Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants Participants
2.2. Data Collection and Procedures
2.2.1. Anthropometric Measurements and Indices
- used for obesity diagnosis:
- ABSI = WC (in m)/[BMI (in kg/m2)2/3 × H (in m)1/2]; m11/6 kg−2/3
- AVI = [2 × WC (in cm)2 + 0.7 × (WC (in cm) − HC (in cm)2]/1000; cm2
- BAI = [HC (in cm)/H (in m)1.5] − 18; %
- BMI = BW (in kg)/H (in m)2; kg/m2
- BRI = 364.2 − 365.5 [1 − π−2 WC (in m)2 × Height (in m)−2]1/2; no units
- RFM = 64 − [20 × (H (in m)/WC (in m)] + 12 × sex (0 for men, 1 for women); no units
- WHR = WC (in cm)/HC (in cm); no units
- WHtR = WC (in cm)/H (in cm); no units.
- Muscle Arm Circumference, MAC = (MUAC (in cm) − π × triceps skinfolds (in cm)); cm
- Arm Muscle Area, AMA = [MUAC (in cm) − (π × triceps skinfolds (in cm)2)/4 π]; cm
- MUAC/H = MUAC (in cm)/H (in cm); no units.
2.2.2. BIA Measurements
- FMI = FM (in kg)/H (in m)2, kg/m2;
- FFMI = FFM (in kg)/H (in m)2, kg/m2.
2.2.3. Diagnostic Criteria of Obesity or Sarcopenia Based on FM and FFM
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Association between FM or FFM with Anthropometric Indices
3.3. The Predictive Power of Anthropometric Indices by Sex
3.4. Cut-Offs for Screening Obesity by Sex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABSI | body shape index |
AMA | arm muscle area |
AUC | the area under the curve |
AVI | abdominal volume index |
BAI | body adiposity index |
BMI | body mass index |
BRI | body roundness index |
H | height |
HC | hip circumference |
FFM | fat free mass |
FFMI | fat free mass index |
FM | fat mass |
FMI | fat mass index |
MAC | muscle-arm circumference |
MUAC | mid-upper arm circumference |
RFM | relative fat mass |
SD | standard deviation |
WC | waist circumference |
WHR | waist-to-hip ratio |
WHtR | waist-to-height ratio |
References
- EUROSTAT 2021. Overweight and Obesity-BMI Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Overweight_and_obesity_-_BMI_statistics (accessed on 15 April 2022).
- OECD/European Observatory on Health Systems and Policies. 2019 Poland: Country Health Profile 2019, State of Health in the EU; OECD Publishing: Paris, France, 2019. [Google Scholar]
- Mangla, A.G.; Dhamija, N.; Gupta, U.; Dhall, M. Anthropometric Markers as a Paradigm for Obesity Risk Assessment. J. Biosci. Med. 2020, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Peralta, F.; Abreu, C.; Cruz-Bravo, M.; Alcarria, E.; Gutierrez-Buey, G.; Krakauer, N.Y.; Krakauer, J.C. Relationship between “a body shape index (ABSI)” and body composition in obese patients with type 2 diabetes. Diabetol. Metab. Syndr. 2018, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, V.; Zancanaro, C.; Milanese, C. Anthropometric prediction of DXA-measured body composition in female team handball players. Peer J. 2018, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dmitruk, A.; Czeczelewski, J.; Czeczelewska, E.; Golach, J.; Parnicka, U. Body composition and fatty tissue distribution in women with various menstrual status. Rocz. Panstw. Zakl. Hig. 2018, 69, 95–101. [Google Scholar]
