Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Framework and Hypotheses Development
3.1. Hypotheses Development
3.2. Hypotheses Related to Moderating Factors
3.2.1. Hypothesis Related to Age
3.2.2. Hypothesis Related to Gender
3.2.3. Hypothesis Related to Education Level
3.2.4. Hypothesis Related to Previous Experience
4. Research Methods
4.1. Research Context
4.2. Measurement Items
4.3. Participants and Procedure
5. Data Analysis and Results
5.1. Descriptive Analysis
5.2. SEM Analysis
5.2.1. Measurement Model
5.2.2. Structural Model
5.3. Moderation Effects
5.4. Machine Learning Techniques’ Validation and Predictions
5.5. Validation and Predictions
6. Discussion and Conclusions
6.1. Theoretical Contribution
6.2. Practical Implications
6.3. Limitations and Future Research
6.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Construct/Item | Source | |
---|---|---|
Gender
| ||
Age
| ||
Educational Level
| ||
Previous experience
| ||
Information Quality (IQ) |
| [16,40] |
Information Adoption (IA) |
| [16,34,35,66] |
Information Usefulness (IU) |
| [34,35] |
Information language (IL) |
| [35] |
Source credibility (SC) |
| [35,66] |
Intrinsic Information Quality (IIQ) |
| [40,67,68] |
Contextual Information Quality (CIQ) |
| [40] |
Accessibility information quality (AIQ) |
| [40,69] |
Academic achievement (AA) |
| [69,70] Adopted from [71] |
References
- Mahande, R.D.; Malago, J.D.; Abdal, N.M.; Yasdin, Y. Factors affecting students’ performance in web-based learning during the COVID-19 pandemic. Qual. Assur. Educ. 2022, 30, 150–165. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/QAE-08-2021-0130 (accessed on 17 April 2020).
- Ma, L.; Lee, C.S. Investigating the adoption of MOOCs: A technology-user-environment perspective. J. Comput. Assist. Learn. 2019, 35, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Osop, H.; Goh, D.H.; Kelni, G. Making sense of comments on YouTube educational videos: A self-directed learning perspective. Online Inf. Rev. 2017, 41, 611–625. [Google Scholar] [CrossRef]
- Rich, K.T. Exercise-Based Video Podcasts as a Learning Aid for Introductory Financial Accounting Students. In Book Advances in Accounting Education: Teaching and Curriculum Innovations (Advances in Accounting Education); Feldmann, D., Rupert, T.J., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2012; Volume 13, pp. 185–211. [Google Scholar]
- Jaffar, A.A. YouTube: An emerging tool in anatomy education. Anat. Sci. Educ. 2012, 5, 158–164. [Google Scholar] [CrossRef]
- Zhou, Q.; Lee, C.S.; Sin, S.-C.J.; Lin, S.; Hu, H.; Fahmi, M. Understanding the use of YouTube as a learning resource: A social cognitive perspective. Aslib J. Inf. Manag. 2020, 72, 339–359. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/AJIM-10-2019-0290 (accessed on 17 April 2020). [CrossRef]
- Cheung, M.Y.; Luo, C.; Sia, C.L.; Chen, H. Credibility of electronic word-of-mouth: Informational and normative determinants of on-line consumer recommendations. Int. J. Electron. Commer. 2009, 13, 9–38. [Google Scholar] [CrossRef]
- Maqableh, M.; Jaradat, M.; Azzam, A. Exploring the determinants of students’ academic performance at university level: The mediating role of internet usage continuance intention. Educ. Inf. Technol. 2021, 26, 4003–4025. [Google Scholar] [CrossRef]
- Abi-Rafeh, J.; Azzi, A.J. Emerging role of online virtual teaching resources for medical student education in plastic surgery: COVID-19 pandemic and beyond. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 1575–1592. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M. Online learning amid the COVID-19 pandemic: Students perspectives. J. Pedagog. Sociol. Psychol. 2020, 1, 45–51. [Google Scholar] [CrossRef]
- Shoufan, A. Estimating the cognitive value of YouTube’s educational videos: A learning analytics approach. Comput. Hum. Behav. 2019, 92, 450–458. [Google Scholar] [CrossRef]
- Masa’deh, R.; AlHadid, I.; Abu-Taieh, E.; Khwaldeh, S.; Alrowwad, A.; Alkhawaldeh, R.S. Factors Influencing Students’ Intention to Use E-Textbooks and Their Impact on Academic Achievement in Bilingual Environment: An Empirical Study Jordan. Information 2022, 13, 233. [Google Scholar] [CrossRef]
