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Abstract: When construction work is planned on soil with inadequate shear strength, its engineering
properties need to be improved. Chemical stabilization is one of the solutions for soil strength
improvement. Currently, the most common additive that is used for chemical soil improvement
is cement. Cement is an effective solution, but it has several negative effects on the environment.
Therefore, the urges for environment-friendly solutions that can replace cement and show good
potential for sustainable engineering are rising. One of the promising environment-friendly solutions
is the use of biopolymers. Therefore, the main aim of the present study was to investigate the effect of
the biopolymer xanthan gum on the strength of different types of soil. Xanthan gum was mixed with
three different types of soil: sand, clay, and silty sand. The strength of treated and non-treated soil
was experimentally investigated by performing unconfined compression, direct shear, and triaxial
tests. From the results, it was observed that xanthan gum significantly increased the strength of each
soil, which shows its major potential for the future of sustainable engineering.

Keywords: xanthan gum; bio geotechnics; ground improvement; sustainable development;
soil properties

1. Introduction

Soil improvement is a process often needed for the construction on an unfavorable soil. There
are several ways in which soil strength can be improved. There is physical, biological, and chemical
soil improvement. Physical soil improvement can include dynamic compaction, static compaction,
and mixing aggregates method, to name a few. The biological approach represents using bacteria
that can create calcium carbonate precipitation. That approach is known as MICP (Microbiologically
Induced Calcium Carbonate Precipitation). Bacteria, such as Bacillus pasteurii reacts with the calcium
in the soil and creates cementitious soil clogs. DeJong et al. [1] introduced Bacillus pasteurii to Ottawa
50–70 sand and reported the cementation of sand which was created by the bacteria.

The chemical improvement of soil represents mixing certain chemicals with the soil that can
improve the strength and durability of the soil. Currently, the most popular additive for chemical
soil improvement is cement, but the use of cement raises certain environmental concerns. The use of
cement can increase the urban water runoff, prevent the growth of plants, and create the heat islands [2]
which represent metropolitan areas with significantly high temperatures. Cement does not only affect
the environment, but the poisonous effect of cement indirectly affects the health of the population
and sources of finances for people living off agriculture and cattle. Certainly, the most concerning
fact related to the use of cement is the contribution to the worldwide CO2 emissions. In 2002 CO2

emissions caused by the production of cement were 6% of the total CO2 emissions in the world [3].
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Therefore, the search for alternative and sustainable solutions that can improve soil properties is in
high demand.

MICP represents a biological approach to this problem and several authors reported the
effectiveness of MICP [4,5]. Another approach is the use of biopolymers. In general terms,
polymers represent chains of small chemical units. They can be artificial (synthetic polymers) and
biopolymers (natural polymers). Biopolymers are extracted from natural materials such as plants,
wood, and animal shells. To the best of the authors’ knowledge, no negative effect of biopolymers on the
environment has been reported. They are present in the food industry, agriculture, cosmetic industry,
and oil drilling industry [6–10]. Furthermore, their potential for the improvement of soil mechanical
properties was investigated [11–14]. Some biopolymers proved effective in reducing the erosion of
soil [15–17] and the collapsibility of soil [18]. Even though both MICP and biopolymers proved to
be effective in improving the mechanical properties of soil, biopolymers have certain advantages
over MICP. In particular, the MICP procedure can only be used in coarse-grained soils such as sand.
Large pores in the sand are suitable for the habitation of bacteria, but fine soils like clay have narrow
pores where bacteria cannot survive [2]. Biopolymers are not a living organism; therefore, they can
be used in coarse-grained and fine-grained soils because the narrowness of the pores does not have
a negative influence on them. Furthermore, MICP treatment requires a special environment and
nutrition for the bacteria in order to keep them alive [19]. On the other hand, biopolymers do not
require that treatment.

To demonstrate the potency of biopolymers as a soil improvement additive, the present study
focuses on the investigation of the effect of the biopolymer xanthan gum on the improvement of the
strength of different types of soil: pure sand, silty sand, and high-plasticity clay. Xanthan gum-amended
soil was tested by using the unconfined compression, triaxial, and the direct shear tests.

