# Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA)

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## Featured Application

**This instrument concept is designed to analyze plasma onboard scientific spacecraft. Its measurements allow the construction of the velocity distribution functions of protons and $\mathit{\alpha}$-particles with high cadence to understand the small-scale kinetic processes in space plasmas.**

## Abstract

## 1. Introduction

#### 1.1. Scientific Objectives

#### 1.2. State-of-the-Art Space Plasma Instruments

#### 1.3. Instrument Working Principle and Expectations

## 2. Instrument Design

#### 2.1. Instrument Geometry and Functionning

#### 2.2. Position of the Sensor to Obtain Optimal Velocity Resolution

#### 2.3. Dependence of the Field of View on Speed and Determination of the Magnetic Chamber Width

#### 2.4. From Counts to a VDF

#### 2.5. Instrument Length

#### 2.6. Summarized Instrument Geometry

## 3. Instrument Performance

#### 3.1. Velocity Resolution

#### 3.2. Errors Based on Counting Statistics

#### 3.3. Optimization of the Aperture Size, Pixel Size, and Magnetic Field Strength

## 4. Instrument Simulation

#### 4.1. SIMION Results for Protons

#### 4.2. SIMION Results for Combined Proton and $\alpha $-Particle Measurements

## 5. Discussion and Conclusions

#### 5.1. Magnetic Field Design

#### 5.2. Detectors and Readout Electronics

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ogilvie, K.W.; Chornay, D.J.; Fritzenreiter, R.J.; Hunsaker, F.; Keller, J.; Lobell, J.; Miller, G.; Scudder, J.D.; Sittler, E.C.; Torbert, R.B.; et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci. Rev.
**1995**, 71, 55–77. [Google Scholar] [CrossRef] - Johnstone, A.; Alsop, C.; Coates, A.; Coker, A.; Gowen, R.; Hancock, B.; Kennedy, T.; Sheather, P.; Woodliffe, R.; Burge, S.; et al. PEACE: A Plasma Electron and Current Experiment. In The Cluster and Phoenix Missions; Springer: Dordrecht, The Netherland, 1997; pp. 351–398. [Google Scholar] [CrossRef]
- McComas, D.; Allegrini, F.; Bagenal, F.; Casey, P.; Delamere, P.; Demkee, D.; Dunn, G.; Elliott, H.; Hanley, J.; Johnson, K.; et al. The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons. In New Horizons: Reconnaissance of the Pluto-Charon System and the Kuiper Belt; Springer: New York, NY, USA, 2009; pp. 261–313. [Google Scholar] [CrossRef]
- Maksimovic, M.; Pierrard, V.; Lemaire, J. A kinetic model of the solar wind with Kappa distributions in the corona. Astron. Astrophys.
**1997**, 324, 725–734. [Google Scholar] - Pierrard, V.; Lazar, M. Kappa Distributions: Theory and Applications in Space Plasmas. Sol. Phys.
**2010**, 267. [Google Scholar] [CrossRef][Green Version] - Livadiotis, G.; Mccomas, D. Understanding Kappa Distributions: A Toolbox for Space Science and Astrophysics. Space Sci. Rev.
**2013**, 175. [Google Scholar] [CrossRef][Green Version] - Livadiotis, G. (Ed.) Kappa Distributions; Theory and Applications in Plasmas; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Cranmer, S.R. Ensemble simulations of proton heating in the solar wind via turbulence and ion cyclotron resonance. Astrophys. J. Suppl. Ser.