- Liu, M.M.; Liu, Q.J.; Wen, J.; Wang, M.; Wu, L.Y.; Qu, M.L.; Li, M.; Shen, M.X.; Wu, J. Waist-to-hip ratio is the most relevant obesity index at each phase of insulin secretion among obese patients. J. Diabetes Complicat. 2018, 32, 670–676. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Müller, M.J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 2020, 22, e13190. [Google Scholar] [CrossRef]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolcott, O.O.; Bergman, R.N. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): Association with mortality in NHANES 1999–2014. Int. J. Obes. 2020, 44, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Piqueras, P.; Ballester, A.; Durá-Gil, J.V.; Martinez-Hervas, S.; Redón, J.; Real, J.T. Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Front. Psychol. 2021, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.C.; Pastore, C.A.; Orlandi, S.P.; Heymsfield, S.B. Obesity paradox in cancer: New insights provided by body composition. Am. J. Clin. Nutr. 2014, 99, 999–1005. [Google Scholar] [CrossRef]
- Gort-Van Dijk, D.; Weerink, L.B.M.; Milovanovic, M.; Haveman, J.W.; Hemmer, P.H.J.; Dijkstra, G.; Lindeboom, R.; Campmans-Kuijpers, M.J.E. Bioelectrical impedance analysis and mid-upper arm muscle circumference can be used to detect low muscle mass in clinical practice. Nutrients 2021, 13, 2350. [Google Scholar] [CrossRef]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Wells, J.C.K.; Smith, S.R.; Stephan, B.C.M.; Siervo, M. Sarcopenic obesity: A Critical appraisal of the current evidence. Clin. Nutr. 2012, 31, 583–601. [Google Scholar] [CrossRef]
- Schutz, Y.; Kyle, U.U.G.; Pichard, C. Fat-free mass index and fat mass index percentiles in caucasians aged 18–98 y. Int. J. Obes. 2002, 26, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Diet, Anthropometry and Physical Activity Measurement Toolkit. Available online: https://dapa-toolkit.mrc.ac.uk/ (accessed on 26 May 2022).
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Survey (NHANES). Anthropometry Procedures Manual; Centers for Disease Control and Prevention (CDC): Hyattsville, MD, USA, 2007. [Google Scholar]
- Diet, Anthropometry and Physical Activity Measurement Toolkit. Available online: https://dapa-toolkit.mrc.ac.uk/anthropometry/objective-methods/simple-measures-muac (accessed on 26 May 2022).