- Alhadid, I.; Khwaldeh, S.; Al Rawajbeh, M.; Abu-Taieh, E.; Masa’deh, R.; Aljarah, I. An Intelligent Web Service Composition and Resource-Optimization Method Using K-Means Clustering and Knapsack Algorithms. Mathematics 2021, 9, 2023. [Google Scholar] [CrossRef]
- Gan, C.; Li, H.; Liu, Y. Understanding mobile learning adoption in higher education: An empirical investigation in the context of the mobile library. Electron. Libr. 2017, 35, 846–860. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/EL-04-2016-0093 (accessed on 17 April 2020). [CrossRef]
- Zhou, T. Understanding online health community users’ information adoption intention: An elaboration likelihood model perspective. Online Inf. Rev. 2022, 46, 134–146. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/OIR-09-2020-0412 (accessed on 17 April 2020). [CrossRef]
- Elwalda, A.; Erkan, İ.; Rahman, M.; Zeren, D. Understanding mobile users’ information adoption behavior: An extension of the information adoption model. J. Enterp. Inf. Manag. 2021. ahead-of-print. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/JEIM-04-2020-0129 (accessed on 17 April 2020). [CrossRef]
- Wang, Z.; Sun, Z. Can the adoption of health information on social media be predicted by information characteristics? Aslib J. Inf. Manag. 2021, 73, 80–100. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/AJIM-12-2019-0369 (accessed on 19 April 2020). [CrossRef]
- Lee, J.-C.; Chen, X. Exploring users’ adoption intentions in the evolution of artificial intelligence mobile banking applications: The intelligent and anthropomorphic perspectives. Int. J. Bank Mark. 2022. ahead-of-print. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/IJBM-08-2021-0394 (accessed on 17 April 2020). [CrossRef]
- Sangwan, S.; Sharma, S.K.; Sharma, J. Disclosing customers’ intentions to use social media for purchase-related decisions. Asia-Pac. J. Bus. Adm. 2022, 14, 145–160. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/APJBA-02-2021-0061 (accessed on 17 April 2020). [CrossRef]
- Wong, D.; Liu, H.; Meng-Lewis, Y.; Sun, Y.; Zhang, Y. Gamified money: Exploring the effectiveness of gamification in mobile payment adoption among the silver generation in China. Inf. Technol. People 2022, 35, 281–315. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/ITP-09-2019-0456 (accessed on 17 April 2020). [CrossRef]
- Arora, N.; Lata, S. YouTube channels influence on destination visit intentions: An empirical analysis on the base of information adoption model. J. Indian Bus. Res. 2020, 12, 23–42. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/JIBR-09-2019-0269 (accessed on 17 April 2020). [CrossRef]
- Das, P.; Pradip, D. Usability and effectiveness of new media in agricultural learning and development: A case study on the southern states of India. J. Soc. Mark. 2021, 11, 357–377. [Google Scholar] [CrossRef]
- Naeem, M.; Ozuem, W. Exploring the use of social media sites for health professionals’ engagement and productivity in public sector hospitals. Empl. Relat. 2021, 43, 1029–1051. [Google Scholar] [CrossRef]
- Khwaldeh, S.; Alkhawaldeh, R.S.; Masa’deh, R.E.; AlHadid, I.; Alrowwad, A.A. The impact of mobile hotel reservation system on continuous intention to use in Jordan. Tour. Hosp. Res. 2020, 20, 358–371. [Google Scholar] [CrossRef]
- Wang, Y.; Gray, P.H.; Meister, D.B. Task-driven learning: The antecedents and outcomes of internal and external knowledge sourcing. Inf. Manag. 2014, 51, 939–951. [Google Scholar] [CrossRef]
- Leventhal, R.C.; Swanson, A. Technological applications to the marketing classroom. J. Res. Interact. Mark. 2016, 10, 102–111. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/JRIM-01-2015-0015 (accessed on 17 April 2020). [CrossRef]
- Albahiri, M.H.; Alhaj, A.A.M. Role of visual element in spoken English discourse: Implications for YouTube technology in EFL classrooms. Electron. Libr. 2020, 38, 531–544. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/EL-07-2019-0172 (accessed on 17 April 2020). [CrossRef]