2. Materials and methods

2.1. Soils Tested

Three types of soil were used for the present study: silty sand, pure sand, and a high-plasticity
clay. These soils were selected in order to represent different granulometric groups of soil.

2.1.1. Silty Sand

The silty sand for the present study was obtained from a local site close to Opelika in Lee
County, Alabama, USA. The silty sand had 9% fine particles (≤0.075 mm) with liquid limit and
plastic limit of 49 and 29 respectively, which classifies them as silt with low plasticity according to
USCS (Unified Soil Classification System). Sieve analysis was conducted by placing the stack of
sieves with different openings on top of each other. Sieves with higher openings were placed on top.
The ranges of sieve openings were from 4.75 mm (N◦4) to 0.075 mm (N◦200). The stack of sieves
was shaken for 10 min, while a pan was placed bellow the sieve N◦200 to capture all the material
smaller than 0.075 mm. The sieve analysis provided the grain size distribution curve (Figure 1) from
which the coefficient of curvature and the coefficient of uniformity were calculated as 1.5 and 10,
respectively. Therefore, a general classification of this soil, according to USCS, is SW-SM (well-graded
sand with silt).
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Figure 1. Grain size distribution of the sand and silty sand. 
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Fine-grained soil that was used for the present study was high-plasticity clay. The liquid limit 
of the clay was 505, and the plasticity index was 456, classifying this soil as CH (high-plasticity clay) 
according to USCS. The grain size distribution was not performed on this type of soil because all 
particles were smaller than 0.075 mm.  

2.2. Biopolymer Xanthan Gum 

Xanthan gum (XG) is a biopolymer from a group of polysaccharides and is created by the 
fermentation of a medium containing carbohydrates such as glucose. The fermentation process is 
induced by the Xanthomonas campestris bacterium [6]. XG increases the viscosity of the solution that 
it is dissolved in, and it can be dissolved in hot and cold water. Furthermore, XG-solutions are high-
plasticity non-Newtonian solutions, and the increase of shear stress decreases their viscosity [6]. 
Additionally, the molecular structure of XG can be affected by salt, temperature, and microorganisms 
[6,20]. 

2.3. Specimen Preparation and Mechanical Testing  

Silty sand was ground and sieved through the sieve N°4 with the opening of 4.76 mm. To start 
the procedure a certain amount of the silty sand was placed into a mixing bowl. XG was hand-mixed 
slowly into the bowl with the soil in the amount of 1% with respect to the mass of the soil. Once 
uniformly mixed, water was sprayed into the bowl until the water amount was approximately 16.5% 
with respect to the mass of the silty sand. The concentration of 1% XG was based on the author’s 
previous preliminary research. Higher concentrations had the tendency to increase the strength of 
certain specimens beyond the testing limits.  

Choosing the right water content was crucial for this type of preparation of specimens because 
too high water content creates specimens that are too soft, while on the other hand, too low water 
content causes non-uniform specimens. The water content of 16.5% was the optimum water content 
for this type of soil and it was selected as the most appropriate for the preparation of specimens of 
silty sand. The optimum water content was determined by performing Proctor (compaction) tests. 
The soil was compacted under different water contents into a cylindrical mold with a height of 11.6 
cm and a diameter of 10.2 cm. The water content that the soil had at the maximum dry density was 
selected as the optimum water content. During the preparation, a small amount of the material was 
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Figure 1. Grain size distribution of the sand and silty sand.

2.1.2. Pure Sand

Sand used in the present study was obtained from a site close to Destin, Okaloosa County,
Florida, USA. It was mostly made of quartz and was highly uniform. Fine particle content was almost
non-existent. The grain distribution curve obtained from the sieve analysis is presented in Figure 1 as
well. The coefficient of uniformity and the coefficient of curvature that were calculated from the grain
distribution curve were 1.46 and 0.93, respectively. Since the presence of gravel and fine particles was
practically non-existent, USCS classifies this sand as SP (poorly graded sand).

