Effect of Process Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup Description
2.2. Design of the Experiment Based on the RSM Method
2.3. Artificial Neural Networks Based Prediction Model
3. Results and Discussions
3.1. Modeling of Tensile Strength by ANOVA and RSM
3.2. Influence of the Process Parameters on Tensile Strength
3.3. Modelling of Tensile Strength by ANN
4. Conclusions
- Analyzed process parameters have a significant influence on the mechanical behavior of CFRP composite parts. The tensile strength can be significantly increased and improved by the selection of the optimal process parameters.
- Presence of carbon fibers in polyamide decreased the ductility of polyamide and improved the tensile strength.
- Carbon fibers have a significant effect on the tensile strength only in the case that the load direction was in the direction of deposition of the material (at raster angle of 90 degrees).
- The layer thickness has the most significant influence on the tensile strength. The value of tensile strength increases with decreasing layer thickness, it can be explained by the increase in air gap between individual layers and rasters.
- The raster angle also has a significant effect on tensile strength, it can be explained by different mechanisms that cause the fracture material.
- The wall thickness and printing speed have a secondary effect on the tensile strength. Nevertheless, a slight increase in tensile strength can be achieved with an increase in wall thickness and with a decrease in printing speed;
- Among the nine different tested ANN topologies, the ANN 6 model was recognized as the most appropriate.
- The average percentage error between the predicted tensile strength values and the experimental values was assessed.
- The main benefits of the introduced methods also include the future reduction in experimentation time, especially since CFRP belongs to the new and insufficiently researched FDM materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive Manufacturing a Powerful Tool for the Aerospace Industry. Rapid Prototyp. J. 2022, 28, 87–100. [Google Scholar] [CrossRef]
- Herzog, T.; Schnell, G.; Tille, C.; Seitz, H. Investigation of Suitable Material and Adhesion Promoter Combinations for Fused Filament Fabrication on Flexible Silicone Build Plates. Rapid Prototyp. J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Manonukul, A. On the Build Orientation Effect in As-Printed and as-Sintered Bending Properties of 17-4PH Alloy Fabricated by Metal Fused Filament Fabrication. Rapid Prototyp. J. 2022, 28, 1076–1085. [Google Scholar] [CrossRef]
- Manoj, A.; Bhuyan, M.; Banik, S.R.; Ravi Sankar, M. Review on Particle Emissions during Fused Deposition Modeling of Acrylonitrile Butadiene Styrene and Polylactic Acid Polymers. Mater. Today Proc. 2021, 44, 1375–1383. [Google Scholar] [CrossRef]
- Venkatraman, R.; Raghuraman, S. Experimental Analysis on Density, Micro-Hardness, Surface Roughness and Processing Time of Acrylonitrile Butadiene Styrene (ABS) through Fused Deposition Modeling (FDM) Using Box Behnken Design (BBD). Mater. Today Commun. 2021, 27, 102353. [Google Scholar] [CrossRef]
