Experimental Capture Width Ratio on Unit Module System of Hybrid Wave Energy Converter for Nearshore
Abstract
:1. Introduction
2. Hybrid Wave Energy Converter and Test Method
2.1. Hybrid Wave Energy Converter
2.2. Dynamo PTO System and Monitoring System
2.3. Two-Dimensional Wave Tank and Hydraulic Model Test Conditions
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shin, S.H.; Hong, K.Y. The state-of-the-art and key performance indicators for commercial use of the wave energy utilization technologies. Korean Soc. Civ. Eng. Mag. 2011, 59, 55–62. [Google Scholar]
- Ryu, H.; Hong, K.; Shin, S.H.; Song, M.; Kim, D.Y. Analysis long-term wave distribution at Jeju sea based on SWAN model simulation. J. Korean Soc. Mar. Environ. Energy 2004, 7, 137–145. [Google Scholar]
- Weinstein, A.; Fredrikson, G.; Parks, M.J.; Nielsen, K. AquaBuoy, the offshore wave energy converter numerical modelling and optimization. In Proceedings of the MTTS/IEEE Techno-Ocean’04 Conference, Kobe, Japan, 9–12 November 2004; pp. 1854–1859. [Google Scholar] [CrossRef]
- Gardner, F.E. Learning experience of AWS pilot plant test offshore Portugal. In Proceedings of the 6th European Wave Energy Conference, Glasgow, UK, 29 August–2 September 2005; pp. 149–154. [Google Scholar]
- Pizer, D.J.; Retzler, C.; Henderson, R.M.; Cowieson, F.L.; Shaw, M.G.; Dickens, B.; Hart, R. Pelamis WEC—Recent advances in the numerical and experimental modelling programme. In Proceedings of the 6th European Wave Tidal Energy Conference, Glasgow, UK, 29 August–2 September 2005; pp. 373–378. [Google Scholar]
- Ohneda, H.; Igarashi, S.; Shinbo, O.; Sekihara, S.; Suzuki, K.; Kubota, H.; Morita, H. Construction procedure of a wave power extracting caisson breakwater. In Proceedings of the 3rd Symposium on Ocean Energy Utilization, Tokyo, Japan, 22–23 January 1991; pp. 171–179. [Google Scholar]
- Falcao, A. The shoreline OWC wave power plant at the Azores. In Proceedings of the 4th European Wave Energy Conference, Aalborg, Denmark, 4–6 December 2000; pp. 42–47. [Google Scholar]
- Heath, T.; Whittaker, T.J.T.; Boake, C.B. The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). In Proceedings of the 4th European Wave Energy Conference, Aalborg, Denmark, 4–6 December 2000; pp. 49–55. [Google Scholar]
- Evans, D.V.; Falcao, A. Hydrodynamics of Ocean Wave Energy Utilization; Springer: Berlin/Heidelberg, Germany, 1986; p. 452. [Google Scholar] [CrossRef]
- Margheritini, L.; Vicinanza, D.; Frigaard, P. Hydraulic characteristics of seawave slot-cone generator pilot plant at Kvitsøy (Norway). In Proceedings of the 7th European Wave Tidal Energy Conference, Porto, Portugal, 11–13 September 2007; pp. 1–9. [Google Scholar]
