Properties on Yttrium-Doped/Undoped Barium Cerate and Barium Zirconate Thin Films Formed by E-Beam Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, H.G.; Choi, Y.; Koo, B.; Jang, A.; Jung, W. Robust nano-architectured composite thin films for a low-temperature solid oxide fuel cell cathode. J. Mater. Chem. A 2016, 4, 9394–9402. [Google Scholar] [CrossRef] [Green Version]
- Traversa, E.; Fabbri, E. Proton Conductors for Solid Oxide Fuel Cells (SOFCs). In Functional Materials for Sustainable Energy Applications; Woodhead Publishing Series in Energy; Kilner, J.A., Skinner, S.J., Irvine, S.J.C., Edwards, P.P., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 515–537. [Google Scholar]
- Rashid, N.L.R.M.; Samat, A.A.; Jais, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Isahak, W.N.R.W. Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceram. Int. 2019, 45, 6605–6615. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Liu, C.; Lao, C.; Chen, Z. A review of current performance of rare earth metal-doped barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells. Prog. Solid State Chem. 2021, 63, 100325. [Google Scholar] [CrossRef]
- Hossain, M.K.; Chanda, R.; El-Denglawey, A.; Emrose, T.; Rahman, M.T.; Biswas, M.C.; Hashizume, K. Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review. Ceram. Int. 2021, 47, 23725–23748. [Google Scholar] [CrossRef]
- Bae, K.; Lee, S.; Jang, D.Y.; Kim, H.J.; Lee, H.; Shin, D.; Son, J.-W.; Shim, J.H. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate–Zirconate Electrolytes on Compositionally Gradient Anodes. ACS Appl. Mater. Interfaces 2016, 8, 9097–9103. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, E.; D’Epifanio, A.; Yang, N.; Tebano, A.; Balestrino, G.; Licoccia, S. Yttrium Doped Barium Cerate and Zirconate Heterostructures: Deposition and Electrochemical Characterization. ECS Trans. 2013, 57, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, E.; D’Epifanio, A.; Di Bartolomeo, E.; Licoccia, S.; Traversa, E. Tailoring the Chemical Stability of Ba(Ce0.8−xZrx)Y0.2O3−δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ion. 2008, 179, 558–564. [Google Scholar] [CrossRef]
- Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ion. 2000, 138, 91–98. [Google Scholar] [CrossRef]
- Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U.P.; Prestat, M.; Rupp, J.L.M.; Gauckler, L.J. Thin films for micro solid oxide fuel cells. J. Power Sources 2007, 173, 325–345. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, F.; Wang, D.; Jin, Z. Alternative preparation methods of thin films for solid oxide fuel cells: Review. Mater. Technol. 2020, 35, 212–227. [Google Scholar] [CrossRef]
- Barna, P.B.; Adamik, M. Growth Mechanisms of Polycrystalline Thin Films. In Science and Technology of Thin Films; World Scientific: Singapore, China, 1995; pp. 1–28. [Google Scholar]
- Anders, A. (Ed.) Film Deposition by Energetic Condensation. In Cathodic Arcs: From Fractal Spots to Energetic Condensation; Springer: New York, NY, USA, 2008; pp. 363–407. [Google Scholar]
- Subramaniyan, A.; Tong, J.; O’Hayre, R.P.; Sammes, N.M. Sintering Studies on 20 mol% Yttrium-Doped Barium Cerate. J. Am. Ceram. Soc. 2011, 94, 1800–1804. [Google Scholar] [CrossRef]
- Boschini, F.; Robertz, B.; Rulmont, A.; Cloots, R. Preparation of nanosized barium zirconate powder by thermal decomposition of urea in an aqueous solution containing barium and zirconium, and by calcination of the precipitate. J. Eur. Ceram. Soc. 2003, 23, 3035–3042. [Google Scholar] [CrossRef]
- Tong, J.; Clark, D.; Bernau, L.; Subramaniyan, A.; O’Hayre, R. Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method. Solid State Ion. 2010, 181, 1486–1498. [Google Scholar] [CrossRef]
- Ricote, S.; Bonanos, N.; de Lucas, M.M.; Caboche, G. Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ) at intermediate temperatures. J. Power Sources 2009, 193, 189–193. [Google Scholar] [CrossRef]