- Exconde, M.K.J.E.; Co, J.A.A.; Manapat, J.Z.; Magdaluyo, E.R. Materials Selection of 3D Printing Filament and Utilization of Recycled Polyethylene Terephthalate (PET) in a Redesigned Breadboard. Procedia CIRP 2019, 84, 28–32. [Google Scholar] [CrossRef]
- Cekic, A.; Begic-Hajdarevic, D.; Cohodar, M.; Muhamedagic, K.; Osmanlic, M. Optimization of Stereolithography and Fused Deposition Modeling Process Parameters. In Proceedings of the 30th DAAAM International Symposium on Intelligent Manufacturing and Automation, Zadar, Croatia, 23–26 October 2019; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2019; Volume 1, pp. 681–687, ISBN 978-3-902734-22-8. [Google Scholar]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, W.; Liu, T. Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and Its Applications. Compos. Commun. 2020, 21, 100413. [Google Scholar] [CrossRef]
- Verdejo de Toro, E.; Coello Sobrino, J.; Martínez Martínez, A.; Miguel Eguía, V.; Ayllón Pérez, J. Investigation of a Short Carbon Fibre-Reinforced Polyamide and Comparison of Two Manufacturing Processes: Fused Deposition Modelling (FDM) and Polymer Injection Moulding (PIM). Materials 2020, 13, 672. [Google Scholar] [CrossRef] [Green Version]
- Aw, Y.; Yeoh, C.; Idris, M.; Teh, P.; Hamzah, K.; Sazali, S. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites. Materials 2018, 11, 466. [Google Scholar] [CrossRef] [Green Version]
- Su, N.; Pierce, R.S.; Rudd, C.; Liu, X. Comprehensive Investigation of Reclaimed Carbon Fibre Reinforced Polyamide (RCF/PA) Filaments and FDM Printed Composites. Compos. Part B Eng. 2022, 233, 109646. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, M.; Guo, Z.; Sang, L.; Hou, W. Investigation of Processing Parameters on Tensile Performance for FDM-Printed Carbon Fiber Reinforced Polyamide 6 Composites. Compos. Commun. 2020, 22, 100478. [Google Scholar] [CrossRef]
- Dul, S.; Fambri, L.; Pegoretti, A. High-Performance Polyamide/Carbon Fiber Composites for Fused Filament Fabrication: Mechanical and Functional Performances. J. Mater. Eng. Perform. 2021, 30, 5066–5085. [Google Scholar] [CrossRef]
- Belei, C.; Joeressen, J.; Amancio-Filho, S.T. Fused-Filament Fabrication of Short Carbon Fiber-Reinforced Polyamide: Parameter Optimization for Improved Performance under Uniaxial Tensile Loading. Polymers 2022, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Li, Z.; Cheng, Y.; Xu, D.; Zhu, D.; Jiang, S.; Guo, J.; Chen, X.; Xu, G.; Zhu, Y. Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling. Mater. Des. 2018, 139, 283–292. [Google Scholar] [CrossRef]
- Sedlacek, F.; Lašová, V. Additive Manufacturing of PA6 with Short Carbon Fibre Reinforcement Using Fused Deposition Modelling. Mater. Sci. Forum 2018, 928, 26–31. [Google Scholar] [CrossRef]
