Artichoke By-Products as Natural Source of Phenolic Food Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Material
2.3. Pressurized Liquid Extraction
2.4. HPLC-ESI-TOF-MS Analysis
2.5. Statistical Analysis
3. Results
3.1. Identification of Phytochemical Compounds of Artichoke By-Products by HPLC-ESI-TOF-MS
3.1.1. Phenolic Acids
3.1.2. Flavonoids
3.1.3. Saponins, Lipids, and Other Polar Compounds
3.2. Extraction Yield and Extraction Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirahigue, L.D.; Ceccato-Antonini, S.R. Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Cienc. Rural 2020, 50, 50. [Google Scholar] [CrossRef]
- Muñoz-Jauregui, A.M.; Ramos-Escudero, F. Componentes fenólicos de la dieta y sus propiedades biomedicinales—Phenolics compounds of the diet and his biomedicinal properties. Horiz. Méd. 2007, 7, 23–38. [Google Scholar]
- Bataglion, G.A.; Da Silva, F.M.A.; Eberlin, M.N.; Koolen, H.H.F. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem. 2015, 180, 280–287. [Google Scholar] [CrossRef]
- Bataglion, G.A.; Da Silva, F.M.A.; Eberlin, M.N.; Koolen, H.H.F. Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L.f.) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Res. Int. 2014, 66, 396–400. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Jiménez-Moreno, N.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci. Technol. 2019, 88, 558–566. [Google Scholar] [CrossRef]
- Cruzado, M.; Cedrón, J. Nutracéuticos, alimentos funcionales y su producción. Rev. Química PUCP 2012, 2, 33–36. [Google Scholar]
- Sonnante, G.; Pignone, D.; Hammer, K. The Domestication of Artichoke and Cardoon: From Roman Times to the Genomic Age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Reidah, I.M.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- El-Mesallamy, A.M.D.; Abdel-Hamid, N.; Srour, L.; Hussein, S.A.M. Identification of polyphenolic compounds and hepatoprotective activity of artichoke (Cynara scolymus L.) edible part extracts in rats. Egypt. J. Chem. 2020, 63, 2273–2285. [Google Scholar]
- Sanchez-Rabaneda, F.; Jauregui, O.; Lamuela-Raventos, R.M. Identification of phenolic compounds in artichoke waste by high- performance liquid chromatography—Tandem mass spectrometry. J. Chromatogr. A 2003, 1008, 57–72. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind. Crop. Prod. 2013, 44, 44–49. [Google Scholar] [CrossRef]
- Orlovskaya, T.V.; Luneva, I.L.; Chelombit’Ko, V.A. Chemical composition of Cynara scolymus leaves. Chem. Nat. Compd. 2007, 43, 239–240. [Google Scholar] [CrossRef]
- Shallan, M.A.; Ali, M.A.; Meshrf, W.A.; Marrez, D.A. In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. Biocatal. Agric. Biotechnol. 2020, 29, 101774. [Google Scholar] [CrossRef]
- Kukić, J.; Popović, V.; Petrović, S.; Mucaji, P.; Ćirić, A.; Stojković, D.; Soković, M. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem. 2008, 107, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, Y.; Martin-Cabrejas, M.A.; Gonzalez de Mejia, E. Phenolic compounds in fruits and beverages consumed as part of the Mediterranean diet: Their role in prevention of chronic diseases. Phytochem. Rev. 2016, 15, 405–423. [Google Scholar] [CrossRef]