- Bhatia, M.S.; Patel, K.; Joshi, A.; Chatterjee, U.K. Control of Ionization in E-beam Evaporators via Optimum Choice of Focus-coil Current. Rev. Sci. Instrum. 1989, 60, 2794–2796. [Google Scholar] [CrossRef]
- Mukherjee, J.; Dileep Kumar, V.; Yadav, S.P.; Barnwal, T.A.; Dikshit, B. Plasma Diagnosis as a Tool for the Determination of the Parameters of Electron Beam Evaporation and Sources of Ionization. Meas. Sci. Technol. 2016, 27, 075007. [Google Scholar] [CrossRef]
- Thornton, J.A. High Rate Thick Film Growth. Annu. Rev. Mater. Sci. 1977, 7, 239–260. [Google Scholar] [CrossRef]
- Messier, R.; Giri, A.P.; Roy, R.A. Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 1984, 2, 500–503. [Google Scholar] [CrossRef]
- Mirica, E.; Kowach, G.; Du, H. Modified Structure Zone Model to Describe the Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering. Cryst. Growth Des. 2004, 4, 157–159. [Google Scholar] [CrossRef]
- Thornton, J.A. Structure-zone models of thin films. In Modeling of Optical Thin Films; SPIE: San Diego, CA, USA, 1988; Volume 0821. [Google Scholar]
- Jia, C.L.; Urban, K.; Mertin, M.; Hoffmann, S.; Waser, R. The Structure and Formation of Nanotwins in BaTiO3 Thin Films. Philos. Mag. A 1998, 77, 923–939. [Google Scholar] [CrossRef]
- Amsif, M.; Marrero-Lopez, D.; Ruiz-Morales, J.C.; Savvin, S.N.; Gabás, M.; Nunez, P. Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3−δ proton conductors. J. Power Sources 2011, 196, 3461–3469. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Mahne, N.; Čekada, M.; Panjan, M. Surface Topography of PVD Hard Coatings. Coatings 2021, 11, 1387. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hernandez-Sanchez, R.; Haile, S.M. Cation non-stoichiometry in yttrium-doped barium zirconate: Phase behavior, microstructure, and proton conductivity. J. Mater. Chem. 2010, 20, 8158–8166. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Bae, H.B.; Jung, W.; Chung, S.-Y. Manipulation of Nanoscale Intergranular Phases for High Proton Conduction and Decomposition Tolerance in BaCeO3 Polycrystals. Nano Lett. 2018, 18, 1110–1117. [Google Scholar] [CrossRef]
- Holz, L.I.V.; Graça, V.C.D.; Loureiro, F.J.A.; Fagg, D.P. Analysis of the Electrochemical Transport Properties of Doped Barium Cerate for Proton Conductivity in Low Humidity Conditions: A Review. In Analytical Chemistry-Advancement, Perspective and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Kreuer, K.D. On the development of proton conducting materials for technological applications. Solid State Ion. 1997, 97, 1–15. [Google Scholar] [CrossRef]
- Sarabut, J.; Charojrochkul, S.; Sornchamni, T.; Laosiripojana, N.; Assabumrungrat, S.; Wetwattana-Hartely, U.; Kim-Lohsoontorn, P. Effect of strontium and zirconium doped barium cerate on the performance of proton ceramic electrolyser cell for syngas production from carbon dioxide and steam. Int. J. Hydrogen Energy 2019, 44, 20634–20640. [Google Scholar] [CrossRef]
- Dubal, S.U.; Bhosale, C.H.; Jadhav, L.D. Performance of spray deposited Gd-doped barium cerate thin films for proton conducting SOFCs. Ceram. Int. 2015, 41, 5607–5613. [Google Scholar] [CrossRef]
- Chopdekar, R.V.; Arenholz, E.; Suzuki, Y. Orientation and thickness dependence of magnetization at the interfaces of highly spin-polarized manganite thin films. Phys. Rev. B 2009, 79, 104417. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Inoue, T.; Ichinose, D.; Funakubo, H.; Uchiyama, K. Fabrication of highly (110)-oriented BaCeO. Jpn. J. Appl. Phys. 2016, 55, 02BC19. [Google Scholar] [CrossRef]
- Campos Covarrubias, M.S.; Sriubas, M.; Bockute, K.; Winiarz, P.; Miruszewski, T.; Skubida, W.; Jaworski, D.; Bartmański, M.; Szkodo, M.; Gazda, M.; et al. Properties of Barium Cerate Thin Films Formed Using E-Beam Deposition. Crystals 2020, 10, 1152. [Google Scholar] [CrossRef]
