.P.; Upadhyay, A.; Kumar, N. Optimization and characterization of antioxidant potential, in vitro protein digestion and structural attributes of microwave processed multigrain pasta. J. Food Process. Preserv. 2019, 43, e14125. [Google Scholar] [CrossRef]
- Navyashree, N.; Singh Sengar, A.; Sunil, C.K.; Venkatachalapathy, N. White Finger Millet (KMR-340): A comparative study to determine the effect of processing and their characterisation. Food Chem. 2022, 374, 131665. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, L.; Nan, C.; Xiong, L. Effect of heat moisture treatment on physicochemical and morphological properties of wheat starch and xylitol mixture. Food Chem. 2014, 143, 54–59. [Google Scholar] [CrossRef]
- Oladiran, D.A.; Emmambux, N.M. Nutritional and Functional Properties of Extruded Cassava-Soy Composite with Grape Pomace. Starch 2018, 70, 1700298. [Google Scholar] [CrossRef]
- González, M.; Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Carrera-Tarela, Y. Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. Int. J. Biol. Macromol. 2021, 166, 1439–1447. [Google Scholar] [CrossRef]
Anatomic Part | Whole Kernel (%) | Protein (%) | Fat (%) | Ash (%) | Starch (%) |
---|---|---|---|---|---|
Whole grain | 100 | 11.5–12.3 | 3.6 | 1.6–1.7 | 72.3–75.1 |
Endosperm | 81.7–86.5 | 8.7–13.0 | 0.4–0.8 | 0.3–0.7 | 81.3–83.0 |
Germ | 8.0–10.9 | 17.8–19.2 | 26.9–30.6 | 3.9–10.4 | - |
Pericarp | 4.3–8.7 | 5.2–7.6 | 3.7–6.0 | 2.0–3.8 | - |
Variable | Minimum Value | Maximum Value |
---|---|---|
HC (%) | 88.80 | 102.59 |
OAC (%) | 150.66 | 177.33 |
SP (g/g) | 3.28 | 4.35 |
WRC (g/g) | 0.77 | 1.23 |
EA (%) | 38.00 | 55.00 |
ES (%) | 56.00 | 66.00 |
Protein (%) | 8.57 | 11.17 |
Fat (%) | 1.58 | 6.35 |
Ash (%) | 0.29 | 2.16 |
Moisture (%) | 8.72 | 10.02 |
Carbohydrates (%) | 67.00 | 71.58 |
Factor | HC (%) | OAC (%) | SP (g/g) | WRC (g/g) | EA (%) | ES (%) | Protein (%) | Fat (%) | Ash (%) | Moisture (%) | Carbohydrates (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Constant | 96.17 | 164.78 | 3.85 | 0.90 | 45.36 | 61.67 | 9.85 | 4.09 | 1.39 | 9.28 | 68.80 |
A | 1.77 | −1.86 | 0.14 ** | −0.07 ** | 1.53 ** | 0.50 | −0.24 ** | 0.28 * | 0.06 * | −0.41 ** | 0.30 |
B | 4.16 * | −9.73 ** | −0.41 ** | 0.11 ** | 5.63 ** | 1.25 * | 1.01 ** | −1.84 ** | −0.77 ** | −0.17 ** | 1.44 ** |
A × B | 1.37 | −0.21 | −0.05 | −0.07 * | 2.12 ** | 2.75 ** | −0.22 * | −0.08 | 0.16 ** | 0.08 * | −0.30 |
Model fitting | |||||||||||
p-value | <0.05 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 |
R2 | 0.58 | 0.69 | 0.90 | 0.73 | 0.93 | 0.68 | 0.90 | 0.93 | 0.97 | 0.95 | 0.58 |
Adj.-R2 | 0.49 | 0.62 | 0.88 | 0.67 | 0.91 | 0.61 | 0.88 | 0.91 | 0.96 | 0.94 | 0.49 |