- Almobarraz, A. Utilization of YouTube as an information resource to support university courses. Electron. Libr. 2018, 36, 71–81. [Google Scholar] [CrossRef]
- Wickramanayake, L. Social media use by adolescent students of Sri Lanka: Impact on learning and behavior. Glob. Knowl. Mem. Commun. 2022, 71, 70–85. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/GKMC-08-2020-0123 (accessed on 17 April 2020). [CrossRef]
- Palla, I.A.; Sheikh, A. Impact of social media on the academic performance of college students in Kashmir. Inf. Discov. Deliv. 2021, 49, 298–307. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/IDD-06-2020-0061 (accessed on 17 April 2020). [CrossRef]
- Chiang, H.S.; Hsiao, K.L. YouTube stickiness: The needs, personal, and environmental perspective. Internet Res. 2015, 25, 85–106. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/IntR-11-2013-0236 (accessed on 17 April 2020). [CrossRef]
- Wang, Y. Information Adoption Model, a Review of the Literature. J. Econ. Bus. Manag. 2016, 4, 618–622. [Google Scholar] [CrossRef]
- Kitchen, J.P.; Kerr, G.; Schultz, E.D.; McColl, R.; Pals, H. The elaboration likelihood model: Review, critique and research agenda. Eur. J. Mark. 2014, 48, 2033–2050. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/EJM-12-2011-0776 (accessed on 17 April 2020). [CrossRef]
- Sussman, S.W.; Siegal, W.S. Informational influence in organizations: An integrated approach to knowledge adoption. Inf. Syst. Res. 2003, 14, 47–65. [Google Scholar] [CrossRef] [Green Version]
- Jamil, R.A.; Qayyum, A. Word of mouse vs. word of influencer? An experimental investigation into the consumers’ preferred source of online information. Manag. Res. Rev. 2022, 45, 173–197. [Google Scholar] [CrossRef]
- Luna, D.; Peracchio, L.A. What’s in a bilingual’s mind? How bilingual consumers process information. ACR N. Am. Adv. 1999, 26, 306–311. [Google Scholar]
- Koslow, S.; Shamdasani, P.N.; Touchstone, E.E. Exploring language effects in ethnic advertising: A sociolinguistic perspective. J. Consum. Res. 1994, 20, 575–585. [Google Scholar] [CrossRef]
- Schmitt, B.H.; Pan, Y.; Tavassoli, N.T. Language and consumer memory: The impact of linguistic differences between English and English. J. Consum. Res. 1994, 21, 419–431. [Google Scholar] [CrossRef]
- Khan, H.; Lee, R. Does packaging influence taste and quality perceptions across varying consumer demographics? Food Qual. Prefer. 2020, 84, 103932. [Google Scholar] [CrossRef]
- Alkhattabi, M.; Neagu, D.; Cullen, A. Information quality framework for e-learning systems. Knowl. Manag. E-Learn. 2010, 2, 340. [Google Scholar]
- Basri, S.; Alandejani, J.; Almadani, F. ICT Adoption Impact on Students’ Academic Performance: Evidence from Saudi Universities. Educ. Res. Int. 2018, 2018, 1240197. [Google Scholar] [CrossRef]
- Alamri, M.M.; Almaiah, M.A.; Al-Rahmi, W.M. Social media applications affecting students’ academic performance: A model developed for sustainability in higher education. Sustainability 2020, 12, 6471. [Google Scholar] [CrossRef]
- Windasari, N.; Albashrawi, M. Behavioral routes to loyalty across gender on m-banking usage. Rev. Int. Bus. Strategy 2021, 31, 339–354. [Google Scholar] [CrossRef]
- Peng, L.; Liao, Q.; Wang, X.; He, X. Factors affecting female user information adoption: An empirical investigation on fashion shopping guide websites. Electron. Commer. Res. 2016, 16, 145–169. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Jbeen, A.; Ur Rehman, S.; Mahmood, K. Awareness, use and attitudes of students towards e-books: Differences based on gender, discipline and degree level. Glob. Knowl. Mem. Commun. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Urumsah, D. Factors Influencing Consumers to Use e-services in Indonesian Airline Companies. In E-Services Adoption: Processes by Firms in Developing Nations (Advances in Business Marketing and Purchasing 2015, Vol. 23B); Emerald Group Publishing Limited: Bingley, UK, 2015; pp. 5–254. [Google Scholar] [CrossRef]