**2014**, 213, 16. [Google Scholar] [CrossRef] - Verscharen, D.; Klein, K.G.; Maruca, B. The Multi-Scale Nature of the Solar Wind. Living Rev. Sol. Phys.
**2019**, 16, 5. [Google Scholar] [CrossRef] [PubMed][Green Version] - Verscharen, D.; Wicks, R.T. Debye, How the Smallest Scales in Space Control the Biggest Structures in the Univers, Proposal for a Fast Mission to Study Electron-Astrophysics. Available online: https://www.ucl.ac.uk/mssl/research-projects/2019/may/debye (accessed on 24 November 2020).
- Cara, A.; Lavraud, B.; Fedorov, A.; De Keyser, J.; DeMarco, R.; Marcucci, M.F.; Valentini, F.; Servidio, S.; Bruno, R. Electrostatic analyzer design for solar wind proton measurements with high temporal, energy, and angular resolutions. J. Geophys. Res. Space Phys.
**2017**, 122, 1439–1450. [Google Scholar] [CrossRef] - Ludlam, M.; Maksimovic, M.; McFadden, J.P.; Marchant, W.; Maruca, B.A.; Mccomas, D.J.; Messina, L.; Mercer, T.; Park, S.; Peddie, A.M.; et al. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus. Space Sci. Rev.
**2016**, 204, 131–186. [Google Scholar] [CrossRef] - Case, A.; Kasper, J.; Stevens, M.; Korreck, K.; Paulson, K.; Daigneau, P.; Caldwell, D.; Freeman, M.; Henry, T.; Klingensmith, B.; et al. The Solar Probe Cup on Parker Solar Probe. Astrophys. J. Suppl. Ser.
**2019**, 246, 43. [Google Scholar] [CrossRef][Green Version] - Owen, C.J.; Bruno, R.; Livi, S.; Louarn, P.; Al Janabi, K.; Allegrini, F.; Amoros, C.; Baruah, R.; Barthe, A.; Berthomier, M.; et al. The Solar Orbiter Solar Wind Analyser (SWA) suite. Astron. Astrophys.
**2020**, 642, A16. [Google Scholar] [CrossRef] - Nicolaou, G.; Verscharen, D.; Wicks, R.T.; Owen, C.J. The Impact of Turbulent Solar Wind Fluctuations on Solar Orbiter Plasma Proton Measurements. Astrophys. J.
**2019**, 886, 101. [Google Scholar] [CrossRef][Green Version] - Blake, J.B.; Carranza, P.A.; Claudepierre, S.G.; Clemmons, J.H.; Crain, W.R.; Dotan, Y.; Fennell, J.F.; Fuentes, F.H.; Galvan, R.M.; George, J.S.; et al. The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft. In The Van Allen Probes Mission; Springer: Boston, MA, USA, 2013. [Google Scholar]
- Nicolaou, G.; Wicks, R.; Livadiotis, G.; Verscharen, D.; Owen, C.; Kataria, D. Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy
**2020**, 22, 103. [Google Scholar] [CrossRef][Green Version] - McComas, D.J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M.I.; De Los Santos, A.; Demkee, D.; et al. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter. Space Sci. Rev.
**2017**, 213, 547–643. [Google Scholar] [CrossRef][Green Version] - Nicolaou, G.; Livadiotis, G.; Owen, C.; Verscharen, D.; Wicks, R. Determining the Kappa Distributions of Space Plasmas from Observations in a Limited Energy Range. Astrophys. J.
**2018**, 864, 3. [Google Scholar] [CrossRef] - Peko, B.; Stephen, T. Absolute detection efficiencies of low energy H, H
^{−}, H^{+}, H^{2+}and H^{3+}incident on a multichannel plate detector. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms.**2000**, 171, 597–604. [Google Scholar] [CrossRef] - Rochau, G.A.; Bailey, J.E.; Chandler, G.A.; Nash, T.J.; Nielsen, D.S.; Dunham, G.S.; Garcia, O.F.; Joseph, N.R.; Keister, J.W.; Madlener, M.J.; et al. Energy dependent sensitivity of microchannel plate detectors. Rev. Sci. Instrum.