- Shen, Q.; Dai, Z.; Lu, Y. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra-fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column. J. Sep. Sci. 2010, 33, 3152–3158. [Google Scholar] [CrossRef]
- Rejeb, I.B.; Dhen, N.; Gargouri, M.; Boulila, A. Chemical Composition, Antioxidant Potential and Enzymes Inhibitory Properties of Globe Artichoke By-Products. Chem. Biodivers. 2020, 17, e2000073. [Google Scholar] [CrossRef]
- Lozano-Sánchez, J.; Castro-Puyana, M.; Mendiola, J.A.; Segura-Carretero, A.; Cifuentes, A.; Ibáñez, E. Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques. Int. J. Mol. Sci. 2014, 15, 16270–16283. [Google Scholar] [CrossRef]
- Gonçalves, E.C.B.A.; Lozano-Sanchez, J.; Gomes, S.; Ferreira, M.S.L.; Cameron, L.C.; Segura-Carretero, A. Byproduct Generated During the Elaboration Process of Isotonic Beverage as a Natural Source of Bioactive Compounds. J. Food Sci. 2018, 83, 2478–2488. [Google Scholar] [CrossRef]
- Yang, M.; Ma, Y.; Wang, Z.; Khan, A.; Zhou, W.; Zhao, T.; Cao, J.; Cheng, G.; Cai, S. Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind. Crop. Prod. 2020, 143, 111433. [Google Scholar] [CrossRef]
- Palermo, M.; Colla, G.; Barbieri, G.; Fogliano, V. Polyphenol metabolite profile of artichoke is modulated by agronomical practices and cooking method. J. Agric. Food Chem. 2013, 61, 7960–7968. [Google Scholar] [CrossRef]
- Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. J. Ind. Eng. Chem. 2018, 68, 282–292. [Google Scholar] [CrossRef]
- Nastić, N.; Lozano-Sánchez, J.; Borrás-Linares, I.; Švarc-Gajić, J.; Segura-Carretero, A. New technological approaches for recovering bioactive food constituents from sweet cherry (Prunus avium L.) stems. Phytochem. Anal. 2020, 31, 119–130. [Google Scholar] [CrossRef]
- Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Comparative Assessment of Phytochemical Profiles of Comfrey (Symphytum officinale L.) Root Extracts Obtained by Different Extraction Techniques. Molecules 2020, 25, 837. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef]
- Vazquez-Roig, P.; Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Trends Anal. Chem. 2015, 71, 55–64. [Google Scholar] [CrossRef]
Experimental Condition | Temperature and Percentage of Ethanol in the Extraction Solvent | Dielectric Constant |
---|---|---|
PLE 1 | 120 °C; EtOH 100% | 19.0 |
PLE 2 | 176 °C; EtOH 85% | 21.6 |
PLE 3 | 200 °C; EtOH 50% | 26.0 |
PLE 4 | 63 °C; EtOH 85% | 31.0 |
PLE 5 | 176 °C; EtOH 15% | 33.4 |
PLE 6 | 120 °C; EtOH 50% | 34.7 |
PLE 7 | 40 °C; EtOH 50% | 48.0 |
PLE 8 | 120 °C; EtOH 0% | 50.4 |
PLE 9 | 63 °C; EtOH 15% | 59.1 |
Peak | RT (min) | Proposed Compound | Theoretical m/z | Experimental m/z | Molecular Formula | Error (ppm) | PLE Experiment |
---|---|---|---|---|---|---|---|
1 | 2.14 | Quinic acid | 191.0561 | 191.0567 | C7H12O6 | −3.2 | * |
2 | 6.14 | Chlorogenic acid | 353.0878 | 353.0883 | C16H18O9 | −1.5 | * |
3 | 6.51 | UK 1 | 375.0663 | 375.067 | C25H12O4 | −5.4 | 1,2,4,5,6,7,9 |
4 | 6.62 | Rosamarinic acid | 359.0772 | 359.0735 | C18H16O8 | 10.5 | 1,4,5,6,7,8,9 |
5 | 7.36 | Cynarin isomer 1 | 515.1195 | 515.1211 | C25H24O12 | −4.5 | * |