- Diet, Anthropometry and Physical Activity Measurement Toolkit. Available online: https://dapa-toolkit.mrc.ac.uk/anthropometry/objective-methods/simple-measures-skinfolds (accessed on 26 May 2022).
- Hu, F.J.; Liu, H.; Liu, X.L.; Jia, S.L.; Hou, L.S.; Xia, X.; Dong, B.R. Mid-Upper Arm Circumference as an Alternative Screening Instrument to Appendicular Skeletal Muscle Mass Index for Diagnosing Sarcopenia. Clin. Interv. Aging 2021, 16, 1095–1104. [Google Scholar] [CrossRef]
- Xiang, Q.; Li, Y.; Xia, X.; Deng, C.; Wu, X.; Hou, L.; Yue, J.; Dong, B. Associations of geriatric nutrition risk index and other nutritional risk-related indexes with sarcopenia presence and their value in sarcopenia diagnosis. BMC Geriatr. 2022, 22, 327. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Pirlich, M.; Lochs, H.; Schuetz, T.; Pichard, C. Increased length of hospital stay in underweight and overweight patients at hospital admission: A controlled population study. Clin. Nutr. 2005, 24, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Tee, J.Y.H.; Gan, W.Y.; Lim, P.Y. Comparisons of body mass index, waist circumference, waist-to-height ratio and a body shape index (ABSI) in predicting high blood pressure among Malaysian adolescents: A cross-sectional study. BMJ Open 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macek, P.; Biskup, M.; Terek-Derszniak, M.; Krol, H.; Smok-Kalwat, J.; Gozdz, S.; Zak, M. Optimal cut-off values for anthropometric measures of obesity in screening for cardiometabolic disorders in adults. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of early health risk: Simpler and more predictive than using a matrix based on BMI and waist circumference. BMJ Open 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Walczyk, T. Anthropometric indicators of obesity. Are the new indicators a better predictor of body fat content than BMI? J. Educ. Health Sport 2021, 11, 11–23. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Guan, H.; Zhang, S.; Zhu, Q.; Fu, X.; Chen, H.; Tang, S.; Feng, Y.; Kuang, J. Body Roundness Index Is a Superior Obesity Index in Predicting Diabetes Risk Among Hypertensive Patients: A Prospective Cohort Study in China. Front. Cardiovasc. Med. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Pérez-Sousa, M.Á.; Izquierdo, M.; Cano-Gutierrez, C.A.; González-Jiménez, E.; Schmidt-Riovalle, J.; González-Ruíz, K.; Correa-Rodríguez, M. Validation of surrogate anthropometric indices in older adults: What is the best indicator of high cardiometabolic risk factor clustering? Nutrients 2019, 11, 1701. [Google Scholar] [CrossRef] [Green Version]