2.1.3. High-Plasticity Clay

Fine-grained soil that was used for the present study was high-plasticity clay. The liquid limit
of the clay was 505, and the plasticity index was 456, classifying this soil as CH (high-plasticity clay)
according to USCS. The grain size distribution was not performed on this type of soil because all
particles were smaller than 0.075 mm.

2.2. Biopolymer Xanthan Gum

Xanthan gum (XG) is a biopolymer from a group of polysaccharides and is created by
the fermentation of a medium containing carbohydrates such as glucose. The fermentation
process is induced by the Xanthomonas campestris bacterium [6]. XG increases the viscosity
of the solution that it is dissolved in, and it can be dissolved in hot and cold water.
Furthermore, XG-solutions are high-plasticity non-Newtonian solutions, and the increase of shear
stress decreases their viscosity [6]. Additionally, the molecular structure of XG can be affected by salt,
temperature, and microorganisms [6,20].

2.3. Specimen Preparation and Mechanical Testing

Silty sand was ground and sieved through the sieve N◦4 with the opening of 4.76 mm. To start the
procedure a certain amount of the silty sand was placed into a mixing bowl. XG was hand-mixed slowly
into the bowl with the soil in the amount of 1% with respect to the mass of the soil. Once uniformly
mixed, water was sprayed into the bowl until the water amount was approximately 16.5% with
respect to the mass of the silty sand. The concentration of 1% XG was based on the author’s previous
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preliminary research. Higher concentrations had the tendency to increase the strength of certain
specimens beyond the testing limits.

Choosing the right water content was crucial for this type of preparation of specimens because
too high water content creates specimens that are too soft, while on the other hand, too low water
content causes non-uniform specimens. The water content of 16.5% was the optimum water content
for this type of soil and it was selected as the most appropriate for the preparation of specimens of silty
sand. The optimum water content was determined by performing Proctor (compaction) tests. The soil
was compacted under different water contents into a cylindrical mold with a height of 11.6 cm and
a diameter of 10.2 cm. The water content that the soil had at the maximum dry density was selected as
the optimum water content. During the preparation, a small amount of the material was weighed and
placed in the oven to ensure that the water content requirements were met (as per ASTM D2216 [21]).

Specimens made of sand were prepared in a similar manner. One percent XG with respect to the
mass of soil was mixed into the sand. After that, water was sprayed into the soil-XG mix with constant
hand-mixing. The targeted water content for the sand was 12%. That water content was based on the
best workability of the sand-water mixture to compact and extrude specimens out of molds.

The same procedure was followed while preparing the clay specimens, but the targeted water
content for the clay was 16% because that water content gave the clay relatively good workability.
Specimens made with higher water contents were heavily deformed when extruded from the molds.
Therefore, higher water contents were omitted for the clay specimens.

When the mixture of soil, XG, and water was uniformly mixed it was evenly compacted in
cylindrical molds. Three types of molds, for three types of tests, were used. The three types of tests
were: unconfined compression (UC), unconsolidated undrained triaxial (UU), and direct shear tests
(DS). After the compaction, the specimens were extruded from the molds, left in the laboratory at
21 ◦C and were tested five days later. The five-day period was selected on the observation of the
development of the compressive strength of XG-amended silty sand through five days (Figure 2).
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Figure 2. Change in the compressive strength of silty sand with 1% XG through five days.

Specimens for the UC test were compacted in five layers in the cylinders with a diameter of 3.3 cm
and a height of 7.1 cm (Figure 3b). Each soil layer was pressed 25 times with a force of approximately
150 N. The UC test was performed in accordance with ASTM D2166 [22]. Strain rate was set up to
1.5%/min, whereas the maximum allowed strain was set up as 20%. The UC test was successfully
performed on the specimens that were made of amended and plain silty sand and amended and
plain clay. Also, the UC test was also performed on specimens that were made of amended sand,
however, the sand in a natural state could not be formed into cylindrical specimens needed for this
test, and therefore the UC test had to be omitted in that case.
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Figure 3. Examples of the specimens that were used for testing: (a) XG-amended silty sand specimen
used for UU test; (b) XG-amended clay specimen used for UC test; (c) XG-amended sand specimen
used for DS test.

