Physical Development Differences between Professional Soccer Players from Different Competitive Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Composition
2.3. Handgrip
2.4. Lower-Body Explosive Strength
2.5. Flexibility
2.6. Balance
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, P.; De Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The long-term athlete development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Slimani, M.; Znazen, H.; Hammami, A.; Bragazzi, N.L. Comparison of body fat percentage of male soccer players of different competitive levels, playing positions and age groups: A meta-analysis. J. Sports Med. Phys. Fitness. 2018, 58, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Bekris, E.; Pidoulas, G.; Pidoulas, P.; Gissis, I.; Katis, A.; Komsis, S. Examination of Physical Fitness Parameters Between Professional and Amateur Greek Soccer Players During the Transition Period. J. Strength Cond. Res. 2021, 35, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, D.H.; Dourado, A.C.; Stanganelli, L.C.R.; Gonçalves, H.R. Evaluation of body composition and its relationship with physical fitness in professional soccer players at the beginning of pre-season. Retos 2021, 40, 117–125. [Google Scholar]
- Campa, F.; Semprini, G.; Júdice, P.B.; Messina, G.; Toselli, S. Anthropometry, physical and movement features, and repeated-sprint ability in soccer players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef]
- Sutton, L.; Scott, M.; Wallace, J.; Reilly, T. Body composition of English Premier League soccer players: Influence of playing position, international status, and ethnicity. J. Sports Sci. 2009, 27, 1019–1026. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Lawton, T.; Harris, N.; Kilding, A.; McMaster, D.T. A brief review of handgrip strength and sport performance. J. Strength Cond. Res. 2017, 31, 3187–3217. [Google Scholar] [CrossRef] [Green Version]
- Wisloff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Peñailillo, L.; Espíldora, F.; Jannas-Vela, S.; Mujika, I.; Zbinden-Foncea, H. Muscle strength and speed performance in youth soccer players. J. Hum. Kinet. 2016, 50, 203. [Google Scholar] [CrossRef] [PubMed]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Styles, W.J.; Matthews, M.J.; Comfort, P. Effects of strength training on squat and sprint performance in soccer players. J. Strength Cond. Res. 2016, 30, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Northeast, J.; Russell, M.; Shearer, D.; Cook, C.J.; Kilduff, L.P. Predictors of linear and multidirectional acceleration in elite soccer players. J. Strength Cond. Res. 2019, 33, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loturco, I.; Contreras, B.; Kobal, R.; Fernandes, V.; Moura, N.; Siqueira, F.; Winckler, C.; Suchomel, T.; Pereira, L.A. Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS ONE 2018, 13, e0201475. [Google Scholar] [CrossRef]
- Jadczak, L.; Grygorowicz, M.; Dzudzinski, W.; Sliwowski, R. Comparison of static and dynamic balance at different levels of sport competition in professional and junior elite soccer players. J. Strength Cond. Res. 2019, 33, 3384–3391. [Google Scholar] [CrossRef]
- Bok, S.-K.; Lee, T.H.; Lee, S.S. The effects of changes of ankle strength and range of motion according to aging on balance. Ann. Rehabil. Med. 2013, 37, 10–16. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J.; Denegar, C.R.; Buckley, W.E. The effects of fatigue and chronic ankle instability on dynamic postural control. J. Athl. Train. 2004, 39, 321. [Google Scholar]
- Pau, M.; Ibba, G.; Attene, G. Fatigue-induced balance impairment in young soccer players. J. Athl. Train. 2014, 49, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.A.; Lord, S.R.; Rogers, M.W.; Fitzpatrick, R.C. Muscle weakness impairs the proprioceptive control of human standing. Brain Res. 2008, 1242, 244–251. [Google Scholar] [CrossRef]
