Study on the Catalytic Decomposition Reaction of N2O on MgO (100) in SO2 and CO Environments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. MgO Surface Model
3.2. The Stable Adsorption Structure of N2O on the Surface of MgO (100)
3.3. Decomposition Path of N2O on the Surface of MgO (100)
3.4. Effect of SO2 and CO on the Decomposition of N2O Catalyzed by MgO (100)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GB13223-2011; Emission Standard of Air Pollutants for Thermal Power Plants. The Ministry of Environmental Protection; The State Administration of Quality Supervision: Beijing, China, 2011.
- Bonn, B.; Pelz, G.; Baumann, H. Formation and decomposition of N2O in fluidized bed boilers. Fuel 1995, 74, 165–171. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Overview of Greenhouse Gases [OL]. [31 March 2015]. Available online: http://epa.gov/climatechange/ghgemissions/gases/n2o.html (accessed on 11 January 2022.).
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haul, R.A.W.; Markus, J. On the thermal decomposition of dolomite. IV. thermogravimetric investigation of the dolomite decomposition. J. Appl. Chem. 1952, 2, 298–306. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, Y. Conversion of N2O to N2 on MgO (001) surface with vacancy: A DFT study. Chin. J. Chem. 2003, 21, 1123–1129. [Google Scholar] [CrossRef]
- Snis, A.; Miettinen, H. Catalytic decomposition of N2O on CaO and MgO: Experiments and ab initio calculations. J. Phys. Chem. B 1998, 102, 2555–2561. [Google Scholar] [CrossRef]
- Piskorz, W.; Zasada, F.; Stelmachowski, P.; Diwald, O.; Kotarba, A.; Sojka, Z. Computational and Experimental Investigations into N2O Decomposition over MgO Nanocrystals from Thorough Molecular Mechanism to ab initio Microkinetics. J. Phys. Chem. C 2011, 115, 22451–22460. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Saeidi, N. Carbon-doped boron nitride nanosheet as a promising catalyst for N2O reduction by CO or SO2 molecule: A comparative DFT study. Appl. Surf. Sci. 2018, 444, 584–589. [Google Scholar] [CrossRef]
- Esrafili, M. Single Si atom supported on defective boron nitride nanosheet as a promising metal-free catalyst for N2O reduction by CO or SO2 molecule: A computational study. Int. J. Quantum Chem. 2018, 118, e25646. [Google Scholar] [CrossRef]
- Chen, P.; Gu, M.; Chen, G.; Liu, F.; Lin, Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char. Fuel 2019, 254, 115666. [Google Scholar] [CrossRef]
- Esrafili, M.; Heydari, S. Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO2: A DFT study. Struct. Chem. 2017, 29, 275–283. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inada, Y.; Orita, H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 2008, 29, 225–232. [Google Scholar] [CrossRef]
- Wu, L.; Qin, W.; Hu, X.; Dong, C.; Yang, Y. Mechanism study on the influence of in situ SOx removal on N2O emission in CFB boiler. Appl. Surf. Sci. 2015, 333, 194–200. [Google Scholar] [CrossRef]
- Wu, L.; Qin, W.; Hu, X.; Ju, S.; Dong, C.; Yang, Y. Decomposition and reduction of N2O on CaS (100) surface: A theoretical account. Surf. Sci. 2015, 632, 83–87. [Google Scholar] [CrossRef]
- Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: From molecular orbital picture account to simulation of transient and stationary rate profiles. J. Phys. Chem. C 2013, 117, 18488–18501. [Google Scholar] [CrossRef]
- Monkhorst, H.; Pack, J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comp. Mater. Sci. 2003, 28, 250–258. [Google Scholar]
- Lazar, P.; Otyepka, M. Accurate surface energies from first principles. Phys. Rev. B 2015, 91, 115402. [Google Scholar] [CrossRef]