Specimens for the UU test were compacted in five layers into molds with a diameter of 7 cm and
a height of 15 cm (Figure 3a). Silty sand and clay were compacted in five layers with a standardized
hammer with a mass of 2.5 kg. The hammer was released 25 times from the height of 30.5 cm to fall free
on each soil layer. Each impact sent approximately 7.5 J of energy into the soil. However, the sand was
not compacted in the same manner, but it was tapped into the molds to keep the density and structure
of the amended sand close to the natural density and structure. After compaction and extraction,
the specimens for the UU test had to be trimmed with a knife to ensure a flat surface at the top and
bottom and appropriate cylindrical shape. The UU test was performed according to ASTM D2850 [23].
Axial stress was applied under the strain rate of 0.7%/min and under confinement pressure of 103 kPa.
This level of the confinement pressure was in the ranges of confinement of similar research which
allowed us to compare the results. The same test could be performed with higher or lower confinement
pressures since the level of the confining pressure would not affect the maximum value of the deviatoric
stress in the UU test.

Specimens for the DS test were compacted in molds with a diameter of 6.35 cm and a height of
2.54 cm (Figure 3c). Similar to the specimens for the UU test, plain and amended sand were tapped into
the molds, while silty sand and clay were compacted in four layers where each layer was compressed
25–30 times with a force of 100 N. This test was performed with the guidance of ASTM D3080 [24].
The strain rate for the DS test was 0.06 cm/min and was conducted under different normal pressures
(0.1, 0.38 and 0.77 MPa).

All specimens after extraction out of the molds had the dimensions that corresponded to the inner
diameters of the molds except the specimens for the triaxial tests that had a height of 14 cm instead of
15 cm because of the required trimming. Examples of specimens used for the testing can be seen in
Figure 3. A series of plain specimens were made in the same manner as the amended specimens.

2.4. SEM Imaging

The interaction between biopolymer and different types of soil is not the same. Fine particles and
XG are electrically charged which creates an electrostatic bond between XG and fine particles [25].
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The electrical charge in coarse-grained soils is practically non-existent; therefore, the bond that is
created between coarse-grained material and XG can be presented as a thin film wrapped around
coarse particles [26]. A Scanning Electron Microscope (SEM) Zeiss EVO 50 was used to observe the
XG-amended soil. Small pieces of XG-amended soil were cut to about 0.2–0.3 cm3 and glued to metal
pin stubs with carbon tape. The stubs were coated with a thin layer of gold to prevent charging of
the analyzed surface, to promote the emission of secondary electrons so that the specimen conducts
evenly, and to provide a homogeneous specimen surface for analysis and imaging.

3. Results and Discussion

3.1. Unconfined Compression Test

The UC test is commonly used in civil engineering practice to obtain the compressive strength
(UCS) of materials like soil and concrete. While loading the specimens under constant axial strain
rate, the specimens should fail on their weakest plain after their compressive strength was reached.
Figure 4 depicts the effect of XG on the compressive strengths of the studied soils five days after
curing. Tests were performed on four specimens of each type and the mean values are presented.
Striped columns represent the compressive strength of soil specimens without biopolymers, whereas
the specimens with 1% XG are represented with solid columns. There are no results for the plain sand
because it is cohesionless, and therefore it could not be formed into specimens for the test. Introducing
XG to sand cohesion was achieved, allowing sand to be shaped into desired specimens and to retain
the shape for five days. Comparing the compressive strength of silty sand with and without XG, it is
evident that the strength of the treated silty sand is significantly higher. The compressive strength
increased from 1.2 to 3.35 MPa, which represents an increase of about 180%. The compressive strength
of sand treated with XG was 2.02 MPa. That amount of achieved strength is significant considering the
fact that the plain sand could not be tested for the unconfined compression. The XG-amended clay
showed an increase of about 0.3 MPa with respect to the plain clay. The strength of the clay could have
been improved more with the addition of more water during the preparation, but the workability of
the used clay with water content above 16% was not appropriate for the unconfined compression test.
Therefore, relatively weaker specimens were prepared. The findings are in agreement with previous
research [11,25,27,28]. Chang et al. [25] investigated the effect of XG on the UCS of sand, sand with silt
and high plasticity clay. In their study, XG increased UCS for all of the mentioned types of soil, and the
highest increase was for the sand with silt.
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From the results of the unconfined compression test, it is evident that XG increased the compressive
strength of the base soils presented in this study. The highest compressive strength was achieved for
silty sand when mixed with XG. Therefore, this test indicates that sands with a certain amount of fine
particles respond best to XG.