- Glavee-Geo, R.; Shaikh, A.; Karjaluoto, H. Mobile banking services adoption in Pakistan: Are there gender differences? Int. J. Bank Mark. 2017, 35, 1090–1114. [Google Scholar] [CrossRef] [Green Version]
- Smeda, A.; Shiratuddin, M.F.; Wong, K.W. Measuring the moderating influence of gender on the acceptance of e-book amongst mathematics and statistics students at universities in Libya. Knowl. Manag. E-Learn. 2017, 9, 177–199. [Google Scholar] [CrossRef]
- Merhi, M.; Hone, K.; Tarhini, A.; Ameen, N. An empirical examination of the moderating role of age and gender in consumer mobile banking use: A cross-national, quantitative study. J. Enterp. Inf. Manag. 2021, 34, 1144–1168. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/JEIM-03-2020-0092 (accessed on 17 April 2020). [CrossRef]
- Soja, E.; Soja, P. Fostering ICT use by older workers: Lessons from perceptions of barriers to enterprise system adoption. J. Enterp. Inf. Manag. 2020, 33, 407–434. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/JEIM-12-2018-0282 (accessed on 17 April 2020). [CrossRef]
- Kagzi, M.; Guha, M. Does board demographic diversity influence firm performance? Evidence from Indian-knowledge intensive firms. Benchmarking Int. J. 2018, 25, 1028–1058. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/BIJ-07-2017-0203 (accessed on 17 April 2020). [CrossRef]
- Chawla, D.; Joshi, H. The moderating role of gender and age in the adoption of mobile wallet. Foresight 2020, 22, 483–504. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/FS-11-2019-0094 (accessed on 17 April 2020). [CrossRef]
- Tseng, S.Y.; Wang, C.N. Perceived risk influence on dual-route information adoption processes on travel websites. J. Bus. Res. 2016, 69, 2289–2296. [Google Scholar] [CrossRef]
- Zhu, D.H.; Chang, Y.P.; Luo, J.J. Understanding the influence of C2C communication on purchase decision in online communities from a perspective of information adoption model. Telemat. Inform. 2016, 33, 8–16. [Google Scholar] [CrossRef]
- Ismagilova, E.; Slade, E.; Rana, N.P.; Dwivedi, Y.K. The effect of characteristics of source credibility on consumer behavior: A Meta-analysis. J. Retail. Consum. Serv. 2020, 53, 101736. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.M.; Lee, M.K.; Rabjohn, N. The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Res. 2008, 18, 229–247. [Google Scholar] [CrossRef]
- Wang, R.Y.; Strong, D.M. Beyond accuracy: What data quality means to data consumers. J. Manag. Inf. Syst. 1996, 12, 5–33. [Google Scholar] [CrossRef]
- Wang, R.Y.; Storey, V.C.; Firth, C.P. A framework for analysis of data quality research. IEEE Trans. Knowl. 1995, 7, 623–640. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Y.; Lee, Y.W.; Pipino, L.L.; Strong, D.M. Manage your information as product: The keystone to quality information. Sloan Manag. Rev 1998, 39, 95. [Google Scholar]
- Dancer, H.; Filieri, R.; Grundy, D. eWOM in online customer support communities: Key variables in information quality and source credibility. J. Direct Data Digital Mark. Pract. 2014, 15, 290–305. [Google Scholar] [CrossRef]
- Zha, X.; Li, L.; Yan, Y.; Wang, Q.; Wang, G. Exploring digital library usage for getting information from the ELM perspective: The moderating effect of information need. Aslib J. Inf. Manag. 2016, 68, 286–305. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/AJIM-12-2015-0200 (accessed on 17 April 2020). [CrossRef]
- Kassarnig, V.; Mones, E.; Bjerre-Nielsen ASapiezynski, P.; Lassen, D.; Lehmann, S. Academic performance and behavioral patterns. EPJ Data Sci. 2018, 7, 10. [Google Scholar] [CrossRef]
- Srirahayu, D.P.; Nurpratama, M.R.; Handriana, T.; Hartini, S. Effect of gender, social influence, and emotional factors in usage of e-Books by Generation Z in Indonesia. Digit. Libr. Perspect. 2021. ahead-of-print. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/DLP-12-2020-0129 (accessed on 17 April 2020). [CrossRef]
- Zhong, S.; Shen, X.; Shen, W.; Xin, C. Assessing the impact of ICT adoption on residents’ self-rated health: Evidence from China. Kybernetes 2022. ahead-of-print. Available online: https://ezlibrary.ju.edu.jo:2057/10.1108/K-12-2021-1243 (accessed on 17 April 2020). [CrossRef]