Variables | Protein | Fat | Ash | Moisture | Carbohydrates | OAC | WRC | HC | SP | EA | ES |
---|---|---|---|---|---|---|---|---|---|---|---|
Protein | 1.00 | ||||||||||
Fat | −0.77 ** | 1.00 | |||||||||
Ash | −0.86 | 0.93 ** | 1.00 | ||||||||
Moisture | −0.12 | 0.19 | 0.23 | 1.00 | |||||||
Carbohydrates | 0.51 * | −0.89 ** | −0.82 ** | −0.53 ** | 1.00 | ||||||
OAC | −0.52 * | 0.82 ** | 0.84 ** | 0.26 | −0.85 ** | 1.00 | |||||
WRC | 0.50 * | −0.69 ** | −0.66 ** | −0.28 | 0.68 ** | −0.50 * | 1.00 | ||||
HC | 0.55 ** | −0.44 * | −0.41 * | −0.35 | 0.38 | −0.21 | −0.11 | 1.00 | |||
SP | −0.75 ** | 0.80 ** | 0.84 ** | 0.16 | −0.68 ** | 0.71 ** | −0.70 ** | −0.14 | 1.00 | ||
EA | 0.60 ** | −0.83 ** | −0.75 ** | −0.51 * | 0.87 ** | −0.80 ** | 0.44 * | 0.59 ** | −0.66 | 1.00 | |
ES | 0.20 | −0.34 | −0.11 | −0.11 | 0.28 | −0.15 | −0.15 | 0.69 ** | −0.07 | 0.60 ** | 1.00 |
Property | Optimal S | Optimal M | Optimal L | Control S | Control M | Control L | |||
---|---|---|---|---|---|---|---|---|---|
Predicted | Experimental | Predicted | Experimental | Predicted | Experimental | ||||
Treatment (°C) | 121.00 | 121.00 | 132.11 | 132.11 | 139.47 | 139.47 | - | - | - |
HC (%) | 91.60 ± 3.86 a | 96.55 ± 0.11 ax | 96.47 ± 3.86 a | 101.74 ± 0.54 aw | 103.29 ± 3.86 a | 110.84 ± 0.08 aj | 91.30 ± 1.50 y | 97.80 ± 1.40 z | 98.11 ± 0.90 k |
OAC (%) | 176.16 ± 6.28 a | 179.71 ± 0.06 ax | 164.47 ± 6.28 a | 174.77 ± 0.15 aw | 153.10 ± 6.28 a | 158.94 ± 0.38 aj | 171.33 ± 0.43 y | 166.71 ± 0.39 z | 152.36 ± 0.54 k |
SP (g/g) | 4.08 ± 0.14 a | 4.32 ± 0.06 ax | 3.87 ± 0.14 b | 4.13 ± 0.04 aw | 3.52 ± 0.14 a | 3.74 ± 0.06 aj | 4.31 ± 0.01 x | 3.98 ± 0.01 z | 3.51 ± 0.01 k |
WRC (g/g) | 0.79 ± 0.09 a | 0.83 ± 0.02 ay | 0.88 ± 0.09 a | 0.94 ± 0.01 az | 0.87 ± 0.09 a | 0.93 ± 0.01 ak | 1.32 ± 0.02 x | 1.06 ± 0.03 w | 1.31 ± 0.08 j |
EA (%) | 40.33 ± 1.65 a | 41.75 ± 1.06 ax | 45.62 ± 1.65 a | 46.75 ± 1.06 aw | 54.43 ± 1.65 a | 57.75 ± 1.06 aj | 41.50 ± 0.50 x | 45.50 ± 0.50 w | 56.50 ± 0.50 j |
ES (%) | 62.67 ± 1.95 a | 64.50 ± 0.72 ax | 61.75 ± 1.95 a | 63.50 ± 0.72 aw | 65.98 ± 1.95 a | 66.50 ± 0.72 aj | 62.50 ± 0.50 y | 54.50 ± 0.50 z | 66.50 ± 0.50 j |
Protein (%) | 8.86 ± 0.34 a | 8.87 ± 0.06 ay | 9.81 ± 0.34 a | 8.96 ± 0.06 bw | 10.42 ± 0.34 b | 11.3 ± 0.06 ak | 10.62 ± 0.14 x | 8.83 ± 0.02 z | 11.85 ± 0.05 j |
Fat (%) | 5.56 ± 0.48 a | 5.69 ± 0.01 ax | 4.13 ± 0.48 a | 4.22 ± 0.03 aw | 2.44 ± 0.48 a | 2.53 ± 0.04 aj | 3.20 ± 0.02 y | 3.15 ± 0.02 z | 3.12 ± 0.01 k |
Ash (%) | 2.26 ± 0.13 a | 2.29 ± 0.01 ax | 1.40 ± 0.13 a | 1.47 ± 0.01 aw | 0.83 ± 0.13 a | 0.86 ± 0.01 aj | 2.26 ± 0.02 x | 1.15 ± 0.01 z | 0.76 ± 0.01 k |