3.2. Unconsolidated Undrained Triaxial Test

The UU test was performed according to ASTM D2850 [23]. Axial stress was applied under the
strain rate of 0.7%/min and under confinement pressure of 103 kPa. This level of the confinement
pressure was in the ranges of confinement of similar research which allowed us to compare the results.
Figure 5 shows the stress-strain curves for the studied soil tested in a triaxial apparatus after five days
of curing. Dashed lines represent the stress-strain curves for the soil specimens with no reinforcement
whereas the solid lines represent the soil-specimens with 1% of XG. Figure 5a shows the results for
silty sand with and without the biopolymer. The plain silty sand had the maximum deviatoric stress of
1.7 MPa which increased by 42% after the soil was mixed with XG. The UU test on sand showed that
sand can achieve the maximum deviatoric stress of 1.47 MPa five days after it was mixed with XG
(Figure 5b). The maximum deviatoric stress of the plain sand showed extremely low values which is
related to the incohesive state of the plain sand. The strength of the clay was 1.63 MPa before it was
mixed with XG, but after the mixing, the strength increased by 42% which is the same percentage as
that of the silty sand (Figure 5c).
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Figure 5. UU test results under confining pressure of 103 kPa: Influence of 1% XG on different types of
soil: (a) Silty sand; (b) Sand; (c) Clay (please note that the axes are differently scaled).

Results from the UU test showed that the maximum deviatoric strain was achieved for the silty
sand mixed with XG, while the maximum deviatoric strain of the clay-XG mixture was only slightly
lower. Unlike in the unconfined compression test, the achieved strengths of amended silty sand and
clay were not significantly different in the UU test. This indicates that the size of the tested specimens
can play an important role in achieving the strength of the soil. On the other hand, the highest increase
in strength was achieved in the sand, which is not surprising when considering that the plain sand had
a virtually negligible strength compared to other soils that had a significant amount of fine particles.
The peak of the deviatoric stress of the plain sand was close to the results of other researches that
performed triaxial tests on the plain poorly graded sand under similar confining pressures [11,28].
Furthermore, the same research showed that the addition of XG increases the peak deviatoric stress
during the triaxial stress state.
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3.3. Direct Shear Test

The DS test is suitable to obtain the shear strength parameters of soil, i.e., cohesion and friction
angle. It is especially favorable for sands and other cohesionless materials that cannot be tested in the
unconfined compression test. The DS test was performed on the plain and XG-amended soils. Figure 6
presents the achieved shear strength-displacement behavior of the tested soils. Each line corresponds
to one normal stress that was applied during the process of shearing.
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For the plain silty sand (Figure 6a) the maximum shear stresses were 0.18, 0.36, and 0.60 MPa
for the applied normal stresses of 0.1, 0.38 and 0.77 MPa, respectively. Figure 6b shows the
results of the achieved shear stresses of XG-treated silty sand. The maximum shear stresses did
increase to 0.27, 0.43, and 0.88 MPa for the same applied normal stresses of 0.1, 0.38 and 0.77 MPa,
respectively. It is evident that the presence of XG increased the shear strength of the silty sand.
The shear stress-displacement behavior of the silty sand was similar before and after it was mixed with
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XG (Figure 6a,b). The most curves for the plain and XG-amended silty sand reach a peak value for
a certain amount of the shear stress and after that the stress intensity stayed constant or decreased,
representing a softening behavior. The only exception was noticed for the plain silty sand that was
sheared under 0.77 MPa. In that case, the maximum value of the shear stress was never achieved,
but it slowly increased until the end of the test. For the shearing of the XG-amended soil under the
same amount of load, the shear stress-displacement curve reached the maximum value after which it
remained nearly constant. That means that the plain soil under the load of 0.77 MPa had less brittle
behavior. Figure 6a,b present the dilatant behavior of the tested samples under the normal pressure
of 0.1 MPa. Higher normal pressures created contractency by reducing the freedom of particles to
override each other. However, the most significant change for silty sand was the increase in strength of
the XG-amended specimens.