- Stefanescu, A.; Revilla, L.; Lopez, T.; Sanchez, S.E.; Williams, M.A.; Gelaye, B. Using A Body Shape Index (ABSI) and Body Roundness Index (BRI) to predict risk of metabolic syndrome in Peruvian adults. J. Int. Med. Res. 2020, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Quaye, L.; Owiredu, W.K.B.A.; Amidu, N.; Dapare, P.P.M.; Adams, Y. Comparative Abilities of Body Mass Index, Waist Circumference, Abdominal Volume Index, Body Adiposity Index, and Conicity Index as Predictive Screening Tools for Metabolic Syndrome among Apparently Healthy Ghanaian Adults. J. Obes. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Motamed, N.; Sohrabi, M.; Poustchi, H.; Maadi, M.; Malek, M.; Keyvani, H.; Amoli, M.S.; Zamani, F. The six obesity indices, which one is more compatible with metabolic syndrome? A population based study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, A.; Zhao, T.; Gong, X.; Pang, T.; Zhou, Y.; Xiao, Y.; Yan, Y.; Fan, C.; Teng, W.; et al. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: A prospective, longitudinal study. BMJ Open 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, J.C.; Krakauer, N.Y. Combining body mass and shape indices in clinical practice. Case Rep. Med. 2016, 2016, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, W.; Qiu, L.; Huang, L.; Fang, L. Sex- and age-specific optimal anthropometric indices as screening tools for metabolic syndrome in Chinese adults. Int. J. Endocrinol. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Gomez-Marcos, M.A.; Gomez-Sanchez, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Gomez-Sanchez, M.; Rigo, F.; Marti, R.; Agudo-Conde, C.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Capacity adiposity indices to identify metabolic syndrome in subjects with intermediate cardiovascular risk (MARK study). PLoS ONE 2019, 14, e0209992. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Zhang, S.; An, R. Effectiveness of A Body Shape Index (ABSI) in predicting chronic diseases and mortality: A systematic review and meta-analysis. Obes. Rev. 2018, 19, 737–759. [Google Scholar] [CrossRef]
- Barreira, T.V.; Harrington, D.M.; Staiano, A.E.; Heymsfield, S.B.; Katzmarzyk, P.T. Body adiposity index, body mass index, and body fat in white and black adults. JAMA-J. Am. Med. Assoc. 2011, 306, 828–830. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.A.; Silva, A.M.; Matias, C.N.; Magalhães, J.P.; Minderico, C.S.; Thomas, D.M.; Sardinha, L.B. Utility of novel body indices in predicting fat mass in elite athletes. Nutrition 2015, 31, 948–954. [Google Scholar] [CrossRef]