- Badini, C.; Padovano, E.; De Camillis, R.; Lambertini, V.G.; Pietroluongo, M. Preferred Orientation of Chopped Fibers in Polymer-based Composites Processed by Selective Laser Sintering and Fused Deposition Modeling: Effects on Mechanical Properties. J. Appl. Polym. Sci. 2020, 137, 49152. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Hu, Y.; Wang, H. Additive Manufacturing of Carbon Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: Effects of Process Parameters on Tensile Properties. J. Compos. Mater. 2017, 51, 451–462. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. Compos. Part Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Srinivasan, R.; Pridhar, T.; Ramprasath, L.S.; Charan, N.S.; Ruban, W. Prediction of Tensile Strength in FDM Printed ABS Parts Using Response Surface Methodology (RSM). Mater. Today Proc. 2020, 27, 1827–1832. [Google Scholar] [CrossRef]
- Deswal, S.; Narang, R.; Chhabra, D. Modeling and Parametric Optimization of FDM 3D Printing Process Using Hybrid Techniques for Enhancing Dimensional Preciseness. Int. J. Interact. Des. Manuf. IJIDeM 2019, 13, 1197–1214. [Google Scholar] [CrossRef]
- Muhamedagic, K.; Cekic, A.; Begic-Hajdarevic, D. Experimental Investigation and Modelling of FDM Process Parameters for Tensile Strength Improvement Using RSM Method. In Proceedings of the 31st DAAAM International Symposium on Intelligent Manufacturing and Automation, Mostar, Bosnia and Herzegovina, 21–24 October 2020; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2020; Volume 1, pp. 490–498, ISBN 978-3-902734-29-7. [Google Scholar]
- Kamoona, S.N.; Masood, S.H.; Mohamed, O.A. Experimental Investigation on Flexural Properties of FDM Processed Nylon 12 Parts Using RSM. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012137. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, M.; Maheshwari, S.; Kundra, T.K.; Rathee, S. An Integrated RSM-GA Based Approach for Multi Response Optimization of FDM Process Parameters for Pyramidal ABS Primitives. J. Manuf. Sci. Prod. 2016, 16, 201–208. [Google Scholar] [CrossRef]
- Yadav, D.; Chhabra, D.; Kumar Garg, R.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D Printing Process Parameters for Multi-Material Using Artificial Neural Network. Mater. Today Proc. 2020, 21, 1583–1591. [Google Scholar] [CrossRef]
- Goudswaard, M.; Hicks, B.; Nassehi, A. The Creation of a Neural Network Based Capability Profile to Enable Generative Design and the Manufacture of Functional FDM Parts. Int. J. Adv. Manuf. Technol. 2021, 113, 2951–2968. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Sood, A.K. Bayesian Regularization-Based Levenberg–Marquardt Neural Model Combined with BFOA for Improving Surface Finish of FDM Processed Part. Int. J. Adv. Manuf. Technol. 2012, 60, 1223–1235. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Modeling, Analysis, and Optimization of Dimensional Accuracy of FDM-Fabricated Parts Using Definitive Screening Design and Deep Learning Feedforward Artificial Neural Network. Adv. Manuf. 2021, 9, 115–129. [Google Scholar] [CrossRef]
- Novamid ID1030 CF10. Available online: https://Ultimaker.Com/Materials/Dsm-Novamid-r-Id1030-Cf10 (accessed on 6 December 2021).