- Jiang, G.; Liu, F.; Liu, W.; Liu, S.; Chen, Y.; Xu, D. Effects of information quality on information adoption on social media review platforms: Moderating role of perceived risk. Data Sci. Manag. 2021, 1, 13–22. [Google Scholar] [CrossRef]
- Forsgren, N.; Durcikova, A.; Clay, P.F.; Wang, X. The Integrated User Satisfaction Model: Assessing Information Quality and System Quality as Second-order Constructs in System Administration. Commun. Assoc. Inf. Syst. 2016, 38, 39. Available online: http://aisel.aisnet.org/cais/vol38/iss1/39 (accessed on 17 April 2020). [CrossRef]
- Arazy, O.; Kopak, R. On the Measurability of Information Quality. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 89–99. [Google Scholar] [CrossRef]
- Laumer, S.; Maier, C.; Weitzel, T. Information quality, user satisfaction, and the manifestation of workarounds: A qualitative and quantitative study of enterprise content management system users. Eur. J. Inf. Syst. 2017, 26, 333–360. [Google Scholar] [CrossRef]
- Pirmohamed, S.; Debowska, A.; Boduszek, D. Gender differences in the correlates of academic achievement among university students. J. Appl. Res. High. Educ. 2017, 9, 313–324. [Google Scholar] [CrossRef]
- Maqableh, M.; Rajab, L.; Quteshat, W.; Masa’deh, R.; Khatib, T.; Karajeh, H. The Impact of Social Media Networks Websites Usage on Students’ Academic Performance. Commun. Netw. 2015, 7, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Pallant, J. SPSS Survival Manual: A Step Guide to Data Analysis Using SPSS for Windows Version 12; Open University Press: Chicago, IL, USA, 2005. [Google Scholar]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill-Building Approach, 6th ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Bagozzi, R.; Yi, Y. On the Evaluation of Structural Evaluation Models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Multivariate Data Analysis, 6th ed.; Prentice-Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Newkirk, H.; Lederer, A. The Effectiveness of Strategic Information Systems Planning under Environmental Uncertainty. Inf. Manag. 2006, 43, 481–501. [Google Scholar] [CrossRef]
- Kline, R. Principles and Practice of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2010. [Google Scholar]
- Creswell, J. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Multivariate Data Analysis, 7th ed.; Prentice-Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Fronell, C.; Larcker, D. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2016. [Google Scholar]
- Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial neural network architectures and training processes. In Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 21–28. [Google Scholar]
- Yao, W.; Li, L. A new regression model: Modal linear regression. Scand. J. Stat. 2014, 41, 656–671. [Google Scholar] [CrossRef] [Green Version]
- Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; Technical Report MSR-TR-98-14; Microsoft: Redmond, WA, USA, 1998. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Tasin, T.; Habib, M.A. Computer-Aided Cataract Detection Using Random Forest Classifier. In Proceedings of the International Conference on Big Data, IoT, and Machine Learning; Springer: Singapore, 2022; pp. 27–38. [Google Scholar]
Category | Category | Frequency | Percentage % |
---|---|---|---|
Gender | Male | 293 | 41.6 |
Female | 411 | 58.4 | |
Total | 704 | 100 | |
Age (Year) | 18 to less than 34 | 496 | 70.5 |
34 to less than 44 | 175 | 24.9 | |
44 to less than 54 | 20 | 2.8 | |
54 to less than 64 | 10 | 1.4 | |
64 and over | 3 | 0.4 | |
Total | 704 | 100 | |
Education level | Bachelor | 350 | 49.7 |
Master | 339 | 48.2 | |
PhD | 15 | 2.1 | |
Total | 704 | 100 | |
Previous experience | Low | 186 | 26.4 |
Good | 237 | 33.7 | |
Excellent | 281 | 39.9 | |
Total | 704 | 100 |
Range | Level |
---|---|
1–1.80 | very low |
1.81–2.60 | low |
2.61–3.40 | moderate |
3.41–4.20 | high |
4.21–5 | very high |
Type of Variable | Variables | Mean | SD | Level | Order |