- Melikoğlu, M.; Öner, C.; Tüzün, S.; Temizkan, Ş.; Orbay, E. Comparison of new and old body shape indices to estimate body fat in obese and morbid obese Turkish females. Turk. J. Endocrinol. Metab. 2020, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pluta, W.; Dudzińska, W.; Lubkowska, A. Metabolic Obesity in People with Normal Body Weight (MONW)—Review of Diagnostic Criteria. Int. J. Environ. Res. Public Health 2022, 19, 624. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Purcell, S.A.; Prado, C.M.; Gonzalez, M.C. Fat mass to fat-free mass ratio reference values from NHANES III using bioelectrical impedance analysis. Clin. Nutr. 2018, 37, 2284–2287. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, M. Differences in the obesity screening ability of 19 anthropometric parameters in young Japanese females: Comparisons of direct measurements, conventional and novel indices. Int. J. Kinanthropometry 2021, 1, 41–52. [Google Scholar] [CrossRef]
Variables | Total n = 368 | Women n = 224 | Men n = 144 |
---|---|---|---|
Sociodemographic | |||
Age (years) * | 39.77 ± 14.41 | 39.77 ± 14.23 | 39.77 ± 14.50 |
Education, % | |||
primary and vocational | 12.8 | 9.8 | 17.4 |
secondary | 31.8 | 30.8 | 33.3 |
university | 36.7 | 39.3 | 32.6 |
while studying | 18.7 | 20.1 | 16.7 |
Place of living, % | |||
village | 8.4 | 9.4 | 6.9 |
city <100,000 inhab. | 17.7 | 17.8 | 17.4 |
city >100,000 inhab. | 73.9 | 72.8 | 75.7 |
Professional status, % | |||
not working | 16.3 | 17.9 | 13.9 |
work part-time | 8.4 | 7.6 | 9.7 |
work full time | 48.9 | 45.5 | 54.2 |
study and work | 13.3 | 12.9 | 13.9 |
study | 13.1 | 16.1 | 8.3 |
Economic status, % | |||
low | 22.0 | 25.0 | 17.4 |
middle | 29.6 | 26.8 | 34.0 |
high | 25.0 | 21.4 | 30.5 |
very high | 23.4 | 26.8 | 18.1 |
Health status * | 2.39 ± 0.85 | 2.30 ± 0.88 | 2.52 ± 0.78 |
Physical activity * | 1.78 ± 0.78 | 1.76 ± 0.76 | 1.81 ± 0.81 |
Anthropometrics * | |||
Direct measurements | |||
Height, m | 1.71 ± 0.10 | 1.65 ± 0.07 | 1.79 ± 0.07 |
Body weight, kg | 79.6 ± 22.6 | 71.8 ± 19.6 | 91.77 ± 21.6 |
WC, cm | 91.9 ± 20.5 | 86.0 ± 19.2 | 1000 ± 19.1 |
HC, cm | 104 ± 11.7 | 104 ± 13.0 | 104 ± 9.52 |
MUAC, cm | 30.0 ± 4.75 | 28.8 ± 4.92 | 31.8 ± 3.83 |
∑ 4 skinfolds, mm | 76.1 ± 32.6 | 78.4 ± 32.9 | 72.5 ± 31.8 |
FM, % | 28.4 ± 10.6 | 31.6 ± 10.6 | 23.4 ± 8.67 |
FFM, % | 71.5 ± 10.9 | 68.2 ± 10.8 | 76.6 ± 9.08 |
Indices | |||
ABSI, m11/6 kg−2/3 | 0.078 ± 0.01 | 0.076 ± 0.01 | 0.082 ± 0.01 |
AMA, cm | 51.5 ± 17.4 | 44.8 ± 16.1 | 62.0 ± 13.8 |
AVI, cm2 | 17.9 ± 7.85 | 15.8 ± 7.02 | 21.2 ± 7.97 |
BAI, % | 28.8 ± 6.72 | 31.0 ± 7.24 | 25.5 ± 3.92 |
BMI, kg/m2 | 27.3 ± 7.16 | 26.5 ± 7.64 | 28.6 ± 6.15 |
BRI, - | 4.40 ± 2.55 | 4.10 ± 2.67 | 4.87 ± 2.30 |
FFMI, kg/m2 | 18.9 ± 3.20 | 17.3 ± 2.35 | 21.4 ± 2.72 |
FM/FFM, - | 0.43 ± 0.23 | 0.50 ± 0.25 | 0.32 ± 0.15 |
FMI, kg/m2 | 8.34 ± 5.09 | 9.09 ± 5.59 | 7.16 ± 3.93 |
MAC, cm | 25.1 ± 4.24 | 23.4 ± 4.00 | 27.7 ± 3.12 |
MUAC/H, - | 0.18 ± 0.03 | 0.18 ± 0.03 | 0.18 ± 0.02 |
RFM, - | 32.4 ± 8.98 | 35.7 ± 8.63 | 27.3 ± 6.88 |
WHR, - | 0.88 ± 0.14 | 0.83 ± 0.12 | 0.97 ± 0.13 |