Moisture (%) | 9.93 ± 0.11 a | 10.13 ± 0.01 ay | 9.21 ± 0.11 b | 9.89 ± 0.02 az | 8.80 ± 0.11 a | 8.87 ± 0.01 ak | 10.98 ± 0.01 x | 11.20 ± 0.02 w | 11.30 ± 0.03 j |
Carbohyd. (%) | 66.76 ± 1.19 a | 73.01 ± 0.08 bx | 68.85 ± 1.19 b | 75.45 ± 0.00 az | 70.23 ± 1.19 b | 76.41 ± 0.01 aj | 72.93 ± 0.15 x | 75.65 ± 0.02 w | 72.98 ± 0.06 k |
Property | Sample | |||||
---|---|---|---|---|---|---|
Optimal S | Control S | Optimal M | Control M | Optimal L | Control L | |
TPC (mg GAE/g) | 21.76 ± 0.00 xB | 21.06 ± 0.08 yG | 25.80 ± 0.06 wA | 21.74 ± 0.00 zF | 11.01 ± 0.00 kC | 16.10 ± 0.06 jH |
DPPH AA (%) | 89.22 ± 0.14 yB | 99.81 ± 0.00 xF | 97.57 ± 0.14 zA | 99.03 ± 0.00 wG | 77.57 ± 0.14 kC | 85.34 ± 0.14 jH |
RDS (g/100 g) | 9.38 ± 0.04 xB | 8.45 ± 0.04 yG | 10.02 ± 0.02 wA | 9.75 ± 0.04 zF | 4.57 ± 0.06 jC | 4.29 ± 0.04 kH |
SDS (g/100 g) | 0.66 ± 0.04 xB | 0.46 ± 0.08 yH | 1.02 ± 0.02 wA | 1.00 ± 0.00 wF | 0.29 ± 0.02 kC | 0.77 ± 0.08 jG |
TDS (g/100 g) | 12.68 ± 0.02 xB | 11.63 ± 0.02 yG | 13.53 ± 0.02 wA | 13.13 ± 0.06 zF | 11.38 ± 0.04 jC | 10.97 ± 0.02 kH |
RS (g/100 g) | 4.04 ± 0.05 xB | 3.65 ± 0.02 yG | 8.45 ± 0.05 wA | 8.33 ± 0.07 wF | 3.90 ± 0.05 jC | 3.55 ± 0.05 kG |
Total Starch (g/100 g) | 16.73 ± 0.03 xB | 15.28 ± 0.04 yG | 21.98 ± 0.07 wA | 21.46 ± 0.13 zF | 15.29 ± 0.01 jC | 14.51 ± 0.07 kH |
Property | Sample | |||||
---|---|---|---|---|---|---|
Optimal S | Control S | Optimal M | Control M | Optimal L | Control L | |
L* | 85.23 ± 0.04 xF | 85.51 ± 0.03 xA | 84.54 ± 0.04 wG | 83.25 ± 0.07 zB | 78.88 ± 0.12 jH | 77.08 ± 0.17 kC |
a* | 0.97 ± 0.01 xF | 0.78 ± 0.03 yC | 1.11 ± 0.02 zF | 1.23 ± 0.03 wB | 1.11 ± 0.05 kG | 1.93 ± 0.03 jA |
b* | 11.68 ± 0.07 xF | 11.69 ± 0.01 xC | 12.00 ± 0.05 zG | 12.63 ± 0.01 wB | 15.24 ± 0.04 kH | 15.80 ± 0.11 jA |
α-helix/β sheets | 3.80 ± 0.37 xF | 2.11 ± 0.15 yA | 2.46 ± 0.09 wG | 3.01 ± 0.69 wA | 1.66 ± 0.21 kH | 2.36 ± 0.02 jA |
Crystallin/amorphous | 1.96 ± 0.00 xG | 1.06 ± 0.01 yB | 1.79 ± 0.02 wH | 1.05 ± 0.01 zB | 2.03 ± 0.03 jF | 2.06 ± 0.16 jA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batariuc, A.; Ungureanu-Iuga, M.; Mironeasa, S. Characterization of Sorghum Processed through Dry Heat Treatment and Milling. Appl. Sci. 2022, 12, 7630. https://doi.org/10.3390/app12157630
Batariuc A, Ungureanu-Iuga M, Mironeasa S. Characterization of Sorghum Processed through Dry Heat Treatment and Milling. Applied Sciences. 2022; 12(15):7630. https://doi.org/10.3390/app12157630
Chicago/Turabian StyleBatariuc, Ana, Mădălina Ungureanu-Iuga, and Silvia Mironeasa. 2022. "Characterization of Sorghum Processed through Dry Heat Treatment and Milling" Applied Sciences 12, no. 15: 7630. https://doi.org/10.3390/app12157630