Estimating the Polytropic Indices of Plasmas with Partial Temperature Tensor Measurements: Application to Solar Wind Protons at ~1 au
Abstract
:1. Introduction
1.1. Temperature Anisotropy
1.2. Polytropic Process
2. Data
3. Methodology
4. Results
5. Discussion
6. Conclusions
- The long-term fluctuations of the proton temperature tensor elements are very well correlated in the slow solar wind at ~1au;
- In fast solar wind protons, the scalar temperature is very well-correlated only with the perpendicular temperature;
- Fittings to the fluctuations of proton density and any of the proton temperature tensor elements within short intervals (<15 min) derive, on average, very similar polytropic indices;
- The perpendicular temperature derives the polytropic index more accurately than the parallel temperature does, which is expected considering the definition of the scalar temperature and the typical value of solar wind temperature anisotropy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gary, S.P. Theory of Space Plasma Microinstabilities; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Marsch, E. Kinetic Physics of the Solar Wind. Living Rev. Sol. Phys. 2006, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Verscharen, D.; Klein, K.G.; Maruca, B.A. The multi-scale nature of the solar wind. Living Rev. Sol. Phys. 2019, 16, 5. [Google Scholar] [PubMed] [Green Version]
- Olsen, E.L.; Leer, E. A study of solar wind acceleration based on gyrotropic transport equations. J. Geophys. Res. 1999, 104, 9963–9973. [Google Scholar] [CrossRef]
- Nicolaou, G.; Wicks, R.T.; Livadiotis, G.; Verscharen, D.; Owen, C.J.; Kataria, D.O. Determining the bulk parameters of plasma electrons from pitch-angle distribution measurements. Entropy 2020, 22, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Richardson, J.D.; Belcher, J.W.; Kasper, J.C. Temperature Anisotropy in a Shocked Plasma: Mirror-Mode instabilities in the Heliosheath. Astrophys. J. 2007, 659, L65. [Google Scholar] [CrossRef]
- Bader, A.; Stenberg Wieser, G.; André, M.; Wieser, M.; Futaana, Y.; Persson, M.; Nilsson, H.; Zhang, T.L. Proton Temperature Anisotropies in the Plasma Environment of Venus. J. Geophys. Res. 2019, 124, 3312–3330. [Google Scholar] [CrossRef] [Green Version]
- Hietala, H.; Drake, J.F.; Phan, T.D.; Eastwood, J.P.; McFadden, J.P. Ion temperature anisotropy across a magnetotail reconnection jet. J. Geophys. Res. 2015, 42, 7239–7247. [Google Scholar] [CrossRef] [Green Version]
- Case, A.W.; Kasper, J.C.; Stevens, M.L.; Korreck, K.E.; Paulson, K.; Daigneau, P.; Caldwell, D.; Freeman, M.; Henry, T.; Klingensmith, B.; et al. The Solar Probe Cup on the Parker Solar Probe. Astrophys. J. 2020, 246, 43. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.N. Interplanetary Dynamical Processes; Wiley-Interscience: Hoboken, NJ, USA, 1963. [Google Scholar]
- Chandrasekhar, S. An Introduction to the Study of Stellar Structure; Dover Publications: New York, NY, USA, 1967. [Google Scholar]
- Bavassano, B.; Bruno, R.; Rosenbauer, H. Compressive fluctuations in the solar wind and their polytropic index. Annal. Geophys. 1996, 14, 510–517. [Google Scholar] [CrossRef]
- Kartalev, M.; Dryer, M.; Grigorov, K.; Stoimenova, E. Solar wind polytropic index estimates based on single spacecraft plasma and interplanetary magnetic field measurements. J. Geophys. Res. 2006, 111, A10107. [Google Scholar] [CrossRef]
- Arridge, C.S.; McAndrews, H.J.; Jackman, C.M.; Forsyth, C.; Walsh, A.P.; Sittler, E.C.; Gilbert, L.K.; Lewis, G.R.; Russell, C.T.; Coates, A.J.; et al. Plasma electrons in Saturn’s magnetotail: Structure, distribution and energisation. Planet. Space Sci. 2009, 57, 2032–2047. [Google Scholar] [CrossRef]
- Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.P.; Krimigis, S.M.; Kane, M.; Mitchell, D.G.; Hamilton, D.C.; Krupp, N.; Carbary, J.F. Energetic ion moments and polytropic index in Saturn’s magnetosphere using Cassini/MIMI measurements: A simple model based on κ-distribution functions. J. Geophys. Res. 2018, 123, 8066–8086. [Google Scholar] [CrossRef]
- Nicolaou, G.; McComas, D.J.; Bagenal, F.; Elliott, H.A. Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. J. Geophys. Res. 2014, 119, 3463–3479. [Google Scholar] [CrossRef]