WHtR, - | 0.54 ± 0.12 | 0.52 ± 0.12 | 0.57 ± 0.11 |
Categories | Total n = 368 | Women n = 244 | Men n = 144 |
---|---|---|---|
FMI-FFMI | |||
sarcopenic obesity | 0 | - | - |
obesity | 30% | 29% | 33% |
normal | 63% | 62% | 63% |
sarcopenia | 7% | 9% | 4% |
FM/FFM | |||
metabolic healthy | 56% | 46% | 71% |
obese | 34% | 37% | 29% |
sarcopenic obesity | 10% | 17% | - |
Anthropometric Indices | FM (kg) | FFM (kg) | ||||
---|---|---|---|---|---|---|
r | β | p | r | β | p | |
∑4 skinfolds, mm | 0.685 | 0.685 | <0.0001 | 0.270 | 0.270 | <0.0001 |
ABSI, m11/6 kg−2/3 | 0.357 | 0.357 | <0.0001 | 0.350 | 0.350 | <0.0001 |
AMA, cm | 0.506 | 0.506 | <0.001 | 0.647 | 0.647 | <0.001 |
AVI, cm2 | 0.888 | 0.888 | <0.001 | 0.642 | 0.642 | <0.001 |
BAI, % | 0.727 | 0.727 | <0.0001 | 0.088 | −0.088 | ns |
BMI, kg/m2 | 0.939 | 0.939 | <0.001 | 0.529 | 0.529 | <0.001 |
BRI, - | 0.887 | 0.887 | <0.001 | 0.451 | 0.451 | <0.001 |
FFM, % | 0.869 | −0.869 | <0.0001 | 0.060 | 0.060 | ns |
FFMI, kg/m2 | 0.543 | 0.543 | <0.001 | 0.887 | 0.887 | <0.001 |
FM, % | 0.892 | 0.892 | <0.0001 | 0.044 | −0.044 | ns |
FM/FFM, - | 0.902 | 0.902 | <0.0001 | 0.048 | −0.048 | ns |
FMI, kg/m2 | 0.973 | 0.973 | <0.0001 | 0.191 | 0.191 | 0.0002 |
MAC, cm | 0.731 | 0.731 | <0.001 | 0.618 | 0.618 | <0.001 |
MUAC, cm | 0.509 | 0.509 | <0.001 | 0.660 | 0.660 | <0.001 |
MUAC/H, - | 0.757 | 0.757 | <0.0001 | 0.342 | 0.342 | <0.0001 |
RMF, - | 0.796 | 0.796 | <0.0001 | 0.090 | −0.090 | ns |
WC, cm | 0.847 | 0.847 | <0.001 | 0.655 | 0.655 | <0.001 |
WHR, - | 0.573 | 0.573 | <0.001 | 0.590 | 0.590 | <0.001 |
WHtR, - | 0.878 | 0.878 | <0.001 | 0.460 | 0.460 | <0.001 |
Anthropometric Indices | FFMI-FMI-Obesity | FM/FFM-Obese | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | SD | 95% CI | p | Cut Off | Sens. | Spec. | Youden Index | AUC | SD | 95% CI | p | Cut Off | Sens. | Spec. | Youden Index | |
∑4 skinfolds, mm | 0.88 | 0.03 | 0.83–0.92 | <0.0001 | 84.9 | 85.9 | 80.6 | 0.67 | 0.65 | 0.04 | 0.58–0.71 | 0.0001 | 79.5 | 61.4 | 67.4 | 0.29 |
ABSI, m11/6 kg−2/3 | 0.73 | 0.04 | 0.67–0.79 | <0.0001 | 0.07 | 82.8 | 61.9 | 0.45 | 0.68 | 0.04 | 0.62–0.74 | <0.0001 | 0.08 | 67.5 | 63.1 | 0.31 |
AMA, cm | 0.89 | 0.02 | 0.85–0.93 | <0.0001 | 47.0 | 78.1 | 85.6 | 0.64 | 0.61 | 0.04 | 0.54–0.67 | 0.0056 | 36.0 | 84.3 | 40.4 | 0.25 |
AVI, cm2 | 0.99 | 0.01 | 0.96–0.98 | <0.0001 | 18.4 | 95.3 | 95.6 | 0.90 | 0.72 | 0.04 | 0.65–0.77 | <0.0001 | 12.4 | 85.5 | 65.3 | 0.51 |
BAI, % | 0.96 | 0.02 | 0.93–0.98 | <0.0001 | 31.6 | 93.7 | 89.4 | 0.83 | 0.64 | 0.04 | 0.57–0.70 | 0.0002 | 27.7 | 80.7 | 53.2 | 0.34 |
BMI, kg/m2 | 0.99 | 0.00 | 0.98–1.00 | <0.0001 | 29.7 | 100 | 99.4 | 0.99 | 0.71 | 0.04 | 0.65–0.77 | <0.0001 | 22.2 | 95.2 | 56.7 | 0.52 |