**2006**, 77, 10E323. [Google Scholar] [CrossRef] - Nicolaou, G.; Wicks, R.T.; Rae, I.J.; Kataria, D.O. Evaluating the performance of a plasma analyzer for a space weather monitor mission concept. Space Weather
**2020**, e2020SW002559. [Google Scholar] [CrossRef] - Adams, E.; Fretz, K.; Ukhorskiy, S.; Fox, N. Van allen probes mission overview and discoveries to date. Johns Hopkins Apl Tech. Dig.
**2016**, 33, 173–182. [Google Scholar] - Marsch, E.; Mühlhäuser, K.H.; Schwenn, R.; Rosenbauer, H.; Pilipp, W.; Neubauer, F.M. Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. Space Phys.
**1982**, 87, 52–72. [Google Scholar] [CrossRef] - Gonzalez-Esparza, A.; Romero-Hernandez, E.; Riley, P. Study of Corotating Interaction Regions in the Ascending Phase of the Solar Cycle: Multi-spacecraft Observations. Sol. Phys.
**2013**, 285. [Google Scholar] [CrossRef] - Ebert, R.W.; McComas, D.J.; Elliott, H.A.; Forsyth, R.J.; Gosling, J.T. Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations. J. Geophys. Res. Space Phys.
**2009**, 114. [Google Scholar] [CrossRef][Green Version] - SIMION. Space Science. Available online: https://simion.com/info/space_science.html (accessed on 20 September 2020).
- Bourouaine, S.; Marsch, E.; Neubauer, A. On the Relative Speed and Temperature Ratio of Solar Wind Alpha Particles and Protons: Collisions Versus Wave Effects. Astrophys. J. Lett.
**2011**, 728, L3. [Google Scholar] [CrossRef][Green Version] - Stephen, T.M.; Peko, B.L. Absolute calibration of a multichannel plate detector for low energy O, O
^{−}, and O^{+}. Rev. Sci. Instrum.**2000**, 71, 1355–1359. [Google Scholar] [CrossRef] - Gloeckler, G.; Geiss, J.; Balsiger, H.; Fisk, L.; Gliem, F.; Ipavich, F.; Ogilvie, K.; Stuedemann, W.; Wilken, B. The ISPM solar-wind ion composition spectrometer. Eur. Space Agency Spec. Publ. ESASP
**1983**, 1050, 75–103. [Google Scholar] - Bame, S.J.; Asbridge, J.R.; Feldman, W.C.; Montgomery, M.D.; Kearney, P.D. Solar Wind Heavy Ion Abundances. Solphys
**1975**, 43, 463–473. [Google Scholar] [CrossRef] - Sahraoui, F.; Goldstein, M.; Belmont, G.; Canu, P.; Rezeau, L. Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind. Phys. Rev. Lett.
**2010**, 105. [Google Scholar] [CrossRef] - Voitenko, Y.; Pierrard, V. Velocity-Space Proton Diffusion in the Solar Wind Turbulence. Sol. Phys.
**2013**, 288. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Basic geometry of MPA. The instrument model has a conical aperture of diameter a at the entrance of the magnetic chamber (yellow area) with a semi angle of ${2.5}^{\circ}$. In Figure 1b, we represent the trajectories of three ions with equal mass, charge and speed but different offsets from the central aperture axis. (