- Kramar, D.; Cica, D. Modeling and Optimization of Finish Diamond Turning of Spherical Surfaces Based on Response Surface Methodology and Cuckoo Search Algorithm. Adv. Prod. Eng. Manag. 2021, 16, 326–334. [Google Scholar] [CrossRef]
- Syrlybayev, D.; Zharylkassyn, B.; Seisekulova, A.; Akhmetov, M.; Perveen, A.; Talamona, D. Optimisation of Strength Properties of FDM Printed Parts—A Critical Review. Polymers 2021, 13, 1587. [Google Scholar] [CrossRef]
- Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M. The Effect of Process Parameters on Tensile Behavior of 3D Printed Flexible Parts of Ethylene Vinyl Acetate (EVA). J. Manuf. Process. 2018, 35, 317–326. [Google Scholar] [CrossRef]
- Moradi, M.; Aminzadeh, A.; Rahmatabadi, D.; Rasouli, S.A. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization. J. Mater. Eng. Perform. 2021, 30, 5441–5454. [Google Scholar] [CrossRef]
- Spaic, O.; Krivokapic, Z.; Kramar, D. Development of Family of Artificial Neural Networks for the Prediction of Cutting Tool Condition. Adv. Prod. Eng. Manag. 2020, 15, 164–178. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, A.; Noureldien, N.A. Determining the Efficient Structure of Feed-Forward Neural Network to Classify Breast Cancer Dataset. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Ficko, M.; Begic-Hajdarevic, D.; Cohodar Husic, M.; Berus, L.; Cekic, A.; Klancnik, S. Prediction of Surface Roughness of an Abrasive Water Jet Cut Using an Artificial Neural Network. Materials 2021, 14, 3108. [Google Scholar] [CrossRef]
- Berus, L.; Klancnik, S.; Brezocnik, M.; Ficko, M. Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks. Sensors 2018, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, L.; Liu, J.; Wang, Y.; Chang, Q. Evaluation of Leaf N Concentration in Winter Wheat Based on Discrete Wavelet Transform Analysis. Remote Sens. 2019, 11, 1331. [Google Scholar] [CrossRef] [Green Version]
Material Properties | Test Method | Value |
---|---|---|
Tensile modulus (flat X-X orientation) | ISO 527 | 7625 MPa |
Stress at yield (flat X-X orientation) | ISO 527 | 112 MPa |
Strain at yield (flat X-X orientation) | ISO 527 | 2.5% |
Stress at break (flat X-X orientation) | ISO 527 | 110 MPa |
Strain at break (flat X-X orientation) | ISO 527 | 2.2% |
Tensile modulus (flat Y-X orientation) | ISO 527 | 2720 MPa |
Stress at yield (flat Y-X orientation) | ISO 527 | 63 MPa |
Strain at yield (flat Y-X orientation) | ISO 527 | 3% |
Stress at break (flat Y-X orientation) | ISO 527 | 58 MPa |
Strain at break (flat Y-X orientation) | ISO 527 | 4.5% |
Printing temperature | 270 ± 10 °C | |
Melting temperature | 200 °C |
Process Parameters | Level | Unit |
---|---|---|
Printing temperature | 270 | °C |
Part orientation | Flat x-x direction | degree |
Build plate temperature | 110 | °C |
Infill | 100 | % |
Process Parameters | Symbol | Unit | Levels | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |||
Layer thickness | A | mm | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 |
Printing speed | B | mm/s | 60 | 70 | 80 | 90 | 100 |
Raster angle | C | ° | 0 | 30 | 45 | 60 | 90 |