Figure 6c shows the results of the direct shear that was performed on the plain sand whereas
Figure 6d shows the results of the XG-amended sand. The maximum shear stresses of the plain sand were
0.06, 0.29, and 0.52 MPa for the applied normal stresses of 0.1, 0.38 and 0.77 MPa, respectively. For the
applied normal loads of 0.1, 0.38 and 0.77 MPa, the XG-amended sand specimens reached the maximum
shear stresses of 0.36, 0.69, and 0.95 MPa, respectively. The change in the behavior is prominent for
the sand even though the plain and XG-amended sand showed the contractant behavior. All curves
that represent the shearing of the plain sand have a similar trendline where softening continues after
the peak value of stress. The behavior of the XG-amended sand is significantly different. Under each
normal loading, shear stresses dropped instantly for a significant amount after the highest shear stress
was achieved. That change in behavior shows the property of XG to influnce the strength and behavior
of sand.

Figure 6e,f present the results of the test performed on the plain clay and XG-amended clay.
Both figures show fairly similar results for the tests under different normal stresses and a contractant
behavior of the clay. The shear stresses at failure for the treated clay were close in value with the shear
stresses at failure for the plain clay. In fact, the shear stress at failure under the normal pressure of
0.77 MPa was slightly higher for the plain clay. The changes in the shear stress-displacement curves
were marginal for the clay before and after XG-treatment, indicating no significant change in the
behavior during shearing of clay material.

Table 1 summarises the changes in the friction angle and cohesion of the silty sand, sand, and clay.

Table 1. Influence of 1% XG on friction angle and cohesion.

Silty Sand Sand Clay

Cohesion
(MPa)

Friction
Angle (◦)

Cohesion
(MPa)

Friction
Angle (◦)

Cohesion
(MPa)

Friction
Angle (◦)

Plain soil 0.09 36 0 37 0.04 21
1% XG 0.14 43 0.32 40 0.041 18

The results from the direct shear test indicated that XG can change the friction angle in soils
that have some level of cohesion such as silty sand and clay, but that it might not significantly
change the cohesion for the same soil type. On the other hand, for the cohesionless soils such as
sand, XG can significantly increase cohesion but it might not significantly affect the friction angle.
Cho and Chang [29] performed a study where gellan gum was used as the biopolymer for soil
improvement on sand, clay, and clayey sand. The study showed that gellan gum increased the cohesion
of sand, but it did not have a significant influence on the friction angle. The study also showed that
gellan gum increased the cohesion of all three types of soil and the friction angle of clay and clayey
sand. The present study, which was conducted with XG, showed a small influence of XG on the friction
angle of sand and a higher influence on the friction angle of the silty sand. The increase in cohesion was
more prominent for the sand which initially had no cohesive properties. This experimental studies on
clay showed that XG did not increase the friction angle, but decreased it slightly. Similar results were
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reported by Ayeldeen et al. [18] who performed the direct shear test on a soil with a high concentration
of fine particles. Also, this study showed only a slight influence of XG on the cohesion of clay. It is
important to note that the present study was performed with 1% XG. The higher concentrations could
have had a stronger effect on the shear strength parameters.