---|---|---|---|---|---|
Independent Variables | Source Credibility (SC) | 4.1638 | 0.70222 | High | 4 |
Information Language (IL) | 3.1055 | 0.48915 | Moderate | 5 | |
Intrinsic Information Quality (IIQ) | 4.1719 | 0.95858 | High | 3 | |
Contextual Information Quality (CIQ) | 4.2198 | 0.98594 | Very high | 2 | |
Accessibility Information Quality (AIQ) | 4.3102 | 0.82849 | Very high | 1 | |
Mediating Variables | Information Quality (IQ) | 4.1146 | 1.06993 | High | 3 |
Information Usefulness (IU) | 4.2098 | 1.10506 | Very high | 1 | |
Information Adoption (IA) | 4.1634 | 1.07376 | High | 2 | |
Dependent Variable | Academic Achievement (AA) | 4.1396 | 1.14964 | High | - |
Source Credibility (SC) | Mean | SD | Level | Order |
---|---|---|---|---|
SC1: | 3.85 | 0.535 | High | 5 |
SC2: | 4.15 | 0.780 | High | 4 |
SC3: | 4.40 | 0.868 | Very high | 1 |
SC4: | 4.15 | 0.840 | High | 4 |
SC5: | 4.21 | 0.805 | Very high | 3 |
SC6: | 4.23 | 0.813 | Very high | 2 |
Information Language (IL) | Mean | SD | Level | Order |
IL1: | 3.08 | 0.491 | Moderate | 5 |
IL2: | 3.15 | 0.620 | Moderate | 4 |
IL3: | 3.71 | 1.035 | High | 1 |
IL4: | 2.42 | 0.741 | Low | 7 |
IL5: | 2.49 | 0.860 | Low | 6 |
IL6: | 3.70 | 0.627 | High | 2 |
IL7: | 3.19 | 0.586 | Moderate | 3 |
Intrinsic Information Quality (IIQ) | Mean | SD | Level | Order |
IIQ1: | 4.27 | 1.172 | Very high | 2 |
IIQ2: | 4.14 | 0.830 | High | 4 |
IIQ3: | 3.97 | 1.098 | High | 5 |
IIQ4: | 4.20 | 0.823 | High | 3 |
IIQ5: | 4.28 | 1.192 | Very high | 1 |
Contextual Information Quality (CIQ) | Mean | SD | Level | Order |
CIQ1: | 4.35 | 0.590 | Very high | 2 |
CIQ2: | 4.29 | 1.189 | Very high | 4 |
CIQ3: | 4.26 | 1.187 | Very high | 5 |
CIQ4: | 4.00 | 1.101 | High | 10 |
CIQ5: | 4.49 | 0.825 | Very high | 1 |
CIQ6: | 4.29 | 1.156 | Very high | 4 |
CIQ7: | 4.18 | 0.787 | High | 8 |
CIQ8: | 4.31 | 1.176 | Very high | 3 |
CIQ9: | 4.22 | 0.770 | Very high | 7 |
CIQ10: | 4.31 | 1.172 | Very high | 3 |
CIQ11: | 4.00 | 1.065 | High | 10 |
CIQ12: | 3.98 | 1.069 | High | 11 |
CIQ13: | 4.28 | 1.194 | Very high | 5 |
CIQ14: | 4.25 | 1.188 | Very high | 6 |
CIQ15: | 4.05 | 1.123 | High | 9 |
CIQ16: | 4.26 | 1.177 | Very high | 5 |
Accessibility Information Quality (AIQ) | Mean | SD | Level | Order |
AIQ1: | 4.71 | 0.499 | Very high | 1 |
AIQ2: | 4.69 | 0.530 | Very high | 2 |
AIQ3: | 4.32 | 1.172 | Very high | 6 |
AIQ4: | 4.22 | 1.162 | Very high | 7 |
AIQ5: | 4.05 | 0.717 | High | 9 |
AIQ6: | 4.09 | 1.103 | High | 8 |
AIQ7: | 4.48 | 0.816 | Very high | 3 |
AIQ8: | 4.03 | 1.078 | High | 10 |
AIQ9: | 4.43 | 0.908 | Very high | 5 |
AIQ10: | 3.96 | 1.073 | High | 11 |
AIQ11: | 4.44 | 0.888 | Very high | 4 |
Information Usefulness (IU) | Mean | SD | Level | Order |
IU1: | 4.33 | 1.168 | Very high | 1 |
IU2: | 4.00 | 1.073 | High | 3 |
IU3: | 4.30 | 1.158 | Very high | 2 |
Information Quality (IQ) | Mean | SD | Level | Order |
IQ1: | 4.30 | 1.159 | Very high | 1 |
IQ2: | 4.04 | 1.079 | High | 2 |
IQ3: | 4.01 | 1.067 | High | 3 |
Information Adoption (IA) | Mean | SD | Level | Order |
IA1: | 4.30 | 1.143 | Very high | 1 |
IA2: | 4.09 | 1.087 | High | 5 |
IA3: | 4.11 | 1.099 | High | 4 |
IA4: | 4.22 | 1.154 | Very high | 2 |
IA5: | 4.10 | 1.104 | High | 3 |
Academic Achievement (AA) | Mean | SD | Level | Order |
AA1: | 4.34 | 1.175 | Very high | 1 |
AA2: | 3.98 | 1.089 | High | 6 |
AA3: | 4.31 | 1.188 | Very high | 2 |
AA4: | 4.21 | 1.192 | Very high | 4 |
AA5: | 4.03 | 1.112 | High | 5 |
AA6: | 4.22 | 1.171 | Very high | 3 |
AA7: | 3.87 | 1.439 | High | 7 |
Constructs and Indicators | Factor Loadings | Std. Error | Square Multiple Correlation | Error Variance | Cronbach Alpha | Composite Reliability * | AVE ** |
---|---|---|---|---|---|---|---|
Source Credibility (SC) | 0.952 | 0.97 | 0.98 | ||||
SC1 | 0.722 | *** | 0.521 | 0.137 | |||
SC2 | 0.855 | 0.074 | 0.911 | 0.054 | |||
SC3 | 0.842 | 0.083 | 0.708 | 0.219 | |||
SC4 | 0.930 | 0.080 | 0.865 | 0.094 | |||
SC5 | 0.908 | 0.077 | 0.824 | 0.114 | |||
SC6 | 0.845 | 0.077 | 0.893 | 0.071 | |||
Information Language (IL) | 0.895 | 0.95 | 0.96 | ||||