- Paillard, T.; Noe, F.; Riviere, T.; Marion, V.; Montoya, R.; Dupui, P. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition. J. Athl. Train. 2006, 41, 172. [Google Scholar]
- Jadczak, Ł.; Grygorowicz, M.; Wieczorek, A.; Śliwowski, R. Analysis of static balance performance and dynamic postural priority according to playing position in elite soccer players. Gait Posture 2019, 74, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness profiling in soccer: Physical and physiologic characteristics of elite players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerodimos, V. Reliability of handgrip strength test in basketball players. J. Hum. Kinet. 2012, 31, 25. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.K.F.; Arliani, G.G.; Almeida, G.P.L.; Venturine, A.M.; Santos, C.V.d.; Astur, D.C.; Cohen, M. The effects of one-half of a soccer match on the postural stability and functional capacity of the lower limbs in young soccer players. Clinics 2012, 67, 1361–1364. [Google Scholar] [CrossRef]
- Masanovic, B.; Milosevic, Z.; Bjelica, D. Comparative study of anthropometric measurement and body composition between soccer players from different competitive levels, elite and sub-elite. Pedagog. Psychol. Med. Biol. Probl. Phy. Train. Sports. 2019, 6, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, M.A.; Parpa, K.M.; Zacharia, A.I. Assessment of Lower Body and Abdominal Strength in Professional Soccer Players. J. Hum. Kinet. 2019, 70, 15–23. [Google Scholar] [CrossRef] [Green Version]
- França, C.; Gouveia, É.; Caldeira, R.; Marques, A.; Martins, J.; Lopes, H.; Henriques, R.; Ihle, A. Speed and Agility Predictors among Adolescent Male Football Players. Int. J. Environ. Res. Public Health 2022, 19, 2856. [Google Scholar] [CrossRef]
- Radzimiński, Ł.; Szwarc, A.; Padrón-Cabo, A.; Jastrzębski, Z. Correlations between body composition, aerobic capacity, speed and distance covered among professional soccer players during official matches. J. Sports Med. Phys. Fit. 2019, 60, 257–262. [Google Scholar] [CrossRef]
- Tavares, Ó.M.; Duarte, J.P.; Werneck, A.O.; Costa, D.C.; Sousa-e-Silva, P.; Martinho, D.; Luz, L.G.; Morouço, P.; Valente-dos-Santos, J.; Soles-Gonçalves, R. Body composition, strength static and isokinetic, and bone health: Comparative study between active adults and amateur soccer players. Einstein 2019, 17. [Google Scholar] [CrossRef]
- Bohannon, R.W. Are hand-grip and knee extension strength reflective of a common construct? Percept. Mot. Skills. 2012, 114, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Trosclair, D.; Bellar, D.; Judge, L.; Smith, J.; Mazerat, N.; Brignac, A. Hand-grip strength as a predictor of muscular strength and endurance. J. Strength Cond. Res. 2011, 25. [Google Scholar] [CrossRef]
- Boraczyński, M.; Boraczyński, T.; Podstawski, R.; Wójcik, Z.; Gronek, P. Relationships between measures of functional and isometric lower body strength, aerobic capacity, anaerobic power, sprint and countermovement jump performance in professional soccer players. J. Hum. Kinet. 2020, 75, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Amar, M.B.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J. Strength Cond. Res. 2009, 23, 2241–2249. [Google Scholar] [CrossRef] [Green Version]
- Cejudo, A.; Robles-Palazón, F.J.; Ayala, F.; Croix, M.D.S.; Ortega-Toro, E.; Santonja-Medina, F.; de Baranda, P.S. Age-related differences in flexibility in soccer players 8–19 years old. PeerJ. 2019, 7. [Google Scholar] [CrossRef]
Variables | Mean ± Standard Deviation | ANOVA | |||||
---|---|---|---|---|---|---|---|
EG (n = 22) | NEG-A (n = 17) | NEG-B (n = 18) | U23 (n = 21) | F | p | Post Hoc Comparisons | |