**a**): Face view; (

**b**): Side view.

**Figure 2.**Variation of the out-of-plane view angle $\gamma $ with velocity for different chamber width. These curves simulate protons flying through the instrument chamber with different gap width (6, 8, 10, 12 and 14 mm), and a magnetic field strength of ${B}_{0}=0.1$ T.

**Figure 3.**Five beams of particles are simulated using the SIMION software. Each beam has a set speed and a cylindrical (uniform) distribution of positions at the aperture of the instrument. The radius of the beam is 1 mm (2-mm disk aperture). Pixels are the areas separated by black horizontal lines.

**Figure 4.**Evolution of the counting errors with particle speed. The top plot shows the $2\sigma $ error bars on the expected counts for each pixel. The bottom plot represents the relative error (${e}_{r}$) in percent made on the determination of the speed. The 10% (green) and 20% (red) levels are represented.

**Figure 5.**Maxwellian VDF with density 5 cm${}^{-3}$, temperature 100,000 K and bulk speed 500 km/s. This distribution function serves as the input for our calculations in Section 3.2.

**Figure 6.**Maxwellian and $\kappa $ VDFs with parameters summarized in Table 3. These distribution functions serve as inputs for the following simulations.

**Figure 7.**Relative errors in percent made on measurements of an intermediate solar wind (bulk speed of 500 km/s, temperature of 100,000 K and density of 5 cm${}^{-3}$) as a function of aperture and pixel size. Panels (

**a**) through (

**g**) show the resulting relative errors for all of the fit parameters of the Maxwellian and $\kappa $-distributions.

**Figure 8.**Relative errors in percent made on an intermediate solar wind with magnetic field and pixel size. Panels (

**a**) through (

**g**) show the resulting relative errors for all of the fit parameters of the Maxwellian and $\kappa $-distributions.

**Figure 9.**Three different types of solar wind simulated with SIMION. We present the number of counts per pixel (1 mm wide) as a function of hit distance on the position-sensitive sensor along the z-axis in our instrument design. In all three examples, the velocities of the simulated particles follow a Maxwellian distribution function.

**Figure 10.**Estimated (red) and model-input (blue) distribution functions. The estimation of the distribution function is based on the counting results shown in Figure 9. In all three examples, the velocities of the simulated particles follow a Maxwellian distribution function.

**Figure 11.**Three different types of solar wind simulated with SIMION. We present the number of counts per pixel (1 mm wide) as a function of hit distance on the position-sensitive sensor along the z-axis in our instrument design. In all three examples, the velocities of the simulated particles follow a $\kappa $-distribution function with $\kappa =3$.

**Figure 12.**Estimated (red) and model-input (blue) distribution functions. The estimation of the distribution function is based on the counting results shown in Figure 11. In all three examples, the velocities of the simulated particles follow a $\kappa $-distribution function with $\kappa =3$.

**Figure 14.**Estimated (red and green) and model-input (blue and black) distribution functions. The estimation of the distribution function is based on the counting results shown in Figure 13.

**Figure 15.**Position-sensitive anodes and a representative pixel. The anodes are represented by the blue lines. They consist of conductive wires that detect the current generated by the electron beams (gray circles) and determine the vertical z position of the beam based on the knowledge of which wire has been hit. A pixel is defined as either a single anode or a collection of multiple anode wires and is represented here as a yellow rectangle. The two permanent magnets, which delimit the magnetic chamber, are represented by the dark rectangles at both sides of the pixels.

Parameter | Low | Medium | High |
---|---|---|---|

Energy range | 20 keV–240 keV | 80 keV–1200 keV | 800 keV–4800 keV |

Magnetic field strength | 0.055 T | 0.16 T | 0.48 T |

Magnetic chamber gap | 7 mm | 7 mm | 12 mm |

Field of view | ${20}^{\circ}\times {10}^{\circ}$ | ${20}^{\circ}\times {10}^{\circ}$ | ${16}^{\circ}\times {19}^{\circ}$ |

Apperture geometry | 2 mm × 5 mm | 2 mm × 5 mm | 10 mm × 5 mm |

Mass | 8.5 kg | 8.5 kg | 8.5 kg |

Parameter | Value |
---|---|

Aperture shape | Cone of half-angle ${2.5}^{\circ}$ |

Aperture entrance | Disk of radius 1 mm |

Magnetic field | Uniform at 0.1 T |

Instrument length | 30 cm |

Instrument height | 15 cm |

Instrument gap width | 14 mm |

Pixel size | 1 mm |

Parameter | Value |
---|---|

Density | 5 cm${}^{-3}$ |

Temperature | 100,000 K |

Bulk speed | 500 km/s |

$\kappa $ | 3 |

Measurement duration | 5 ms |

FOV | ${5}^{\circ}\times {5}^{\circ}$ |

Magnetic field strength | 0.1 T |

**Table 4.**Slow, intermediate and fast solar wind input parameters for the Maxwellian and $\kappa $-distributions of speed used in SIMION simulations.