IL1 | 0.577 | *** | 0.333 | 0.160 | |||
IL2 | 0.668 | 0.101 | 0.446 | 0.213 | |||
IL4 | 0.920 | 0.137 | 0.846 | 0.084 | |||
IL5 | 0.874 | 0.165 | 0.950 | 0.037 | |||
IL7 | 0.708 | 0.098 | 0.501 | 0.171 | |||
Intrinsic Information Quality (IIQ) | 0.958 | 0.95 | 0.96 | ||||
IIQ1 | 0.878 | *** | 0.956 | 0.061 | |||
IIQ2 | 0.778 | 0.018 | 0.606 | 0.271 | |||
IIQ3 | 0.838 | 0.014 | 0.879 | 0.145 | |||
IIQ4 | 0.856 | 0.015 | 0.733 | 0.180 | |||
IIQ5 | 0.848 | 0.015 | 0.899 | 0.144 | |||
Contextual Information Quality (CIQ) | 0.989 | 0.65 | 0.99 | ||||
CIQ1 | 0.508 | *** | 0.248 | 0.263 | |||
CIQ2 | 0.875 | 0.261 | 0.950 | 0.070 | |||
CIQ3 | 0.871 | 0.260 | 0.942 | 0.081 | |||
CIQ4 | 0.814 | 0.232 | 0.835 | 0.200 | |||
CIQ5 | 0.870 | 0.180 | 0.940 | 0.040 | |||
CIQ6 | 0.878 | 0.254 | 0.957 | 0.057 | |||
CIQ7 | 0.829 | 0.156 | 0.687 | 0.193 | |||
CIQ8 | 0.882 | 0.259 | 0.963 | 0.050 | |||
CIQ9 | 0.853 | 0.155 | 0.728 | 0.161 | |||
CIQ10 | 0.884 | 0.259 | 0.967 | 0.045 | |||
CIQ11 | 0.918 | 0.225 | 0.843 | 0.178 | |||
CIQ12 | 0.822 | 0.226 | 0.849 | 0.172 | |||
CIQ13 | 0.877 | 0.262 | 0.955 | 0.065 | |||
CIQ14 | 0.877 | 0.261 | 0.954 | 0.065 | |||
CIQ15 | 0.822 | 0.238 | 0.850 | 0.189 | |||
CIQ16 | 0.876 | 0.259 | 0.952 | 0.066 | |||
Accessibility Information Quality (AIQ) | 0.973 | 0.94 | 0.98 | ||||
AIQ1 | 0.846 | *** | 0.716 | 0.071 | |||
AIQ2 | 0.816 | 0.037 | 0.666 | 0.094 | |||
AIQ3 | 0.877 | 0.068 | 0.955 | 0.062 | |||
AIQ4 | 0.853 | 0.070 | 0.908 | 0.124 | |||
AIQ5 | 0.719 | 0.053 | 0.517 | 0.248 | |||
AIQ6 | 0.831 | 0.068 | 0.867 | 0.162 | |||
AIQ7 | 0.853 | 0.049 | 0.909 | 0.060 | |||
AIQ8 | 0.828 | 0.067 | 0.862 | 0.161 | |||
AIQ9 | 0.878 | 0.060 | 0.771 | 0.188 | |||
AIQ10 | 0.832 | 0.066 | 0.868 | 0.151 | |||
AIQ11 | 0.809 | 0.056 | 0.827 | 0.136 | |||
Information Usefulness (IU) | 0.974 | 0.96 | 0.90 | ||||
IU1 | 0.887 | *** | 0.974 | 0.036 | |||
IU2 | 0.922 | 0.015 | 0.849 | 0.173 | |||
IU3 | 0.885 | 0.009 | 0.970 | 0.041 | |||
Information Quality (IQ) | 0.969 | 0.96 | 0.89 | ||||
IQ1 | 0.924 | *** | 0.854 | 0.195 | |||
IQ2 | 0.877 | 0.017 | 0.955 | 0.052 | |||
IQ3 | 0.880 | 0.017 | 0.960 | 0.046 | |||
Information Adoption (IA) | 0.979 | 0.97 | 0.98 | ||||
IA1 | 0.920 | *** | 0.846 | 0.201 | |||
IA2 | 0.876 | 0.018 | 0.952 | 0.057 | |||
IA3 | 0.881 | 0.018 | 0.963 | 0.045 | |||
IA4 | 0.899 | 0.024 | 0.808 | 0.255 | |||
IA5 | 0.880 | 0.018 | 0.960 | 0.049 | |||
Academic Achievement (AA) | 0.985 | 0.96 | 0.97 | ||||
AA1 | 0.878 | *** | 0.957 | 0.060 | |||
AA2 | 0.843 | 0.014 | 0.889 | 0.132 | |||
AA3 | 0.877 | 0.012 | 0.954 | 0.065 | |||
AA4 | 0.847 | 0.015 | 0.897 | 0.146 | |||
AA5 | 0.930 | 0.015 | 0.866 | 0.166 | |||
AA6 | 0.844 | 0.015 | 0.890 | 0.150 | |||
AA7 | 0.862 | 0.016 | 0.925 | 0.154 |
Constructs | SC | IL | IIQ | CIQ | AIQ | IU | IQ | IA | AA |
---|---|---|---|---|---|---|---|---|---|
SC | 0.98 | ||||||||
IL | 0.714 | 0.97 | |||||||
IIQ | 0.836 | 0.815 | 0.97 | ||||||
CIQ | 0.888 | 0.821 | 0.888 | 0.99 | |||||
AIQ | 0.900 | 0.820 | 0.887 | 0.883 | 0.98 | ||||
IU | 0.871 | 0.899 | 0.877 | 0.878 | 0.876 | 0.95 | |||
IQ | 0.923 | 0.843 | 0.854 | 0.836 | 0.847 | 0.843 | 0.94 | ||
IA | 0.921 | 0.819 | 0.853 | 0.834 | 0.846 | 0.850 | 0.885 | 0.98 | |
AA | 0.881 | 0.879 | 0.878 | 0.871 | 0.879 | 0.873 | 0.857 | 0.859 | 0.98 |
Research Proposed Paths | Coefficient Value | t-Value | p-Value | Empirical Evidence |
---|---|---|---|---|
H1: SC → IU | 0.233 | 16.344 | 0.000 | Supported |
H2: IL → IU | 0.009 | 0.507 | 0.612 | Not supported |
H3: IIQ → IQ | 0.084 | 7.720 | 0.000 | Supported |
H4: CIQ → IQ | 1.012 | 95.741 | 0.000 | Supported |
H5: AIQ → IQ | 0.053 | 4.215 | 0.000 | Supported |
H6: IQ → IU | 0.861 | 89.513 | 0.000 | Supported |
H7: IU → IA | 0.952 | 109.907 | 0.000 | Supported |
H8: IA → AA | 1.041 | 95.116 | 0.000 | Supported |
Variable | Male | Female | T | df | Sig. | ||||
---|---|---|---|---|---|---|---|---|---|
N | Mean | Std. Dev. | N | Mean | Std. Dev. | ||||
Information adoption | 293 | 4.8498 | 0.39219 | 411 | 3.6740 | 1.13601 | 19.423 | 537.458 | 0.000 |