- Bischof, C.; Nenning, A.; Malleier, A.; Martetschläger, L.; Gladbach, A.; Schafbauer, W.; Opitz, A.; Bram, M. Microstructure optimization of nickel/gadolinium-doped ceria anodes as key to significantly increasing power density of metal-supported solid oxide fuel cells. Int. J. Hydrogen Energy 2019, 44, 31475–31487. [Google Scholar] [CrossRef]
- Aryanto, D.; Marwoto, P.; Sudiro, T.; Wismogroho, A.S. Sugianto Growth of a-axis-oriented Al-doped ZnO thin film on glass substrate using unbalanced DC magnetron sputtering. J. Phys. Conf. Ser. 2019, 1191, 012031. [Google Scholar] [CrossRef]
- Kimura, T.; Miura, Y.; Fuse, K. Texture Development in Barium Titanate and PMN-PT Using Hexabarium 17-Titanate Heterotemplates. Int. J. Appl. Ceram. Technol. 2005, 2, 15–23. [Google Scholar] [CrossRef]
- Kimura, T.; Yi, Y.; Sakurai, F. Mechanisms of Texture Development in Lead-Free Piezoelectric Ceramics with Perovskite Structure Made by the Templated Grain Growth Process. Materials 2010, 3, 4965–4978. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.; Jang, D.Y.; Jung, H.J.; Kim, J.W.; Son, J.-W.; Shim, J.H. Micro ceramic fuel cells with multilayered yttrium-doped barium cerate and zirconate thin film electrolytes. J. Power Sources 2014, 248, 1163–1169. [Google Scholar] [CrossRef]
- Andersson, A.K.E.; Selbach, S.M.; Knee, C.S.; Grande, T. Chemical Expansion Due to Hydration of Proton-Conducting Perovskite Oxide Ceramics. J. Am. Ceram. Soc. 2014, 97, 2654–2661. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Seal, S.; Vij, R.; Bandyopadhyay, S. Reduced Activation Energy for Grain Growth in Nanocrystalline Yttria-Stabilized Zirconia. Nano Lett. 2003, 3, 397–401. [Google Scholar] [CrossRef]
- Laukaitis, G.; Jauneika, M.; Dudonis, J.; Katkauske, O.; Milcius, D. The properties of samarium doped ceria oxide thin films grown by e-beam deposition technique. Vacuum 2009, 83, S114–S117. [Google Scholar] [CrossRef]
- Virbukas, D.; Laukaitis, G.; Dudonis, J.; Milčius, D. The properties of scandium and cerium stabilized zirconium thin films formed by e-beam technique. Solid State Ion. 2011, 188, 46–49. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; D’Epifanio, A.; Di Bartolomeo, E.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E. High Proton Conduction in Grain-Boundary-Free Yttrium-Doped Barium Zirconate Films Grown by Pulsed Laser Deposition. Nat. Mater. 2010, 9, 846–852. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.J. Film growth mechanisms in pulsed laser deposition. Appl. Phys. A 2008, 93, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Stefan, E.; Stange, M.; Denonville, C.; Larring, Y.; Hildenbrand, N.; Norby, T.; Haugsrud, R. Layered Microstructures Based on BaZr0.85Y0.15O3−δ by Pulsed Laser Deposition for Metal-Supported Proton Ceramic Electrolyser Cells. J. Mater. Sci. 2017, 52, 6486–6497. [Google Scholar] [CrossRef] [Green Version]
- Saha, B.; Chaturvedi, P.; Yadav, A.K.; Saha, D.; Ganguly, S. Pulsed laser deposition of highly oriented stoichiometric thin films of topological insulator Sb2Te3. J. Vac. Sci. Technol. B 2016, 34, 021806. [Google Scholar] [CrossRef]
- Shin, B.; Leonard, J.P.; McCamy, J.W.; Aziz, M.J. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy. Appl. Phys. Lett. 2005, 87, 181916. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.; Aziz, M.J. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition. Phys. Rev. B 2007, 76, 085431. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.H.; Park, J.S.; An, J.; Gür, T.M.; Kang, S.; Prinz, F.B. Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes. Chem. Mater. 2009, 21, 3290–3296. [Google Scholar] [CrossRef]
- Orava, J.; Kohoutek, T.; Wagner, T. Deposition techniques for chalcogenide thin films. In Chalcogenide Glasses; Woodhead Publishing: Sawston, UK, 2014; pp. 265–309. ISBN 978-0-85709-345-5. [Google Scholar]
