# Infill Microstructures for Additive Manufacturing

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Theoretical Background

- ${K}_{e}$ is the elements stiffness matrix;
- ${\rho}_{min}$ is the minimum penalty factor;
- N is the number of total elements in the design domain.

- (U
_{e}) is the displacement vector of element e; - (K
_{e}) is the stiffness of element e; - the vector {ρ} consists of the relative density of the ρ
_{e}elements.

#### 2.2. Homogenization

## 3. Design of Topologically Optimized Lattice Structures

## 4. Lattice Structures Fabrication

## 5. Results

#### 5.1. Theoretical Evaluation of Proposed Lattices

_{max}) and local minimum Young’s modulus (E

_{min}) is checked (Figure 13). According to Tancogne Dejean, a measure of the anisotropy of the lattice structure is derived from E

_{max}/E

_{min}[37].

#### 5.2. Zener Ratio Calculation

#### 5.3. Evaluation of Homogenied Microstructure with FE Analysis

#### 5.4. Exrerimental Results

## 6. Discussion

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol.
**2015**, 83, 389–405. [Google Scholar] [CrossRef][Green Version] - Hajare, D.M.; Gajbhiye, T.S. Additive manufacturing (3D printing): Recent progress on advancement of materials and challenges. Mater. Today Proc.
**2022**, 58, 736–743. [Google Scholar] [CrossRef] - Ntintakis, I.; Stavroulakis, G.E.; Plakia, N. Topology Optimization by the Use of 3D Printing Technology in the Product Design Process. HighTech Innov. J.
**2020**, 1, 161–171. [Google Scholar] [CrossRef] - Ntintakis, I.; Stavroulakis, G.E.; Sfakianakis, G.; Fiotodimitrakis, N. Utilizing Generative Design for Additive Manufacturing. In Proceedings of the Recent Advances in Manufacturing Processes and Systems; Dave, H.K., Dixit, U.S., Nedelcu, D., Eds.; Springer: Singapore, 2022; pp. 977–989. [Google Scholar]
- Wiberg, A.; Persson, J.; Ölvander, J. Design for Additive Manufacturing—A Review of Available Design Methods and Software. Rapid Prototyp. J.
**2019**, 25, 1080–1094. [Google Scholar] [CrossRef][Green Version] - Vaneker, T.; Bernard, A.; Moroni, G.; Gibson, I.; Zhang, Y. Design for additive manufacturing: Framework and methodology. CIRP Ann.
**2020**, 69, 578–599. [Google Scholar] [CrossRef] - Suárez, A.; Veiga, F.; Bhujangrao, T.; Aldalur, E. Study of the Mechanical Behavior of Topologically Optimized Arc Wire Direct Energy Deposition Aerospace Fixtures. J. Mater. Eng. Perform.
**2022**, 1–13. [Google Scholar] [CrossRef] - Veiga, F.; Suárez, A.; Aldalur, E.; Goenaga, I.; Amondarain, J. Wire Arc Additive Manufacturing Process for Topologically Optimized Aeronautical Fixtures. 3D Print. Addit. Manuf.
**2021**. [Google Scholar] [CrossRef] - Li, X.; Ashraf, M.; Li, H.; Zheng, X.; Wang, H.; Al-Deen, S.; Hazell, P.J. An Experimental Investigation on Parallel Bamboo Strand Lumber Specimens under Quasi Static and Impact Loading. Constr. Build. Mater.
**2019**, 228, 116724. [Google Scholar] [CrossRef] - Gong, C.; Bai, Z.; Lv, J.; Zhang, L. Crashworthiness Analysis of Bionic Thin-Walled Tubes Inspired by the Evolution Laws of Plant Stems. Thin-Walled Struct.
**2020**, 157, 107081. [Google Scholar] [CrossRef] - Ghazlan, A.; Nguyen, T.; Ngo, T.; Linforth, S.; Le, V.T. Performance of a 3D Printed Cellular Structure Inspired by Bone. Thin-Walled Struct.
**2020**, 151, 106713. [Google Scholar] [CrossRef] - Plocher, J.; Panesar, A. Review on Design and Structural Optimisation in Additive Manufacturing: Towards next-Generation Lightweight Structures. Mater. Des.
**2019**, 183, 108164. [Google Scholar] [CrossRef] - Seharing, A.; Azman, A.H.; Abdullah, S. A Review on Integration of Lightweight Gradient Lattice Structures in Additive Manufacturing Parts. Adv. Mech. Eng.
**2020**, 12, 1687814020916951. [Google Scholar] [CrossRef] - Jiang, J.; Ma, Y. Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A Review. Micromachines
**2020**, 11, 633. [Google Scholar] [CrossRef] - Feng, J.; Fu, J.; Lin, Z.; Shang, C.; Niu, X. Layered infill area generation from triply periodic minimal surfaces for additive manufacturing. Comput. Des.
