Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Scanning Electron Microscopy Tests
2.2.3. Mercury Intrusion Tests
2.2.4. Water Retention Characteristics Test
2.2.5. Direct Shear Tests
3. Results and Discussion
3.1. SEM Images of Xanthan Gum-Treated Silt
3.2. Mercury Intrusion Test
3.3. Water Retention Characteristics Test
3.4. Direct Shear Test
3.4.1. Shear Strength Characteristics of Silt
3.4.2. Strength Characteristics of Xanthan Gum-Treated Silt
3.4.3. Relationship between Strength and Water Content
3.4.4. Variation Rules of Shear Strength Parameters
3.4.5. Discussion on Strength Mechanisms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Zhang, H.; Zhang, Z. Experimental Study on Mechanics and Water Stability of High Liquid Limit Soil Stabilized by Compound Stabilizer: A Sustainable Construction Perspective. Sustainability 2021, 13, 5681. [Google Scholar] [CrossRef]
- Kim, Y.; Worrell, E. CO2 Emission Trends in the Cement Industry: An International Comparison. Mitig. Adapt. Strat. Glob. Change 2002, 7, 115–133. [Google Scholar] [CrossRef]
- Thangaraj, R.; Thenmozhi, R. Sustainable concrete using high volume fly ash from thermal power plants. Ecol. Environ. Ment Conservat. 2013, 19, 461–466. [Google Scholar]
- Alonso, S.; Palomo, A. Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio. Mater. Lett. 2001, 47, 55–62. [Google Scholar] [CrossRef]
- Krivenko, P.V.; Kovalchuk, G.Y. Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. J. Mater. Sci. 2007, 42, 2944–2952. [Google Scholar] [CrossRef]
- Sofi, M.; van Deventer, J.S.J.; Mendis, P.A.; Lukey, G.C. Bond performance of reinforcing bars in inorganic polymer concrete (IPC). J. Mater. Sci. 2007, 42, 3107–3116. [Google Scholar] [CrossRef]
- Lee, S.; Chung, M.; Park, H.M.; Song, K.-I.; Chang, I. Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka. J. Mater. Civ. Eng. 2019, 31, 06019012. [Google Scholar] [CrossRef]
- Chang, I.; Jeon, M.; Cho, G.-C. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries. Int. J. Polym. Sci. 2015, 2015, 326745. [Google Scholar] [CrossRef] [Green Version]
- Georgees, R.N.; Hassan, R.A.; Evans, R.P. A potential use of a hydrophilic polymeric material to enhance durability properties of pavement materials. Constr. Build. Mater. 2017, 148, 686–695. [Google Scholar] [CrossRef]
- Fatehi, H.; Abtahi, S.M.; Hashemolhosseini, H.; Hejazi, S.M. A novel study on using protein based biopolymers in soil strengthening. Constr. Build. Mater. 2018, 167, 813–821. [Google Scholar] [CrossRef]
- Liu, J.; Ali, A.; Su, J.; Wu, Z.; Zhang, R.; Xiong, R. Simultaneous removal of calcium, fluoride, nickel, and nitrate using microbial induced calcium precipitation in a biological immobilization reactor. J. Hazard. Mater. 2021, 416, 125776. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, Z.; Najafpour-Darzi, G.; Latifi, N.; Morowvat, M.; Manahiloh, K.N. Synthesis of a biopolymer via a novel strain of Pantoea as a soil stabilizer. Transp. Geotech. 2020, 26, 100425. [Google Scholar] [CrossRef]
- Choi, S.-G.; Chang, I.; Lee, M.; Lee, J.-H.; Han, J.-T.; Kwon, T.-H. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr. Build. Mater. 2020, 246, 118415. [Google Scholar] [CrossRef]
- Bai, B.; Nie, Q.; Zhang, Y.; Wang, X.; Hu, W. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J. Hydrol. 2021, 597, 125771. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433–442. [Google Scholar] [CrossRef]
- Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Ortsi, W.J.; Roa-Espinosa, A.; Sojka, R.E.; Glenn, G.M.; Imams, S.H.; Erlacher, K.; Pedersen, J.S. Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. J. Mater. Civ. Eng. 2007, 19, 58–66. [Google Scholar] [CrossRef]
- Chang, I.; Prasidhi, A.K.; Im, J.; Cho, G.-C. Soil strengthening using thermo-gelation biopolymers. Constr. Build. Mater. 2015, 77, 430–438. [Google Scholar] [CrossRef]
- Chang, I.; Prasidhi, A.K.; Im, J.; Shin, H.-D.; Cho, G.-C. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 2015, 253–254, 39–47. [Google Scholar] [CrossRef]
- Im, J.; Tran, A.T.; Chang, I.; Cho, G.-C. Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) Tests. Géoméch. Eng. 2017, 12, 815–830. [Google Scholar] [CrossRef]
- Ayeldeen, M.; Negm, A.; El-Sawwaf, M.; Kitazume, M. Enhancing mechanical behaviors of collapsible soil using two biopolymers. J. Rock Mech. Geotech. Eng. 2017, 9, 329–339. [Google Scholar] [CrossRef]