- Kofoed, J.P.; Frigaard, P.; Friis-Madsen, E.; Sørensen, H.C. Prototype testing of the wave energy converter Wave Dragon. Renew. Energy 2006, 31, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Albani, A.; Mohd Yusop, Z. Hydraulic power take-off concepts for wave energy conversion system: A review. Energies 2019, 12, 4510. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, J.F.; Calvario, M.; Kamarlouei, M.; Soares, C.G. Power take-off concept for wave energy converters based on oil-hydraulic transformer units. Renew. Energy 2016, 86, 1232–1246. [Google Scholar] [CrossRef]
- Falcao, A.F.; Henriques, J.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Takao, M.; Setoguchi, T. Air turbines for wave energy conversion. Int. J. Rotating Mach. 2012, 2012, 717398. [Google Scholar] [CrossRef] [Green Version]
- Lopez, I.; Andreu, J.; Ceballos, S.; de Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sust. Energ. Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Fernandez, H.; Iglesias, G.; Carballo, R.; Castro, A.; Fraguela, J.A.; Taveira-Pinto, F.; Sanchez, M. The new wave energy converter WaveCat: Concept and laboratory tests. Mar. Struct. 2012, 29, 58–70. [Google Scholar] [CrossRef]
- Amir, M.A.U.; Sharip, R.M.; Muzanni, M.A.; Anuar, H.A. Wave energy convertors (WEC): A review of the technology and power generation. In Proceedings of the AIP Conference, Songkhla, Thailand, 10–12 August 2016; p. 030100. [Google Scholar] [CrossRef]
- Rosa-Santos, P.; Taveira-Pinto, F.; Rodríguez, C.A.; Ramos, V.; Lopez, M. The CECO wave energy converter: Recent developments. Renew. Energy 2019, 139, 368–384. [Google Scholar] [CrossRef]
- David, E.; Yim, S.C.; Prudell, J.; Stillinger, C.; Jouanne, A.; Brekken, T.; Brown, A.; Paasch, R. Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power takeoff. Renew. Energy 2010, 35, 348–354. [Google Scholar] [CrossRef]
- Waters, R.; Stalberg, M.; Danielsson, O.; Svensson, O.; Gustafsson, S.; Stromstedt, E.; Eriksson, M.; Sundberg, J.; Leijon, M. Experimental results from sea trials of an offshore wave energy system. Appl. Phys. Lett. 2007, 90, 034105. [Google Scholar] [CrossRef]
- Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 2020, 204, 107248. [Google Scholar] [CrossRef]
- Lee, S.H.; Ko, S.C.; Park, M.S. Experimental test on the power take-off system with dynamo characteristics for wave energy converters. J. Korean Soc. Mar. Environ. Energy 2020, 23, 183–191. [Google Scholar] [CrossRef]
- Journee, J.M.J.; Massie, W.W. Offshore Hydrodynamics, 1st ed.; Delft University of Technology: Delft, The Netherlands, 2001. [Google Scholar]
Wave Gen A | Length (mm) | Diameter (mm) | Wing Length (mm) | No. of Wings | Weight (N) | Draft (mm) |
Horizontal cylinder | 1000 (3333) | 600 (2000) | 90 (300) | 16 (16) | 467.071 (17,298.9) | 135 (450) |
Wave Gen B | Length (mm) | Height (mm) | Thickness (mm) | Weight (N) | ||
Swing plate | 1000 (3333) | 450 (1500) | 20 (66.666) | 568.786 (21,066.1) |
Designation | Wave Period, T (s) | Wave Height, H (m) | Wave Length, L (m) | Wave Steepness, H/L | Group Velocity, cg (m/s) | Energy Flux, Pwre (W) |
---|---|---|---|---|---|---|
RE 1 | 2.742 (5.006) | 0.330 (1.099) | 9.105 (30.551) | 1/27.609 | 2.542 | 338.66 |