**2018**, 107, 50–63. [Google Scholar] [CrossRef] - Podroužek, J.; Marcon, M.; Ninčević, K.; Wan-Wendner, R. Bio-Inspired 3D Infill Patterns for Additive Manufacturing and Structural Applications. Materials
**2019**, 12, 499. [Google Scholar] [CrossRef][Green Version] - Bean, P.; Lopez-Anido, R.A.; Vel, S. Numerical Modeling and Experimental Investigation of Effective Elastic Properties of the 3D Printed Gyroid Infill. Appl. Sci.
**2022**, 12, 2180. [Google Scholar] [CrossRef] - Hoang, V.-N.; Tran, P.; Nguyen, N.-L.; Hackl, K.; Nguyen-Xuan, H. Adaptive Concurrent Topology Optimization of Coated Structures with Nonperiodic Infill for Additive Manufacturing. Comput.-Aided Des.
**2020**, 129, 102918. [Google Scholar] [CrossRef] - Wu, J.; Wang, C.C.L.; Zhang, X.; Westermann, R. Self-Supporting Rhombic Infill Structures for Additive Manufacturing. Comput.-Aided Des.
**2016**, 80, 32–42. [Google Scholar] [CrossRef] - Liu, J.; Gaynor, A.T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.C.L.; et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim.
**2018**, 57, 2457–2483. [Google Scholar] [CrossRef][Green Version] - Sigmund, O.; Maute, K. Topology Optimization Approaches. Struct. Multidisc. Optim.
**2013**, 48, 1031–1055. [Google Scholar] [CrossRef] - Tang, Y.; Kurtz, A.; Zhao, Y.F. Bidirectional Evolutionary Structural Optimization (BESO) Based Design Method for Lattice Structure to Be Fabricated by Additive Manufacturing. Comput.-Aided Des.
**2015**, 69, 91–101. [Google Scholar] [CrossRef][Green Version] - Wang, M.Y.; Wang, X.; Guo, D. A Level Set Method for Structural Topology Optimization. Comput. Methods Appl. Mech. Eng.
**2003**, 192, 227–246. [Google Scholar] [CrossRef] - Lee, J.; Kwon, C.; Yoo, J.; Min, S.; Nomura, T.; Dede, E.M. Design of Spatially-Varying Orthotropic Infill Structures Using Multiscale Topology Optimization and Explicit de-Homogenization. Addit. Manuf.
**2021**, 40, 101920. [Google Scholar] [CrossRef] - Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim.
**1989**, 1, 193–202. [Google Scholar] [CrossRef] - Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A Review of Topology Optimization for Additive Manufacturing: Status and Challenges. Chin. J. Aeronaut.
**2021**, 34, 91–110. [Google Scholar] [CrossRef] - Sokół, T.; Rozvany, G.I.N. Exact Truss Topology Optimization for External Loads and Friction Forces. Struct. Multidisc. Optim.
**2013**, 48, 853–857. [Google Scholar] [CrossRef] - Eschenauer, H.A.; Olhoff, N. Topology Optimization of Continuum Structures: A Review. Appl. Mech. Rev.
**2001**, 54, 331–390. [Google Scholar] [CrossRef] - Rozvany, G.I.N. A Critical Review of Established Methods of Structural Topology Optimization. Struct. Multidisc. Optim.
**2009**, 37, 217–237. [Google Scholar] [CrossRef] - Rozvany, G.I.N.; Bendso̸e, M.P.; Kirsch, U. Layout Optimization of Structures. Appl. Mech. Rev.
**1995**, 48, 41–119. [Google Scholar] [CrossRef] - Zener, C.M.; Siegel, S. Elasticity and Anelasticity of Metals. J. Phys. Chem.
**1949**, 53, 1468. [Google Scholar] [CrossRef] - Somnic, J.; Jo, B.W. Status and Challenges in Homogenization Methods for Lattice Materials. Materials
**2022**, 15, 605. [Google Scholar] [CrossRef] [PubMed] - Drosopoulos, G.A.; Stavroulakis, E.E. Nonlinear Mechanics for Composite Heterogeneous Structures; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Chatzigeorgiou, G.; Meraghni, F.; Charalambakis, N. Multiscale Modeling Approaches for Composites; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Rehme, O.; Emmelmann, C. Rapid manufacturing of lattice structures with selective laser melting. In Laser-Based Micropackaging; International Society for Optics and Photonics: San Jose, CA, USA, 2006; Volume 6107, p. 61070K. [Google Scholar]
- Kaminakis, N.T.; Drosopoulos, G.A.; Stavroulakis, G.E. Design and Verification of Auxetic Microstructures Using Topology Optimization and Homogenization. Arch. Appl. Mech.
**2015**, 85, 1289–1306. [Google Scholar] [CrossRef] - Tancogne-Dejean, T.; Diamantopoulou, M.; Gorji, M.B.; Bonatti, C.; Mohr, D. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness. Adv. Mater.
**2018**, 30, 1803334. [Google Scholar] [CrossRef] [PubMed]