6 | 7.65 | Luteolin-rutinoside | 593.1512 | 593.1514 | C27H30O15 | −0.3 | * |
7 | 7.95 | Luteolin-glucoside | 447.0933 | 447.0919 | C21H20O11 | −4 | * |
8 | 8.08 | Cynarin isomer 2 | 515.1195 | 515.1207 | C25H24O12 | −2.2 | * |
9 | 8.58 | Apigenin-rutinoside | 577.1563 | 577.1571 | C27H30O14 | −1.4 | * |
10 | 8.98 | Apigenin-glucoside | 431.0984 | 431.0965 | C21H20O10 | −3.1 | * |
11 | 10.27 | UK 2 | 345.0405 | 345.0374 | C20H10O6 | 9 | * |
12 | 11.62 | UK 3 | 207.0663 | 207.0657 | C11H12O4 | 2.7 | 1,2,3,5,6 |
13 | 13.40 | Luteolin | 285.0405 | 285.0412 | C15H10O6 | −2.5 | 1,3,4,5,6,7,8,9 |
14 | 15.95 | Apigenin | 269.0455 | 269.0459 | C15H10O5 | −6.8 | * |
15 | 20.65 | Trihydroxy-octadecenoic acid | 329.2333 | 329.2331 | C18H34O5 | 0.6 | * |
16 | 22.51 | Dihydroxy-hexadecanoic acid | 287.2228 | 287.2229 | C16H32O4 | −0.3 | 1,3,4,5,6,7,8,9 |
17 | 23.15 | Methylapigenin | 283.0612 | 283.0607 | C16H12O5 | 1.7 | 1,2,3,4,6 |
18 | 26.62 | Cynarasaponin A/H isomer | 925.4802 | 925.476 | C47H74O18 | 4.6 | 1,6,7,9 |
19 | 26.92 | Cynarasaponin A/H isomer | 925.4802 | 925.478 | C47H74O18 | 2.4 | 1,6,7,9 |
20 | 30.05 | UK 4 | 205.1598 | 205.1606 | C14H22O | −3.8 | 2,3,4,5,6,7,8,9 |
21 | 31.10 | Hydroxy-octadecatrienoic acid | 293.2122 | 293.2111 | C18H30O3 | 3.9 | 1,2,4,6,7,9 |
22 | 31.27 | Hydroxy-octadecadienoic acid | 295.2279 | 295.2286 | C18H32O3 | −2.6 | * |
23 | 33.19 | Linolenic acid | 277.2173 | 277.2170 | C18H30O2 | 1.1 | * |
Experimental Condition | Dielectric Constant | Extraction Conditions | Yield | Total Phenolic Acids | Total Flavonoids | Total Phenolic Compounds |
---|---|---|---|---|---|---|
PLE 1 | 19.0 | 120 °C; EtOH 100% | 7.4 ± 0.3 | 787 ± 25 | 488 ± 13 | 1274 ± 37 |
PLE 2 | 21.6 | 176 °C; EtOH 85% | 50 ± 1 | 190 ± 10 | 94.1 ± 0.3 | 284 ± 10 |
PLE 3 | 26 | 200 °C; EtOH 50% | 57 ± 2 | 285 ± 10 | 157 ± 1 | 442 ± 10 |
PLE 4 | 31.0 | 63 °C; EtOH 85% | 10.5 ± 0.8 | 728 ± 24 | 365 ± 8 | 1092 ± 33 |
PLE 5 | 33.4 | 176 °C; EtOH 15% | 45 ± 2 | 134 ± 4 | 43.9 ± 0.4 | 178 ± 4 |
PLE 6 | 34.7 | 120 °C; EtOH 50% | 40 ± 2 | 343 ± 5 | 145 ± 2 | 489 ± 4 |
PLE 7 | 48.0 | 40 °C; EtOH 50% | 19 ± 1 | 594 ± 16 | 253 ± 16 | 848 ± 17 |
PLE 8 | 50.4 | 120 °C; EtOH 0% | 37 ± 2 | 302 ± 8 | 66 ± 1 | 368 ± 7 |
PLE 9 | 59.1 | 63 °C; EtOH 15% | 25 ± 2 | 291 ± 18 | 75 ± 4 | 365 ± 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Salas, L.; Borrás-Linares, I.; Quintin, D.; García-Gomez, P.; Giménez-Martínez, R.; Segura-Carretero, A.; Lozano-Sánchez, J. Artichoke By-Products as Natural Source of Phenolic Food Ingredient. Appl. Sci. 2021, 11, 3788. https://doi.org/10.3390/app11093788
López-Salas L, Borrás-Linares I, Quintin D, García-Gomez P, Giménez-Martínez R, Segura-Carretero A, Lozano-Sánchez J. Artichoke By-Products as Natural Source of Phenolic Food Ingredient. Applied Sciences. 2021; 11(9):3788. https://doi.org/10.3390/app11093788
Chicago/Turabian StyleLópez-Salas, Lucía, Isabel Borrás-Linares, David Quintin, Presentación García-Gomez, Rafael Giménez-Martínez, Antonio Segura-Carretero, and Jesús Lozano-Sánchez. 2021. "Artichoke By-Products as Natural Source of Phenolic Food Ingredient" Applied Sciences 11, no. 9: 3788. https://doi.org/10.3390/app11093788