RE 2 | 3.291 (6.009) | 0.282 (0.939) | 11.444 (38.147) | 1/40.640 | 2.884 | 280.19 |
RE 3 | 3.846 (7.022) | 0.278 (0.927) | 13.743 (45.809) | 1/49.417 | 3.116 | 295.17 |
RE 4 | 4.379 (7.995) | 0.311 (1.035) | 15.910 (53.034) | 1/51.224 | 3.269 | 386.31 |
RE 5 | 4.930 (9.001) | 0.264 (0.881) | 18.123 (60.409) | 1/68.543 | 3.382 | 289.64 |
RE 6 | 6.572 (11.999) | 0.286 (0.952) | 24.617 (82.058) | 1/86.164 | 3.575 | 357.42 |
Designation | Zero-Crossing Wave Period, T2 (s) | Energy Period, Te (s) | Significant Wave Height, Hs (m) | Energy Flux, Pwir (W) |
---|---|---|---|---|
IRRE 1 | 2.671 (4.877) | 3.232 (5.901) | 0.268 (0.892) | 79.9 |
IRRE 2 | 2.987 (5.453) | 3.614 (6.599) | 0.258 (0.859) | 75.37 |
IRRE 3 | 3.429 (6.260) | 4.149 (7.575) | 0.323 (1.076) | 119.86 |
IRRE 4 | 4.089 (7.465) | 4.948 (9.033) | 0.319 (1.062) | 118.07 |
IRRE 5 | 4.987 (9.105) | 6.034 (11.017) | 0.368 (1.227) | 158.37 |
IRRE 6 | 7.376 (13.467) | 8.925 (16.295) | 0.317 (1.055) | 117.39 |
Wave Condition | Incident Wave Power, Pin | Generated Mean Power, Pme | Max. Mean CWR, Pme/Pin | Instant Max. Power, Pma | Max. Instant CWR, Pma/Pin | Pma/Pme |
---|---|---|---|---|---|---|
RE 1 | 338.66 | 113.39 | 0.3348 | 224.46 | 0.6628 | 1.98 |
RE 2 | 280.19 | 54.69 | 0.1952 | 124.74 | 0.4452 | 2.281 |
RE 3 | 295.17 | 14.13 | 0.0479 | 46.35 | 0.157 | 3.28 |
RE 4 | 386.31 | 34.85 | 0.0902 | 100.57 | 0.2603 | 2.886 |
RE 5 | 289.64 | 19.46 | 0.0672 | 60.51 | 0.2089 | 3.109 |
RE 6 | 357.42 | 14.72 | 0.0412 | 60.43 | 0.1691 | 4.105 |
Wave Condition | Incident Wave Power, Pin | Generated Mean Power, Pme | Max. Mean CWR, Pme/Pin | Instant Max. Power, Pma | Max. Instant CWR, Pma/Pin | Pma/Pme |
---|---|---|---|---|---|---|
IRRE 1 | 79.9 | 39.05 | 0.4887 | 365.5 | 4.5745 | 9.36 |
IRRE 2 | 75.37 | 26.64 | 0.3535 | 307.6 | 4.0812 | 11.547 |
IRRE 3 | 119.86 | 28.41 | 0.1796 | 304.4 | 2.5396 | 14.138 |
IRRE 4 | 118.07 | 21.53 | 0.188 | 242.4 | 2.053 | 10.919 |
IRRE 5 | 158.07 | 22.2 | 0.1402 | 229.2 | 1.4472 | 10.324 |
IRRE 6 | 117.39 | 20.01 | 0.1705 | 273.7 | 2.3315 | 13.678 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.-S.; Lee, S.-H.; Ko, S.-C. Experimental Capture Width Ratio on Unit Module System of Hybrid Wave Energy Converter for Nearshore. Appl. Sci. 2022, 12, 5845. https://doi.org/10.3390/app12125845
Park M-S, Lee S-H, Ko S-C. Experimental Capture Width Ratio on Unit Module System of Hybrid Wave Energy Converter for Nearshore. Applied Sciences. 2022; 12(12):5845. https://doi.org/10.3390/app12125845
Chicago/Turabian StylePark, Min-Su, Seung-Heon Lee, and Sang-Cheol Ko. 2022. "Experimental Capture Width Ratio on Unit Module System of Hybrid Wave Energy Converter for Nearshore" Applied Sciences 12, no. 12: 5845. https://doi.org/10.3390/app12125845
APA StylePark, M.-S., Lee, S.-H., & Ko, S.-C. (2022). Experimental Capture Width Ratio on Unit Module System of Hybrid Wave Energy Converter for Nearshore. Applied Sciences, 12(12), 5845. https://doi.org/10.3390/app12125845