- Chen, P.; Huang, Y.; Shi, Z.; Chen, X.; Li, N. Improving the Catalytic CO2 Reduction on Cs2AgBiBr6 by Halide Defect Engineering: A DFT Study. Materials 2021, 14, 2469. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wang, P.; Hua, C.; Yang, Y.; Zhang, Z. The Impact of Iron Adsorption on the Electronic and Photocatalytic Properties of the Zinc Oxide (0001) Surface: A First-Principles Study. Materials 2018, 11, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broqvist, P.; Grönbeck, H.; Panas, I. Surface properties of alkaline earth metal oxides. Surf. Sci. 2004, 554, 262–271. [Google Scholar] [CrossRef]
- Karlsen, E.J.; Nygren, M.A.; Pettersson, L.G.M. Theoretical study on the decomposition of N2O over alkaline earth metal-oxides: MgO−BaO. J. Phys. Chem. A 2002, 106, 7868–7875. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Wang, W.; Zhang, T. Adsorption of SO2 on pristine and defective single-walled MgO nanotubes: A dispersion-corrected density-functional theory (DFT-D) study. Mater. Res. Express 2021, 8, 015023. [Google Scholar] [CrossRef]
- Hu, X.; Dong, C.; Yang, Y.; Qin, W. Experimental and Mechanism Study of Homogeneous N2O Decomposition with Biomass Gasification Gas and Its Components. Energy Sources Part A Recovery Util. Environ. Eff. 2015, 37, 11–18. [Google Scholar] [CrossRef]
Serial Number | Adsorption Structure | Ead eV | Nearest Distance Å | N–O Bond Length Å | N–N Bond Length Å | q e |
---|---|---|---|---|---|---|
a | The O is at O atop | −0.016 | 3.554 | 1.196 | 1.142 | −0.004 |
b | The O is at the top of the surface Mg | −0.091 | 2.798 | 1.196 | 1.140 | −0.002 |
c | The O is at the surface bridge | −0.092 | 2.800 | 1.197 | 1.140 | 0.002 |
d | O vacancy on the surface | −0.011 | 3.760 | 1.195 | 1.142 | −0.005 |
e | The N is at the top of the surface O | −0.023 | 3.576 | 1.195 | 1.142 | −0.004 |
f | The N is at the top of the surface Mg | −0.064 | 2.663 | 1.193 | 1.140 | 0.012 |
g | The N is at the surface bridge | −0.063 | 3.252 | 1.193 | 1.142 | −0.007 |
h | N vacancy on the surface | −0.033 | 3.332 | 1.195 | 1.142 | −0.005 |
Serial Number | Adsorption Structure | Ead eV | Nearest Distance Å | S–O Bond Length Å | S–O Bond Length Å | q e |
---|---|---|---|---|---|---|
a | The S is at the top of the surface O | −0.238 | 1.855 | 1.511 | 1.513 | −0.440 |
b | The S is at the top of the surface Mg | −0.047 | 2.961 | 1.484 | 1.484 | −0.077 |
c | The S is at the surface bridge | −0.239 | 1.837 | 1.510 | 1.514 | −0.448 |
d | O vacancy on the surface | −0.239 | 1.837 | 1.510 | 1.514 | −0.447 |
e | The S is at the top of the surface O | −0.058 | 2.398 | 1.490 | 1.502 | −0.143 |
f | The S is at the top of the surface Mg | −0.055 | 2.373 | 1.490 | 1.500 | −0.143 |
g | The S is at the surface bridge | −0.116 | 2.326 | 1.508 | 1.508 | −0.202 |
h | S vacancy on the surface | −0.032 | 2.984 | 1.490 | 1.497 | −0.130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, E.; Li, W.; Wu, L.; Zhou, Y.; Zhang, H.; Dong, C. Study on the Catalytic Decomposition Reaction of N2O on MgO (100) in SO2 and CO Environments. Appl. Sci. 2022, 12, 5034. https://doi.org/10.3390/app12105034
Hu X, Zhang E, Li W, Wu L, Zhou Y, Zhang H, Dong C. Study on the Catalytic Decomposition Reaction of N2O on MgO (100) in SO2 and CO Environments. Applied Sciences. 2022; 12(10):5034. https://doi.org/10.3390/app12105034
Chicago/Turabian StyleHu, Xiaoying, Erbo Zhang, Wenjun Li, Lingnan Wu, Yiyou Zhou, Hao Zhang, and Changqing Dong. 2022. "Study on the Catalytic Decomposition Reaction of N2O on MgO (100) in SO2 and CO Environments" Applied Sciences 12, no. 10: 5034. https://doi.org/10.3390/app12105034
APA StyleHu, X., Zhang, E., Li, W., Wu, L., Zhou, Y., Zhang, H., & Dong, C. (2022). Study on the Catalytic Decomposition Reaction of N2O on MgO (100) in SO2 and CO Environments. Applied Sciences, 12(10), 5034. https://doi.org/10.3390/app12105034