**Figure 3.**Intermediate shapes. Different iteration stages (

**b**–

**e**) from the initial design area (

**a**) of Topology Optimized ‘structure #1’: (

**a**) design area, (

**b**) step 5, (

**c**) step 10, (

**d**) step 18 and (

**e**) step 23.

**Figure 4.**Iterations steps (

**a**–

**e**) of the Topology Optimization study for ‘structure 2’: (

**a**) design area, (

**b**) step 10, (

**c**) step 20, (

**d**) step 25 and (

**e**) step 33.

**Figure 5.**(

**a**) Volume fraction per each step (

**b**), and the value of the volume fraction constraints on each iteration step of ‘structure #1’.

**Figure 6.**(

**a**) Volume fraction per each step (

**b**), and volume fraction constraints on each iteration step of ‘structure #2’.

**Figure 8.**Outline dimensions of unit cells and lattice models for the compression test of (

**a**) structure #1 with a volume fraction constraint = 0.4 and (

**b**) structure #2 with a volume fraction constraint = 0.1.

**Figure 9.**Fabricated ABS specimens without supports for both structures for the tensile strength test with a relative density of 0.4 for structure #1 and 0.1 for structure #2.

**Figure 10.**Outline dimensions of the tensile strength specimens (

**a**,

**b**), each lattice structure fabricated with 0°, 45° and 90° angles of single unit cell mapping.

**Figure 16.**The elastic moduli of both homogenized lattices in different relative densities ($\overline{\rho}$).

**Figure 17.**Displacement, strain and Von mises stress of homogenized structures #1 and #2 for different values of relative density.

**Figure 18.**Specimens’ behavior during the compression test: (

**a**) lattice structure #1 and (

**b**) lattice structure #2.

**Figure 19.**Samples behavior on the tensile strength test, and stress/strain curve of lattice structure #1 for 0°, 45° and 90° angles.

**Figure 20.**Strain at sB, Modulus of Elasticity, sB value and toughness of lattice structure #1 for different cell mapping angles.

**Figure 21.**Samples behavior on the tensile strength test, and stress/strain curve of lattice structure #2 for 0°, 45° and 90° angles.

**Figure 22.**Strain at sB, Modulus of Elasticity, sB value and toughness of lattice structure #2 for different cell mapping angles.

Young’s Modulus (MPa) | Density (kg/mm ^{3}) | Poisson’s Ratio |
---|---|---|

187,000 | 0.0079 | 0.33 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ntintakis, I.; Stavroulakis, G.E. Infill Microstructures for Additive Manufacturing. *Appl. Sci.* **2022**, *12*, 7386.
https://doi.org/10.3390/app12157386

**AMA Style**

Ntintakis I, Stavroulakis GE. Infill Microstructures for Additive Manufacturing. *Applied Sciences*. 2022; 12(15):7386.
https://doi.org/10.3390/app12157386

**Chicago/Turabian Style**

Ntintakis, Ioannis, and Georgios E. Stavroulakis. 2022. "Infill Microstructures for Additive Manufacturing" *Applied Sciences* 12, no. 15: 7386.
https://doi.org/10.3390/app12157386