BRI, - | 0.98 | 0.01 | 0.95–0.99 | <0.0001 | 4.70 | 95.3 | 93.1 | 0.88 | 0.95 | 0.001 | 0.64–0.77 | <0.0001 | 2.39 | 90.4 | 58.9 | 0.49 |
FFM, % | 0.99 | 0.01 | 0.97–0.99 | <0.0001 | 61.9 | 96.9 | 95.0 | 0.92 | 0.73 | 0.04 | 0.67–0.79 | <0.0001 | 71.3 | 100 | 73.1 | 0.73 |
FFMI, kg/m2 | - | - | - | - | - | - | - | - | 0.55 | 0.04 | 0.49–0.62 | 0.1873 | 16.9 | 53.0 | 63.8 | 0.17 |
FM, % | 0.99 | 0.01 | 0.97–0.99 | <0.0001 | 37.5 | 98.4 | 95.6 | 0.94 | 0.73 | 0.04 | 0.67–0.79 | <0.0001 | 28.3 | 100 | 73.1 | 0.73 |
FM/FFM, - | 0.99 | 0.01 | 0.97–0.99 | <0.0001 | 0.60 | 98.4 | 95.0 | 0.93 | - | - | - | - | - | - | - | - |
FMI, kg/m2 | - | - | - | - | - | - | - | - | 0.74 | 0.04 | 0.68–0.80 | <0.0001 | 6.64 | 98.8 | 70.2 | 0.69 |
MAC, cm | 0.81 | 0.36 | 0.75–0.86 | <0.0001 | 30.0 | 93.5 | 64.7 | 0.58 | 0.64 | 0.04 | 0.58–0.71 | <0.0001 | 25.8 | 91.6 | 39.7 | 0.31 |
MUAC, cm | 0.89 | 0.02 | 0.85–0.93 | <0.0001 | 24.3 | 78.1 | 85.6 | 0.64 | 0.61 | 0.04 | 0.54–0.67 | 0.0056 | 21.3 | 84.3 | 40.4 | 0.25 |
MUAC/H, - | 0.96 | 0.01 | 0.93–0.99 | <0.0001 | 0.19 | 89.1 | 95.0 | 0.84 | 0.64 | 0.04 | 0.58–0.71 | <0.0001 | 0.16 | 89.2 | 42.6 | 0.32 |
RFM, - | 0.98 | 0.01 | 0.95–0.99 | <0.0001 | 40.7 | 95.3 | 93.1 | 0.88 | 0.71 | 0.04 | 0.64–0.77 | <0.0001 | 31.0 | 90.4 | 58.9 | 0.49 |
WC, cm | 0.98 | 0.01 | 0.96–0.99 | <0.0001 | 90.0 | 95.3 | 94.4 | 0.90 | 0.72 | 0.04 | 0.65–0.78 | <0.0001 | 77.5 | 84.3 | 66.7 | 0.51 |
WHR, - | 0.88 | 0.02 | 0.84–0.92 | <0.0001 | 0.83 | 92.2 | 79.4 | 0.72 | 0.72 | 0.03 | 0.65–0.77 | <0.0001 | 0.79 | 79.5 | 60.3 | 0.40 |
WHtR, - | 0.98 | 0.01 | 0.95–0.99 | <0.0001 | 0.57 | 95.3 | 93.1 | 0.88 | 0.71 | 0.04 | 0.64–0.77 | <0.0001 | 0.45 | 90.4 | 58.9 | 0.49 |
Anthropometric Indices | FFMI-FMI-Obesity | FM/FFM-Obesity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | SD | 95% CI | p | Cut Off | Sensit. | Spec. | Youden Index | AUC | SD | 95% CI | p | Cut Off | Sensit. | Spec. | Youden Index | |
∑4 skinfolds, mm | 0.82 | 0.034 | 0.75–0.88 | <0.0001 | 66.5 | 79.2 | 68.8 | 0.48 | 0.79 | 0.04 | 0.71–0.85 | <0.0001 | 66.5 | 78.6 | 65.7 | 0.44 |
ABSI, m11/6 kg−2/3 | 0.74 | 0.04 | 0.66–0.81 | <0.0001 | 0.08 | 87.5 | 60.4 | 0.48 | 0.73 | 0.04 | 0.65–0.80 | <0.0001 | 0.08 | 88.1 | 57.8 | 0.46 |
AMA, cm | 0.64 | 0.05 | 0.55–0.71 | 0.0056 | 64.9 | 52.1 | 69.8 | 0.22 | 0.58 | 0.05 | 0.49–0.66 | 0.1365 | 65.0 | 50.0 | 67.6 | 0.18 |
AVI, cm2 | 0.96 | 0.01 | 0.92–0.99 | <0.0001 | 23.8 | 85.4 | 93.8 | 0.79 | 0.91 | 0.02 | 0.85–0.95 | <0.0001 | 20.9 | 88.1 | 84.3 | 0.72 |
BAI, % | 0.86 | 0.03 | 0.79–0.91 | <0.0001 | 25.0 | 89.6 | 70.8 | 0.60 | 0.84 | 0.03 | 0.77–0.90 | <0.0001 | 26.0 | 81.0 | 78.4 | 0.60 |
BMI, kg/m2 | 0.97 | 0.01 | 0.93–0.99 | <0.0001 | 28.9 | 97.9 | 88.5 | 0.87 | 0.92 | 0.02 | 0.86–0.96 | <0.0001 | 28.9 | 93.0 | 81.4 | 0.74 |