Wall thickness | D | mm | 0.8 | 1.1 | 1.4 | 1.7 | 2 |
Exp. No. | Process Parameters | Tensile Strength (MPa) | |||
---|---|---|---|---|---|
A | B | C | D | ||
1. | 0.25 | 70 | 30 | 1.7 | 58.07 |
2. | 0.1 | 80 | 45 | 1.4 | 73.93 |
3. | 0.2 | 80 | 45 | 2 | 59.2 |
4. | 0.2 | 80 | 45 | 1.4 | 61 |
5. | 0.2 | 80 | 45 | 1.4 | 64.37 |
6. | 0.2 | 80 | 45 | 1.4 | 65.97 |
7. | 0.2 | 80 | 0 | 1.4 | 58.9 |
8. | 0.25 | 70 | 60 | 1.1 | 54.73 |
9. | 0.2 | 80 | 45 | 1.4 | 61.53 |
10. | 0.15 | 70 | 30 | 1.7 | 72.53 |
11. | 0.2 | 80 | 45 | 1.4 | 60.6 |
12. | 0.2 | 80 | 45 | 1.4 | 65.43 |
13. | 0.2 | 80 | 45 | 0.8 | 52.53 |
14. | 0.25 | 90 | 60 | 1.1 | 46.13 |
15. | 0.15 | 90 | 30 | 1.7 | 65.2 |
16. | 0.15 | 90 | 60 | 1.7 | 71.77 |
17. | 0.2 | 80 | 45 | 1.4 | 64.7 |
18. | 0.2 | 80 | 90 | 1.4 | 91.53 |
19. | 0.3 | 80 | 45 | 1.4 | 45.77 |
20. | 0.15 | 70 | 60 | 1.1 | 82.73 |
21. | 0.15 | 70 | 30 | 1.1 | 67.07 |
22. | 0.25 | 90 | 30 | 1.7 | 49.6 |
23. | 0.15 | 90 | 60 | 1.1 | 80.6 |
24. | 0.25 | 70 | 30 | 1.1 | 52.53 |
25. | 0.15 | 70 | 60 | 1.7 | 85.27 |
26. | 0.25 | 70 | 60 | 1.7 | 65.13 |
27. | 0.2 | 100 | 45 | 1.4 | 64.57 |
28. | 0.25 | 90 | 60 | 1.7 | 53.8 |
29. | 0.25 | 90 | 30 | 1.1 | 47.53 |
30. | 0.15 | 90 | 30 | 1.1 | 74.33 |
31. | 0.2 | 60 | 45 | 1.4 | 71.97 |
Exp. No. | Process Parameters | Tensile Strength (MPa) | |||
---|---|---|---|---|---|
A | B | C | D | ||
1. | 0.25 | 70 | 30 | 1.7 | 58.07 |
2. | 0.1 | 80 | 45 | 1.4 | 73.93 |
3. | 0.2 | 80 | 45 | 2 | 59.20 |
4. | 0.2 | 80 | 45 | 1.4 | 63.40 |
5. | 0.2 | 80 | 0 | 1.4 | 58.90 |
6. | 0.25 | 70 | 60 | 1.1 | 54.73 |
7. | 0.15 | 70 | 30 | 1.7 | 72.53 |
8. | 0.2 | 80 | 45 | 0.8 | 52.53 |
9. | 0.25 | 90 | 60 | 1.1 | 46.13 |
10. | 0.15 | 90 | 30 | 1.7 | 65.20 |
11. | 0.15 | 90 | 60 | 1.7 | 71.77 |
12. | 0.2 | 80 | 90 | 1.4 | 91.53 |
13. | 0.3 | 80 | 45 | 1.4 | 45.77 |
14. | 0.15 | 70 | 60 | 1.1 | 82.73 |
15. | 0.15 | 70 | 30 | 1.1 | 67.07 |
16. | 0.25 | 90 | 30 | 1.7 | 49.60 |
17. | 0.15 | 90 | 60 | 1.1 | 80.60 |
18. | 0.25 | 70 | 30 | 1.1 | 52.53 |
19. | 0.15 | 70 | 60 | 1.7 | 85.27 |
20. | 0.25 | 70 | 60 | 1.7 | 65.13 |
21. | 0.2 | 100 | 45 | 1.4 | 64.57 |
22. | 0.25 | 90 | 60 | 1.7 | 53.80 |
23. | 0.25 | 90 | 30 | 1.1 | 47.53 |
24. | 0.15 | 90 | 30 | 1.1 | 74.33 |
25. | 0.2 | 60 | 45 | 1.4 | 71.97 |
Source | Lack of Fit p-Value | R2 | Adjusted R2 | Predicted R2 | Remarks |
---|---|---|---|---|---|
Linear | 0.0103 | 0.7502 | 0.7102 | 0.6137 | |
2FI | 0.0096 | 0.8137 | 0.7157 | 0.6012 | |
Quadratic | 0.0460 | 0.9298 | 0.8643 | 0.6237 | Suggested |
Cubic | 0.8003 | 0.9929 | 0.9708 | 0.9040 | Aliased |
Reduced Cubic | 0.6037 | 0.9860 | 0.9663 | 0.9000 | Selected |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 3894.31 | 17 | 229.08 | 49.84 | <0.0001 | significant |
A-A | 396.49 | 1 | 396.49 | 86.27 | <0.0001 | |
B-B | 170.13 | 1 | 170.13 | 37.02 | <0.0001 | |
C-C | 532.36 | 1 | 532.36 | 115.83 | <0.0001 | |
D-D | 35.19 | 1 | 35.19 | 7.66 | 0.0171 | |
AB | 19.58 | 1 | 19.58 | 4.26 | 0.0613 | |
AC | 53.22 | 1 | 53.22 | 11.58 | 0.0052 | |