- Dehghan, H.; Tabarsa, A.; Latifi, N.; Bagheri, Y. Use of xanthan and guar gums in soil strengthening. Clean Technol. Environ. Policy 2019, 21, 155–165. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Modiri, F. Application of novel Persian gum hydrocolloid in soil stabilization. Carbohydr. Polym. 2020, 246, 116639. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 2020, 24, 100385. [Google Scholar] [CrossRef]
- Wallingford, L.; Labuza, T.P. Evaluation of the Water Binding Properties of Food Hydrocolloids by Physical/Chemical Methods and in a Low Fat Meat Emulsion. J. Food Sci. 1983, 48, 1–5. [Google Scholar] [CrossRef]
- Sánchez, V.; Bartholomai, G.; Pilosof, A. Rheological properties of food gums as related to their water binding capacity and to soy protein interaction. LWT Food Sci. Technol. 1995, 28, 380–385. [Google Scholar] [CrossRef]
- Khachatoorian, R.; Petrisor, I.G.; Kwan, C.-C.; Yen, T.F. Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. J. Pet. Sci. Eng. 2003, 38, 13–21. [Google Scholar] [CrossRef]
- Zhou, C.; So, P.; Chen, X. A water retention model considering biopolymer-soil interactions. J. Hydrol. 2020, 586, 124874. [Google Scholar] [CrossRef]
- Bouazza, A.; Gates, W.; Ranjith, P. Hydraulic conductivity of biopolymer-treated silty sand. Geotechnique 2009, 59, 71–72. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Shavit, U.; Furman, A. Water Retention Curves of Biofilm-Affected Soils using Xanthan as an Analogue. Soil Sci. Soc. Am. J. 2012, 76, 61–69. [Google Scholar] [CrossRef]
- Qureshi, M.U.; Chang, I.; Al-Sadarani, K. Strength and durability characteristics of biopolymer-treated desert sand. Géoméch. Eng. 2017, 12, 785–801. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Awraheem, M.H.; Khalaf, M.M. Geotechnical Properties of a Low-Plasticity Clay with Biopolymer. J. Mater. Civ. Eng. 2018, 30, 04018170. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Prasidhi, A.K.; Cho, G.-C. Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 2015, 74, 65–72. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Majid, M.Z.A.; Tahir, M.M.; Mohamad, E.T. Improvement of Problematic Soils with Biopolymer—An Environmentally Friendly Soil Stabilizer. J. Mater. Civ. Eng. 2016, 29, 10. [Google Scholar] [CrossRef]
- Soldo, A.; Miletić, M.; Auad, M.L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 2020, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Soldo, A.; Miletić, M. Study on Shear Strength of Xanthan Gum-Amended Soil. Sustainability 2019, 11, 6142. [Google Scholar] [CrossRef] [Green Version]
- Sujatha, E.R.; Atchaya, S.; Sivasaran, A.; Keerdthe, R.S. Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers. Bull. Eng. Geol. Environ. 2021, 80, 1157–1167. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Lee, S.-W.; Cho, G.-C. Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying. Constr. Build. Mater. 2017, 143, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Chang, I.; Chung, M.-K.; Kim, Y.; Kee, J. Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing. Géoméch. Eng. 2017, 12, 831–847. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.-D.; Liu, S.-Y.; Shao, G.-H.; Hao, J.-X. Research on silts and silts treated with stabilizers by triaxial shear tests. Rock Soil Mech. 2005, 12, 1967–1971. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Kang, F.-X.; Bian, H.-L.; Yu, H. Experiments on unconfined compressive strength of lignin modified silt in Yel-low river flood area under freezing-thawing cycles. Rock Soil Mech. 2020, S2, 1–6. [Google Scholar] [CrossRef]
- Ni, J.; Li, S.-S.; Ma, L.; Geng, X.-Y. Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests. Constr. Build. Mater. 2020, 263, 120039. [Google Scholar] [CrossRef]
- Latifi, N.; Rashid, A.S.A.; Siddiqua, S.; Majid, M.Z.A. Strength measurement and textural characteristics of tropical residual soil stabilised with liquid polymer. Measurement 2016, 91, 46–54. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Cho, G.-C. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Kodikara, J.; Barbour, S.; Fredlund, D. Changes in clay structure and behaviour due to wetting and drying. In Proceedings of the 8th Australian-New Zealand Conference on Geomechanics, Hobart, TAS, Australia, 15–17 February 1999. [Google Scholar]