CA (years) | 26.1 ± 4.2 | 22.3 ± 1.8 | 28.1 ± 6.1 | 20.7 ± 1.5 | 14.031 | ≤0.01 ** | EG > NEG-A and U23; NEG-B > NEG-A and U23 |
Stature (cm) | 181.3 ± 6.3 | 180.9 ± 9.5 | 178.0 ± 6.6 | 178.5 ± 6.1 | 1.405 | 0.33 | |
Body mass (kg) | 78.0 ± 7.1 | 78.5 ± 11.6 | 76.0 ± 8.1 | 73.2 ± 8.8 | 1.434 | 0.24 | |
Body fat (%) | 12.6 ± 3.3 | 12.8 ± 3.4 | 13.2 ± 2.5 | 13.0 ± 2.5 | 0.232 | 0.87 | |
Fat-free mass (kg) | 68.2 ± 6.5 | 68.3 ± 9.1 | 65.9 ± 7.0 | 63.6 ± 6.7 | 1.947 | 0.13 | |
TBW (L) | 49.8 ± 4.8 | 49.8 ± 6.5 | 48.2 ± 5.0 | 46.4 ± 4.9 | 1.942 | 0.13 | |
Handgrip (kg) | 49.0 ± 4.6 | 48.1 ± 7.6 | 40.4 ± 8.7 | 44.7 ± 8.2 | 5.235 | ≤0.01 ** | EG > NEG-A and NEG-B |
CMJ height (cm) | 40.1 ± 4.0 | 38.2 ± 3.5 | 33.9 ± 3.4 | 36.9 ± 4.3 | 10.320 | ≤0.01 ** | EG > NEG-B and U23; NEG-A > NEG-B |
SJ height (cm) | 38.0 ± 4.3 | 37.3 ± 3.8 | 32.5 ± 3.8 | 35.0 ± 4.2 | 7.987 | ≤0.01 ** | EG > NEG-B and U23; NEG-A > NEG-B |
Sit and reach right (cm) | 38.7 ± 6.6 | 32.9 ± 7.3 | 32.8 ± 5.7 | 36.8 ± 5.3 | 4.324 | ≤0.01 ** | EG > NEG-A and NEG-B |
Sit and reach left (cm) | 38.1 ± 6.0 | 32.1 ± 6.7 | 33.3 ± 6.8 | 36.2 ± 5.6 | 3.732 | 0.02 * | EG > NEG-A |
Sit and reach bilateral (cm) | 39.9 ± 7.9 | 32.8 ± 9.0 | 32.6 ± 8.1 | 36.7 ± 5.7 | 4.059 | ≤0.01 ** | EG > NEG-A and NEG-B |
OSI (°) | 3.40 ± 1.82 | 4.02 ± 1.33 | 5.51 ± 2.89 | 6.05 ± 2.53 | 6.091 | ≤0.01 ** | EG < NEG-B and U23; NEG-A < U23 |
APSI (°) | 1.36 ± 0.69 | 1.69 ± 0.75 | 2.53 ± 2.53 | 3.52 ± 2.58 | 5.252 | ≤0.01 ** | EG < U23; NEG-A < U23 |
LMSI (°) | 2.84 ± 1.81 | 3.36 ± 1.38 | 4.40 ± 2.32 | 4.36 ± 1.92 | 3.256 | 0.03 * | EG < NEG-B and U23 |
Variable | Estimated Marginal Means (95% CI) | F | p | Partial Eta Squared | |||
---|---|---|---|---|---|---|---|
EG | NEG-A | NEG-B | U23 | ||||
Handgrip (kg) | 49.0 (45.6 to 52.3) | 48.1 (33.3 to 51.9) | 40.4 (36.5 to 44.3) | 44.7 (41.0 to 48.4) | 4.954 | ≤0.01 ** | 0.17 |
CMJ height (cm) | 40.7 (39.0 to 42.4) | 38.2 (36.2 to 40.2) | 33.9 (31.8 to 35.9) | 36.9 (34.9 to 38.8) | 9.977 | ≤0.01 ** | 0.29 |
SJ height (cm) | 38.4 (36.6 to 40.1) | 37.4 (35.3 to 39.4) | 32.4 (30.2 to 34.5) | 35.1 (33.1 to 37.1) | 7.777 | ≤0.01 ** | 0.25 |
Sit and reach right (cm) | 38.7 (36.0 to 41.5) | 33.0 (29.8 to 36.1) | 32.7 (29.4 to 36.0) | 36.9 (33.7 to 40.0) | 4.252 | ≤0.01 ** | 0.15 |
Sit and reach left (cm) | 38.3 (35.5 to 41.0) | 31.9 (28.8 to 35.1) | 33.6 (30.3 to 36.9) | 35.9 (32.8 to 39.0) | 3.719 | 0.02 * | 0.13 |
Sit and reach bilateral (cm) | 40.0 (36.7 to 43.4) | 32.7 (28.8 to 36.5) | 36.4 (28.8 to 36.9) | 32.9 (32.6 to 40.2) | 3.999 | ≤0.01 ** | 0.14 |
OSI (°) | 3.51 (2.53 to 4.49) | 3.88 (2.69 to 5.07) | 5.77 (4.60 to 6.94) | 5.81 (4.70 to 6.91) | 5.694 | ≤0.01 ** | 0.20 |
APSI (°) | 1.52 (0.71 to 2.32) | 1.48 (0.50 to 2.46) | 2.92 (1.95 to 3.89) | 3.16 (2.24 to 4.08) | 4.380 | ≤0.01 ** | 0.16 |
LMSI (°) | 2.85 (2.01 to 3.68) | 3.35 (2.34 to 4.37) | 4.41 (3.41 to 5.41) | 4.35 (3.40 to 5.30) | 3.191 | 0.03 * | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, C.; Ihle, A.; Marques, A.; Sarmento, H.; Martins, F.; Henriques, R.; Gouveia, É.R. Physical Development Differences between Professional Soccer Players from Different Competitive Levels. Appl. Sci. 2022, 12, 7343. https://doi.org/10.3390/app12147343
França C, Ihle A, Marques A, Sarmento H, Martins F, Henriques R, Gouveia ÉR. Physical Development Differences between Professional Soccer Players from Different Competitive Levels. Applied Sciences. 2022; 12(14):7343. https://doi.org/10.3390/app12147343
Chicago/Turabian StyleFrança, Cíntia, Andreas Ihle, Adilson Marques, Hugo Sarmento, Francisco Martins, Ricardo Henriques, and Élvio Rúbio Gouveia. 2022. "Physical Development Differences between Professional Soccer Players from Different Competitive Levels" Applied Sciences 12, no. 14: 7343. https://doi.org/10.3390/app12147343