3.4. SEM Analysis

Figure 7 depicts the SEM images of the XG-amended soils used in the present study. The bond
created by the biopolymer XG with sand particles is best presented in Figure 7a. The tin film that
coated the sand particles was XG formation. Additionally, XG created an interaction between particles
that were not in direct contact. Creating a stronger bond between sand particles, XG increased cohesion
and stiffness of the sand. Figure 7a also shows a debonding of sand particles. The formation marked
in Figure 7a clearly represents a void created by a sand particle that detached from the XG film.
This suggests that higher concentrations of XG would create a wider spread of XG, stronger XG mass,
and a stronger bond between XG and soil particles which would lead to the greater strength of the
amended soil. Figure 7b shows a schematic interaction between coarse sand particles and XG.
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In Figure 7c a different interaction between silty sand and XG can be observed. Observing Figure 7c
closely we can see an interaction between a sand particle, XG, and fine particles. The mass surrounding
the sand particle was created by the interaction of XG and fine particles. Because of the range of particle
sizes, a clear transition between soil and XG could not be identified. The scheme of the interaction of
XG, fine particles, and coarse particles is presented in Figure 7d.

Figure 7e shows the SEM image of clay mixed with XG. Due to the small size of clay particles and
their electrostatic bond with XG, the clay-XG mixture is a highly homogeneous mass for which it is
hard to determine where clay particles stop and where XG links begin. A schematic representation of
the clay-XG bond is presented in Figure 7e.

From Figure 7 it can be concluded that the interaction of XG with soil strongly depends on the
size of soil particles. Coarse-grained soil experiences a coating with XG mass and bridging of distant
coarse-grained particles, while fine particles create a stronger bond with XG through the electrostatic
linkage which is more difficult to observe.

4. Conclusions

The main objective of the present study was to investigate the effect of XG on the engineering
properties of soils with different granulometry (sand, silty sand, and clay). The strength of soil was
investigated by using three mechanical tests: unconfined compression test, unconsolidated undrained
triaxial test, and direct shear test. Two types of specimens were prepared for each test, specimens made
of plain soil and specimens made of soil with 1% XG. In order to allow specimens to fully cure,
tests were conducted five days after the specimens were prepared. Most of the tests reported the
improvement in strength for all types of soils that were used.

The unconfined compression test showed that the highest compressive strength was achieved
for silty sand. The strength of plain silty sand increased almost three times after XG was added
to it. The strength of plain sand could not be determined in the unconfined compression test
because without cohesion, sand particles would fall apart without some lateral confinement.
However, XG-amended sand showed a compressive strength of 2 MPa.

During the unconsolidated-undrained triaxial test; XG-amended silty sand and XG-amended clay
showed a similar magnitude of the maximum deviatoric stress. The highest increase in the maximum
deviatoric stress was achieved for the sand because the sand in the natural state had a significantly
lower strength.

The direct shear test showed that the presence of XG can increase the shear strength of the sand
and silty sand, but the effect on clay was marginal. Furthermore, the direct shear test revealed that
XG significantly increases the cohesion in cohesionless soils such as sand, but that it does not have
a significant effect on the friction angle of that type of soil. Additionally, the direct shear test showed
that the XG affects cohesion in the soils that initially have some level of cohesion (such as silty sand),
and that it more affects the friction angle. It should be noted that the present study was conducted
with 1% of XG and that higher concentration might affect the soil-strength parameters (friction angle
and cohesion) with higher impact.

The SEM images showed that the interaction of XG with soil depends on the size of soil particles.
XG coats coarse-grained particles and creates bonds between distant particles. Fine particles in soil
have an electrostatic bond with XG which does not occur in coarse-grained soil. Therefore the bond
between XG and fine particles is stronger.

In summary, the present study revealed the effectiveness of XG on the improvement of three
different types of soil and also shows the potential of XG for the application in civil engineering
practice. The authors would suggest two possible ways to utilize XG for soil stabilization. For the
stabilization at the ground surface, the suggestion would be to mix the XG mechanically in small
quantities with soil and then apply water to the soil-XG composite. For the deeper ground improvement,
it would be more appropriate to dissolve XG in water and then mechanically mix the solution with soil.
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In-situ investigation of XG-treated soil is required to bolster the idea of XG as a medium for sustainable
soil stabilization. Therefore, the extensive in-situ research of XG-treated soil should be supported.
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