- Lee, J.; Fratta, D.; Akin, I. Shear strength and stiffness behavior of fine-grained soils at different surface hydration conditions. Can. Geotech. J. 2021, 99, 1–12. [Google Scholar] [CrossRef]
- Bai, B.; Wang, Y.; Rao, D.-Y.; Bai, F. The effective thermal conductivity of unsaturated porous media deduced by pore-scale SPH simulation. Front. Earth Sci. 2022. [Google Scholar] [CrossRef]
- Bai, B.; Xu, T.; Nie, Q.; Li, P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int. J. Heat Mass Transf. 2020, 153, 119573. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, R.; Cai, G.; Hu, W.; Yang, G. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics. Comput. Geotech. 2021, 137, 104272. [Google Scholar] [CrossRef]
- Sun, D.A.; Zhang, J.R.; Lu, H.B. Soil-water characteristic curve of Nanyang expansive soil in full suction range. Rock Soil Mech. 2013, 34, 1839–1846. [Google Scholar] [CrossRef]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water availability in different soils in relation to hydrogel application. Geoderma 2012, 187–188, 94–101. [Google Scholar] [CrossRef]
- Tran, T.P.A.; Chang, I.; Cho, G.-C. Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands. Geomech. Eng. 2019, 17, 475–483. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Shao, S.-J.; Wang, Z.; Liu, A.-G. Experimental study on the unloading characteristics of coarse aggregate under true triaxial shear loading. J. Rock Mech. Eng. 2020, 39, 1503–1512. [Google Scholar] [CrossRef]
- Bai, B.; Yang, G.-C.; Li, T.; Yang, G.-S. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials. Mech. Mater. 2019, 139, 103180. [Google Scholar] [CrossRef]
- Chang, I.; Cho, G.-C. Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay. Acta Geotech. 2019, 14, 361–375. [Google Scholar] [CrossRef]
- Chen, C.; Wu, L.; Perdjon, M.; Huang, X.; Peng, Y. The drying effect on xanthan gum biopolymer treated sandy soil shear strength. Constr. Build. Mater. 2019, 197, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Soil consistency and interparticle characteristics of xanthan gum biopolymer–containing soils with pore-fluid variation. Can. Geotech. J. 2018, 56, 1206–1213. [Google Scholar] [CrossRef]
Physical Parameters | Values |
---|---|
Plastic limit, wp (%) | 12.6 |
Liquid limit, wL (%) | 21.4 |
Plasticity index, IP | 8.8 |
Specific gravity of the solid, Gs | 2.70 |
Natural water content, w0 (%) | 5.10 |
Natural dry weight, ρd (g/cm3) | 1.62 |
Maximum dry density, ρdmax (g/cm3) | 1.77 |
Product | Grade | Viscosity/CP | Color | State | Shear Performance Value |
---|---|---|---|---|---|
XG | food grade | 1475 | light beige | powder | 7.7 |
w (%) | σv (kPa) | mbp/ms = 0% | mbp/ms = 2% | Increment of c | Increment of ϕ | ||||
---|---|---|---|---|---|---|---|---|---|
τf (kPa) | c (kPa) | ϕ (°) | τf (kPa) | c (kPa) | ϕ (°) | ||||
2 | 50 | 434.4 | 378.15 | 46.55 | 1033 | 878.50 | 70.50 | 2.32 | 1.515 |
100 | 478.5 | 1141 | |||||||
200 | 591 | 1450 | |||||||
4 | 50 | 349 | 325.45 | 43.57 | 870.7 | 766.70 | 67.82 | 2.36 | 1.557 |
100 | 456.6 | 1040 | |||||||
200 | 503.7 | 1248 | |||||||
8 | 50 | 155.2 | 147.3 | 31.05 | 155.2 | 165.20 | 31.65 | 1.22 | 1.019 |
100 | 240.8 | 256.9 | |||||||
200 | 256.6 | 278.5 | |||||||
16 | 50 | 62.11 | 48.09 | 21.91 | 100.5 | 68.15 | 30.71 | 1.42 | 1.402 |
100 | 97.45 | 123.6 | |||||||
200 | 125.5 | 188.3 | |||||||
22 | 50 | 45.03 | 38.58 | 9.19 | 59.03 | 69.63 | 17.61 | 1.81 | 1.916 |
100 | 57.2 | 70.94 | |||||||
200 | 70.1 | 93.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Meng, Z.; Jiang, T.; Wang, S.; Zhao, J.; Zhao, X. Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Appl. Sci. 2022, 12, 6053. https://doi.org/10.3390/app12126053
Zhang J, Meng Z, Jiang T, Wang S, Zhao J, Zhao X. Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Applied Sciences. 2022; 12(12):6053. https://doi.org/10.3390/app12126053
Chicago/Turabian StyleZhang, Junran, Zhihao Meng, Tong Jiang, Shaokai Wang, Jindi Zhao, and Xinxin Zhao. 2022. "Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process" Applied Sciences 12, no. 12: 6053. https://doi.org/10.3390/app12126053
APA StyleZhang, J., Meng, Z., Jiang, T., Wang, S., Zhao, J., & Zhao, X. (2022). Experimental Study on the Shear Strength of Silt Treated by Xanthan Gum during the Wetting Process. Applied Sciences, 12(12), 6053. https://doi.org/10.3390/app12126053