- Nicolaou, G.; McComas, D.J.; Bagenal, F.; Elliott, H.A.; Ebert, R.W. Jupiter’s deep magnetotail boundary layer. Planet. Space Sci. 2015, 111, 116–125. [Google Scholar] [CrossRef]
- Totten, T.L.; Freeman, J.W.; Arya, S. An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J. Geophys. Res. 1995, 100, 13–17. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G.; Wicks, R.T.; Verscharen, D.; Maruca, B.A. Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe. Astrophys. J. 2020, 901, 26. [Google Scholar] [CrossRef]
- Nicolaou, G.; Livadiotis, G.; Moussas, X.D. Long-Term Variability of the Polytropic Index of Solar Wind Protons at 1 AU. Sol. Phys. 2014, 289, 1371–1378. [Google Scholar] [CrossRef]
- Livadiotis, G. Long-term independence of solar wind polytropic index on plasma flow speed. Entropy 2018, 20, 799. [Google Scholar] [CrossRef] [Green Version]
- Nicolaou, G.; Livadiotis, G. Long-term Correlations of Polytropic Indices with Kappa Distributions in Solar Wind Plasma near 1 au. Astrophys. J. 2019, 884, 52. [Google Scholar] [CrossRef]
- Elliott, H.A.; McComas, D.J.; Zirnstein, E.J.; Randol, B.M.; Delamere, P.A.; Livadiotis, G.; Bagenal, F.; Barnes, N.P.; Stern, A.S.; Young, L.A.; et al. Slowing of the Solar Wind in the Outer Heliosphere. Astrophys. J. 2019, 885, 156. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J.; Schwadron, N.A.; Funsten, H.O.; Fuselier, S.A. Pressure of the proton plasma in the inner heliosheath. Astrophys. J. 2013, 762, 134. [Google Scholar] [CrossRef]
- Livadiotis, G. Radial Profile of the Polytropic Index of Solar Wind Plasma in the Heliosphere. Res. Notes AAS 2021, 5, 4. [Google Scholar] [CrossRef]
- Lepping, R.P.; Acũna, M.H.; Burlaga, L.F.; Farrel, W.M.; Slavin, J.A.; Schatten, K.H.; Mariani, F.; Ness, N.F.; Neubauer, F.M.; Whang, Y.C.; et al. The WIND magnetic field investigation. Space Sci. Rev. 1995, 71, 207–229. [Google Scholar] [CrossRef]
- Kasper, J. Solar Wind Plasma: Kinetic Properties and Micro-Instabilities. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Nicolaou, G.; Livadiotis, G.; Wicks, R.T. On the Calculation of the Effective Polytropic Index in Space Plasmas. Entropy 2019, 21, 997. [Google Scholar] [CrossRef] [Green Version]
- Livadiotis, G.; Desai, M.I. Plasma-field coupling at small length scales in solar wind near 1 au. Astrophys. J. 2016, 829, 88. [Google Scholar] [CrossRef]
- Livadiotis, G.; Nicolaou, G. Relationship between polytropic index and temperature anisotropy in space plasmas. Astrophys. J. 2021, 909, 127. [Google Scholar] [CrossRef]
- Newbury, J.A.; Russel, C.T.; Lindsay, G.M. Solar wind polytropic index in the vicinity of stream interactions. Geophys. Res. Lett. 1997, 24, 1431–1434. [Google Scholar] [CrossRef]
- Livadiotis, G. On the Origin of Polytropic Behavior in Space and Astrophysical Plasmas. Astrophys. J. 2019, 874, 10. [Google Scholar] [CrossRef]
- Livadiotis, G. Using Kappa Distributions to Identify the Potential Energy. J. Geophys. Res. 2018, 123, 1050–1060. [Google Scholar] [CrossRef]
1.30 | 0.93 | 1.26 | 1.08 | 1.41 | 1.39 | −0.04 | 0.62 | 0.11 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolaou, G.; Livadiotis, G.; Desai, M.I. Estimating the Polytropic Indices of Plasmas with Partial Temperature Tensor Measurements: Application to Solar Wind Protons at ~1 au. Appl. Sci. 2021, 11, 4019. https://doi.org/10.3390/app11094019
Nicolaou G, Livadiotis G, Desai MI. Estimating the Polytropic Indices of Plasmas with Partial Temperature Tensor Measurements: Application to Solar Wind Protons at ~1 au. Applied Sciences. 2021; 11(9):4019. https://doi.org/10.3390/app11094019
Chicago/Turabian StyleNicolaou, Georgios, George Livadiotis, and Mihir I. Desai. 2021. "Estimating the Polytropic Indices of Plasmas with Partial Temperature Tensor Measurements: Application to Solar Wind Protons at ~1 au" Applied Sciences 11, no. 9: 4019. https://doi.org/10.3390/app11094019
APA StyleNicolaou, G., Livadiotis, G., & Desai, M. I. (2021). Estimating the Polytropic Indices of Plasmas with Partial Temperature Tensor Measurements: Application to Solar Wind Protons at ~1 au. Applied Sciences, 11(9), 4019. https://doi.org/10.3390/app11094019