- Gilardi, E.; Fabbri, E.; Bi, L.; Rupp, J.L.M.; Lippert, T.; Pergolesi, D.; Traversa, E. Effect of Dopant–Host Ionic Radii Mismatch on Acceptor-Doped Barium Zirconate Microstructure and Proton Conductivity. J. Phys. Chem. C 2017, 121, 9739–9747. [Google Scholar] [CrossRef]
- Magrasó, A.; Ballesteros, B.; Rodríguez-Lamas, R.; Sunding, M.F.; Santiso, J. Optimisation of growth parameters to obtain epitaxial Y-doped BaZrO3 proton conducting thin films. Solid State Ion. 2018, 314, 9–16. [Google Scholar] [CrossRef]
- Fluri, A.; Marcolongo, A.; Roddatis, V.; Wokaun, A.; Pergolesi, D.; Marzari, N.; Lippert, T. Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering. Adv. Sci. 2017, 4, 1700467. [Google Scholar] [CrossRef]
Ba, at.% | Zr, at.% | Ce, at.% | Y, at.% | O, at.% | Relative Density, % | |
---|---|---|---|---|---|---|
BCO thin films | 9.6 | - | 9.2 | - | 81.3 | 92 |
BCO initial powder | 18.7 | - | 9.0 | - | 72.3 | |
BCY10 thin films | 10.3 | - | 7.5 | 1.1 | 81.1 | 86 |
BCY10 initial powder | 20.0 | - | 8.8 | 2.0 | 69.2 | |
BCY20 thin films | 10.1 | - | 6.0 | 1.5 | 82.4 | 90 |
BCY20 initial powder | 15.6 | - | 9.6 | 3.0 | 71.8 | |
BZO thin films | 14.0 | 10.2 | - | - | 75.9 | 95 |
BZO initial powder | 15.4 | 13.8 | - | - | 70.8 | |
BZCY thin films | 13.3 | 12.8 | 1.0 | 2.8 | 70.2 | 87 |
BZCY initial powder | 13.9 | 8.9 | 2.8 | 1.1 | 73.4 | |
BZY20 thin films | 13.7 | 8.1 | - | 1.1 | 77.0 | 90 |
BZY20 initial powder | 13.7 | 10.8 | - | 2.5 | 73.0 |
Thin Films | Referential PDF Card | Crystallographic Phase | Texture Coefficients for the Expressed Crystallographic Orientations | ||||
---|---|---|---|---|---|---|---|
BCO | 01-078-4102 | Pnma | (002) | (202) | (240) (321) | (242) (400) | (323) (402) |
2.89 | 0.05 | 0.73 | 1.20 | 0.11 | |||
BCY10 | 01-083-5709 | Pbnm | (020) | (220) | (024) (132) | (040) (224) | (240) (332) |
0.55 | 0.38 | 3.06 | 0.48 | 0.50 | |||
BCY20 | 01-084-7856 | Pm-3m | (110) | (200) | (211) | ||
0.89 | 0.15 | 1.95 |
Formed Thin Film | Powder | |||||||
---|---|---|---|---|---|---|---|---|
Crystallite Size, nm | Lattice Parameter, Å | Crystallite Size, nm | Lattice Parameter, Å | |||||
a | b | c | a | b | c | |||
BCO | 106.2 | 8.8116 | 6.2793 | 6.2580 | 122.0 | 8.7742 | 6.2339 | 6.2127 |
BCY10 | 24.2 | 8.6764 | 6.2473 | 6.3033 | 29.5 | 8.7031 | 6.1464 | 6.2138 |
BCY20 | 10.3 | 4.4393 | 16.8 | 4.4027 | ||||
BZO | 12.0 | 4.2436 | 125.0 | 4.1915 | ||||
BZY20 | 8.6 | 4.2446 | 23.9 | 4.2169 | ||||
BZCY | 2.4 | 4.3022 | 24.1 | 4.2437 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos Covarrubias, M.S.; Sriubas, M.; Bockute, K.; Poskaite, A.; Vazgys, R.; Gazda, M.; Laukaitis, G. Properties on Yttrium-Doped/Undoped Barium Cerate and Barium Zirconate Thin Films Formed by E-Beam Vapor Deposition. Appl. Sci. 2022, 12, 6422. https://doi.org/10.3390/app12136422
Campos Covarrubias MS, Sriubas M, Bockute K, Poskaite A, Vazgys R, Gazda M, Laukaitis G. Properties on Yttrium-Doped/Undoped Barium Cerate and Barium Zirconate Thin Films Formed by E-Beam Vapor Deposition. Applied Sciences. 2022; 12(13):6422. https://doi.org/10.3390/app12136422
Chicago/Turabian StyleCampos Covarrubias, Monica Susana, Mantas Sriubas, Kristina Bockute, Aurelija Poskaite, Rokas Vazgys, Maria Gazda, and Giedrius Laukaitis. 2022. "Properties on Yttrium-Doped/Undoped Barium Cerate and Barium Zirconate Thin Films Formed by E-Beam Vapor Deposition" Applied Sciences 12, no. 13: 6422. https://doi.org/10.3390/app12136422
APA StyleCampos Covarrubias, M. S., Sriubas, M., Bockute, K., Poskaite, A., Vazgys, R., Gazda, M., & Laukaitis, G. (2022). Properties on Yttrium-Doped/Undoped Barium Cerate and Barium Zirconate Thin Films Formed by E-Beam Vapor Deposition. Applied Sciences, 12(13), 6422. https://doi.org/10.3390/app12136422