BRI, - | 0.96 | 0.02 | 0.91–0.98 | <0.0001 | 5.59 | 85.4 | 93.7 | 0.79 | 0.92 | 0.02 | 0.86–0.96 | <0.0001 | 4.80 | 95.2 | 73.5 | 0.69 |
FFM, % | 0.96 | 0.02 | 0.92–0.99 | <0.0001 | 73.6 | 93.6 | 91.7 | 0.85 | 0.98 | 0.02 | 0.94–0.99 | <0.0001 | 71.2 | 95.2 | 99.0 | 0.94 |
FFMI, kg/m2 | - | - | - | - | - | - | - | - | 0.76 | 0.04 | 0.68–0.82 | <0.0001 | 21.1 | 81.0 | 68.6 | 0.49 |
FM, % | 0.98 | 0.01 | 0.95–0.99 | <0.0001 | 26.1 | 97.9 | 92.7 | 0.91 | 1.00 | 0.00 | 0.98–1.00 | <0.0001 | 28.4 | 100 | 100 | 1.00 |
FM/FFM, - | 0.98 | 0.01 | 0.94–0.99 | <0.0001 | 0.35 | 97.9 | 91.7 | 0.90 | - | - | - | - | - | - | - | - |
FMI, kg/m2 | - | - | - | - | - | - | - | - | 0.98 | 0.01 | 0.95–0.99 | <0.0001 | 8.06 | 100 | 91.2 | 0.91 |
MAC, cm | 0.80 | 0.04 | 0.72–0.86 | <0.0001 | 32.6 | 72.9 | 75.0 | 0.48 | 0.74 | 0.05 | 0.66–0.81 | <0.0001 | 32.6 | 66.7 | 69.6 | 0.36 |
MUAC, cm | 0.64 | 0.05 | 0.55–0.71 | 0.0056 | 28.5 | 52.1 | 69.8 | 0.22 | 0.58 | 0.05 | 0.49–0.66 | 0.1365 | 28.6 | 50.0 | 67.6 | 0.18 |
MUAC/H, - | 0.79 | 0.04 | 0.72–0.86 | <0.0001 | 0.18 | 68.6 | 78.1 | 0.47 | 0.75 | 0.04 | 0.67–0.82 | <0.0001 | 0.18 | 66.7 | 74.5 | 0.41 |
RFM, - | 0.96 | 0.02 | 0.91–0.98 | <0.0001 | 31.0 | 85.4 | 93.8 | 0.79 | 0.92 | 0.02 | 0.86–0.96 | <0.0001 | 29.0 | 95.2 | 73.5 | 0.69 |
WC, cm | 0.96 | 0.01 | 0.92–0.99 | <0.0001 | 105 | 85.4 | 93.8 | 0.79 | 0.91 | 0.02 | 0.85–0.95 | <0.0001 | 102 | 95.2 | 73.5 | 0.69 |
WHR, - | 0.89 | 0.03 | 0.83–0.94 | <0.0001 | 0.98 | 89.6 | 74.0 | 0.64 | 0.86 | 0.03 | 0.79–0.91 | <0.0001 | 0.98 | 90.5 | 70.6 | 0.61 |
WHtR, - | 0.96 | 0.02 | 0.91–0.98 | <0.0001 | 0.60 | 85.4 | 93.8 | 0.79 | 0.92 | 0.02 | 0.86–0.96 | <0.0001 | 0.57 | 95.2 | 73.5 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górnicka, M.; Szewczyk, K.; Białkowska, A.; Jancichova, K.; Habanova, M.; Górnicki, K.; Hamulka, J. Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices. Appl. Sci. 2022, 12, 6165. https://doi.org/10.3390/app12126165
Górnicka M, Szewczyk K, Białkowska A, Jancichova K, Habanova M, Górnicki K, Hamulka J. Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices. Applied Sciences. 2022; 12(12):6165. https://doi.org/10.3390/app12126165
Chicago/Turabian StyleGórnicka, Magdalena, Kacper Szewczyk, Agnieszka Białkowska, Kristina Jancichova, Marta Habanova, Krzysztof Górnicki, and Jadwiga Hamulka. 2022. "Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices" Applied Sciences 12, no. 12: 6165. https://doi.org/10.3390/app12126165
APA StyleGórnicka, M., Szewczyk, K., Białkowska, A., Jancichova, K., Habanova, M., Górnicki, K., & Hamulka, J. (2022). Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices. Applied Sciences, 12(12), 6165. https://doi.org/10.3390/app12126165