Variable | Sum of Squares | Df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
Information adoption attributed to age. | Between Groups | 524.371 | 4 | 131.093 | 320.216 | 0.000 |
Within Groups | 286.163 | 699 | 0.409 | |||
Total | 810.534 | 703 | ||||
Information adoption attributed to education level | Between Groups | 262.877 | 2 | 131.438 | 168.241 | 0.000 |
Within Groups | 547.658 | 701 | 0.781 | |||
Total | 810.534 | 703 | ||||
Information adoption attributed to previous experience | Between Groups | 416.788 | 2 | 208.394 | 371.011 | 0.000 |
Within Groups | 393.746 | 701 | 0.562 | |||
Total | 810.534 | 703 |
(I) Age | (J) Age | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
18 to less than 34 | 34 to less than 44 | 2.00912 * | 0.05626 | 0.000 | 1.8553 | 2.1630 |
44 to less than 54 | 0.31540 | 0.14593 | 0.196 | −0.0837 | 0.7145 | |
54 to less than 64 | 0.23540 | 0.20436 | 0.779 | −0.3235 | 0.7943 | |
64 and over | 0.07540 | 0.37052 | 1.000 | −0.9379 | 1.0888 | |
34 to less than 44 | 18 to less than 34 | −2.00912 * | 0.05626 | 0.000 | −2.1630 | −1.8553 |
44 to less than 54 | −1.69371 * | 0.15103 | 0.000 | −2.1068 | −1.2807 | |
54 to less than 64 | −1.77371 * | 0.20803 | 0.000 | −2.3427 | −1.2048 | |
64 and over | −1.93371 * | 0.37256 | 0.000 | −2.9526 | −0.9148 | |
44 to less than 54 | 18 to less than 34 | −0.31540 | 0.14593 | 0.196 | −0.7145 | 0.0837 |
34 to less than 44 | 1.69371 * | 0.15103 | 0.000 | 1.2807 | 2.1068 | |
54 to less than 64 | −0.08000 | 0.24781 | 0.998 | −0.7577 | 0.5977 | |
64 and over | −0.24000 | 0.39615 | 0.974 | −1.3234 | 0.8434 | |
54 to less than 64 | 18 to less than 34 | −0.23540 | 0.20436 | 0.779 | −0.7943 | 0.3235 |
34 to less than 44 | 1.77371 * | 0.20803 | 0.000 | 1.2048 | 2.3427 | |
44 to less than 54 | 0.08000 | 0.24781 | 0.998 | −0.5977 | 0.7577 | |
64 and over | −0.16000 | 0.42119 | 0.996 | −1.3119 | 0.9919 | |
64 and over | 18 to less than 34 | −0.07540 | 0.37052 | 1.000 | −1.0888 | 0.9379 |
34 to less than 44 | 1.93371 * | 0.37256 | 0.000 | 0.9148 | 2.9526 | |
44 to less than 54 | 0.24000 | 0.39615 | 0.974 | −0.8434 | 1.3234 | |
54 to less than 64 | 0.16000 | 0.42119 | 0.996 | −0.9919 | 1.3119 |
(I) Education Level | (J) Education Level | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Bachelor | Master | 1.23413 * | 0.06736 | 0.000 | 1.0759 | 1.3923 |
PhD | 0.40629 | 0.23306 | 0.190 | −0.1411 | 0.9537 | |
Master | Bachelor | −1.23413 * | 0.06736 | 0.000 | −1.3923 | −1.0759 |
PhD | −0.82785 | 0.23321 | 0.001 | −1.3756 | −0.2801 | |
PhD | Bachelor | −0.40629 | 0.23306 | 0.190 | −0.9537 | 0.1411 |
Master | 0.82785 * | 0.23321 | 0.001 | 0.2801 | 1.3756 |
(I) Previous Experience | (J) Previous Experience | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Low | Good | 1.18695 * | 0.07342 | 0.000 | 1.0145 | 1.3594 |
Excellent | −0.59948 * | 0.07084 | 0.000 | −0.7659 | −0.4331 | |
Good | Low | −1.18695 * | 0.07342 | 0.000 | −1.3594 | −1.0145 |
Excellent | −1.78642 * | 0.06610 | 0.000 | −1.9417 | −1.6312 | |
Excellent | Low | 0.59948 * | 0.07084 | 0.000 | 0.4331 | 0.7659 |
Good | 1.78642 * | 0.06610 | 0.000 | 1.6312 | 1.9417 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Taieh, E.; AlHadid, I.; Masa’deh, R.; Alkhawaldeh, R.S.; Khwaldeh, S.; Alrowwad, A. Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study. Appl. Sci. 2022, 12, 5856. https://doi.org/10.3390/app12125856
Abu-Taieh E, AlHadid I, Masa’deh R, Alkhawaldeh RS, Khwaldeh S, Alrowwad A. Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study. Applied Sciences. 2022; 12(12):5856. https://doi.org/10.3390/app12125856
Chicago/Turabian StyleAbu-Taieh, Evon, Issam AlHadid, Ra’ed Masa’deh, Rami S. Alkhawaldeh, Sufian Khwaldeh, and Ala’aldin Alrowwad. 2022. "Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study" Applied Sciences 12, no. 12: 5856. https://doi.org/10.3390/app12125856
APA StyleAbu-Taieh, E., AlHadid, I., Masa’deh, R., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. (2022). Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study. Applied Sciences, 12(12), 5856. https://doi.org/10.3390/app12125856