AD | 79.39 | 1 | 79.39 | 17.27 | 0.0013 | |
BC | 30.31 | 1 | 30.31 | 6.59 | 0.0246 | |
BD | 64.64 | 1 | 64.64 | 14.06 | 0.0028 | |
CD | 3.84 | 1 | 3.84 | 0.8358 | 0.3786 | |
A2 | 22.04 | 1 | 22.04 | 4.80 | 0.0490 | |
B2 | 40.06 | 1 | 40.06 | 8.72 | 0.0121 | |
C2 | 237.86 | 1 | 237.86 | 51.75 | <0.0001 | |
D2 | 98.26 | 1 | 98.26 | 21.38 | 0.0006 | |
ABD | 24.40 | 1 | 24.40 | 5.31 | 0.0399 | |
A2C | 124.23 | 1 | 124.23 | 27.03 | 0.0002 | |
AB2 | 73.36 | 1 | 73.36 | 15.96 | 0.0018 | |
Residual | 55.15 | 12 | 4.60 | |||
Lack of Fit | 29.65 | 7 | 4.24 | 0.8304 | 0.6037 | not significant |
Pure Error | 25.50 | 5 | 5.10 | |||
Cor Total | 3949.46 | 29 |
Parameters | Std. Dev. | Mean | C.V.% | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|---|---|---|
Value | 2.14 | 64.12 | 3.34 | 0.9860 | 0.9663 | 0.9000 | 27.5558 |
ANN Information | Config 1 | Config 2 | Config 3 | Config 4 | Config 5 | Config 6 | Config 7 | Config 8 |
---|---|---|---|---|---|---|---|---|
Training procedure | trainlm | trainlm | trainscg | trainscg | traingda | traingda | trainbr | trainbr |
Learning epochs | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Transfer function | tansig | logsig | tansig | logsig | tansig | logsig | tansig | logsig |
Architecture | ANN 6 | ANN 6 | ANN 6 | ANN 6 | ANN 6 | ANN 6 | ANN 6 | ANN 6 |
Cross validation | 25-fold | 25-fold | 25-fold | 25-fold | 25-fold | 25-fold | 25-fold | 25-fold |
MAE test | 0.3243 | 0.316 | 0.2129 | 0.2157 | 0.2662 | 0.2618 | 0.21 | 0.2267 |
RPD (MAE test) | 1.7213 | 1.7665 | 2.6217 | 2.5877 | 2.097 | 2.1321 | 2.6584 | 2.4624 |
MAE train | 0.0001 | 0.0001 | 0.0255 | 0.0476 | 0.1578 | 0.2355 | 0.0549 | 0.0619 |
MSE test | 0.1341 | 0.1854 | 0.0869 | 0.0725 | 0.1115 | 0.124 | 0.0674 | 0.0928 |
RPD (MSE test) | 4.1631 | 3.0102 | 6.4213 | 7.7042 | 5.0072 | 4.5016 | 8.2797 | 6.0144 |
MSE train | 0.0001 | 0.0001 | 0.0016 | 0.0043 | 0.0389 | 0.09 | 0.0075 | 0.0087 |
Time [s] | 3.6 | 3.2 | 3.9 | 3.9 | 3.6 | 3.7 | 5.4 | 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhamedagic, K.; Berus, L.; Potočnik, D.; Cekic, A.; Begic-Hajdarevic, D.; Cohodar Husic, M.; Ficko, M. Effect of Process Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts. Appl. Sci. 2022, 12, 6028. https://doi.org/10.3390/app12126028
Muhamedagic K, Berus L, Potočnik D, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Ficko M. Effect of Process Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts. Applied Sciences. 2022; 12(12):6028. https://doi.org/10.3390/app12126028
Chicago/Turabian StyleMuhamedagic, Kenan, Lucijano Berus, David Potočnik, Ahmet Cekic, Derzija Begic-Hajdarevic, Maida Cohodar Husic, and Mirko Ficko. 2022. "Effect of Process Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts" Applied Sciences 12, no. 12: 6028. https://doi.org/10.3390/app12126028
APA StyleMuhamedagic, K., Berus, L., Potočnik, D., Cekic, A., Begic-Hajdarevic, D., Cohodar Husic, M., & Ficko, M. (2022). Effect of Process Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts. Applied Sciences, 12(12), 6028. https://doi.org/10.3390/app12126028