Solar Wind | Density (cm${}^{-3}$) | Thermal Speed (m/s) | Bulk Speed (km/s) | $\mathit{\kappa}$ |
---|---|---|---|---|

Slow | 5.5 | 36,341 | 400 | 3 |

Intermediate | 5 | 40,631 | 500 | 3 |

Fast | 3 | 57,460 | 700 | 3 |

Solar Wind | Density (cm${}^{-3}$) | Thermal Speed (m/s) | Bulk Speed (m/s) |
---|---|---|---|

Slow | 5.49 $\pm \phantom{\rule{0.166667em}{0ex}}0.027$ | 36,416 $\pm \phantom{\rule{0.166667em}{0ex}}68$ | 400,062 $\pm \phantom{\rule{0.166667em}{0ex}}48$ |

Intermediate | 4.95 $\pm \phantom{\rule{0.166667em}{0ex}}0.023$ | 40,559 $\pm \phantom{\rule{0.166667em}{0ex}}72$ | 499,973 $\pm \phantom{\rule{0.166667em}{0ex}}51$ |

Fast | 2.94 $\pm \phantom{\rule{0.166667em}{0ex}}0.015$ | 57,154 $\pm \phantom{\rule{0.166667em}{0ex}}113$ | 700,029 $\pm \phantom{\rule{0.166667em}{0ex}}80$ |

Solar Wind | Density (cm${}^{-3}$) | Thermal Speed (m/s) | Bulk Speed (m/s) | $\mathit{\kappa}$ |
---|---|---|---|---|

Slow | 5.43 $\pm \phantom{\rule{0.166667em}{0ex}}0.16$ | 34,538 $\pm \phantom{\rule{0.166667em}{0ex}}1468$ | 399,981 $\pm \phantom{\rule{0.166667em}{0ex}}68$ | 3.44 $\pm \phantom{\rule{0.166667em}{0ex}}0.34$ |

Intermediate | 4.99 $\pm \phantom{\rule{0.166667em}{0ex}}0.2$ | 39,447 $\pm \phantom{\rule{0.166667em}{0ex}}2361$ | 499,994 $\pm \phantom{\rule{0.166667em}{0ex}}101$ | 3.26 $\pm \phantom{\rule{0.166667em}{0ex}}0.41$ |

Fast | 2.96 $\pm \phantom{\rule{0.166667em}{0ex}}0.12$ | 56,492 $\pm \phantom{\rule{0.166667em}{0ex}}3533$ | 699,963 $\pm \phantom{\rule{0.166667em}{0ex}}138$ | 3.10 $\pm \phantom{\rule{0.166667em}{0ex}}0.37$ |

Particle Species | Density (cm${}^{-3}$) | Thermal Speed (m/s) | Bulk Speed (km/s) |
---|---|---|---|

$\alpha $-particles | 0.175 | 24,881 | 500 |

Protons | 4.825 | 40,631 | 500 |

**Table 8.**Estimation of the plasma moments after a least square fitting for the simulated $\alpha $-particles and comparison with the corresponding input values.

Parameter | Input Value | Output Value |
---|---|---|

Density | 0.175 cm${}^{-3}$ | 0.160 cm${}^{-3}$ ± 0.0043 cm${}^{-3}$ |

Thermal speed | 24,881 m/s | 24,151 m/s ± 249 m/s |

Bulk speed | 500 km/s | 496 km/s ± 176 m/s |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Criton, B.; Nicolaou, G.; Verscharen, D.
Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA). *Appl. Sci.* **2020**, *10*, 8483.
https://doi.org/10.3390/app10238483

**AMA Style**

Criton B, Nicolaou G, Verscharen D.
Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA). *Applied Sciences*. 2020; 10(23):8483.
https://doi.org/10.3390/app10238483

**Chicago/Turabian Style**

Criton, Benjamin, Georgios Nicolaou, and Daniel Verscharen.
2020. "Design and Optimization of a High-Time-Resolution Magnetic Plasma Analyzer (MPA)" *Applied Sciences* 10, no. 23: 8483.
https://doi.org/10.3390/app10238483