Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics
Abstract
:1. Introduction
2. Numerical Approach Implemented in DUST
Vortex Particle Method
3. Numerical Models
3.1. Proprotor Numerical Model
3.2. Wing-Proprotor Numerical Model
3.3. Full Vehicle Numerical Model
4. Results and Discussion
4.1. Wing-Proprotor Simulations
4.1.1. Wing Effect on Proprotor
4.1.2. Proprotor Effect on Wing
4.2. Full Vehicle Simulations
4.2.1. Hover Condition
4.2.2. Conversion Mode Conditions
4.2.3. Cruise Condition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a | speed of sound [m/s] |
c | local blade chord |
C | blade chord-wise force |
CFD | Computational Fluid Dynamics |
pressure coefficient | |
power coefficient | |
torque coefficient | |
thrust coefficient | |
H | rotor H-force [lbf] |
M | blade pitching moment |
freestream Mach number | |
blade sectional chord-wise force coefficient | |
blade sectional pitching moment coefficient | |
blade sectional normal force coefficient | |
N | blade normal force |
number of rotor revolutions | |
P | rotor power [hp] |
Q | rotor torque [ft-lbf] |
r | radial coordinate along the blade |
R | rotor radius [m] |
T | rotor thrust [lbf] |
u | freestream velocity component [m/s] |
URANS | Unsteady Reynolds Averaged Navier–Stokes |
v | spanwise velocity component [m/s] |
freestream velocity [m/s] | |
VPM | vortex particle method |
VTOL | vertical takeoff and landing |
w | vertical velocity component [m/s] |
X | freestream coordinate |
Y | spanwise coordinate |
Z | vertical coordinate |
Z Mach | Mach number based on vertical velocity component |
wing angle of attack [deg] | |
vehicle angle of attack [deg] | |
difference between surface pressure and stagnation pressure | |
blade azimuthal angle [deg] | |
air density [kg/m] | |
blade pitch angle [deg] | |
nacelle angle [deg] | |
rotor speed [RPM] |
References
- Felker, F.F.; Signor, D.B.; Young, L.A.; Betzina, M.D. Performance and Loads Data from a Hover Test of a 0.658-Scale V-22 Rotor and Wing; Technical Report TM-89419; NASA: Moffett Field, CA, USA, 1987.
- Felker, F.F.; Shinoda, P.R.; Heffernan, R.M.; Sheehy, H.F. Wing Force and Surface Pressure Data from a Hover Test of a 0.658-Scale V-22 Rotor and Wing; Technical Report TM-102244; NASA: Moffett Field, CA, USA, 1990.
- Droandi, G.; Gibertini, G.; Grassi, D.; Campanardi, G.; Liprino, C. Proprotor-wing aerodynamic interaction in the first stages of conversion from helicopter to aeroplane mode. Aerosp. Sci. Technol. 2016, 58, 116–133. [Google Scholar] [CrossRef]
- Droandi, G.; Zanotti, A.; Gibertini, G.; Grassi, D.; Campanardi, G. Experimental investigation of the rotor-wing aerodynamic interaction in a tiltwing aircraft in hover. Aeronaut. J. New Ser. 2015, 119, 591–612. [Google Scholar] [CrossRef] [Green Version]
- Meakin, R. Unsteady Simulation of the Viscous Flow about a V-22 Rotor and Wing in Hover. In Proceedings of the 20th Atmospheric Flight Mechanics Conference 1995, Baltimore, MD, USA, 7–10 August 1995. [Google Scholar]
- Potsdam, M.A.; Strawn, R.C. CFD simulations of tiltrotor configurations in hover. J. Am. Helicopter Soc. 2005, 50, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Wissink, A.; Potsdam, M.; Sankaran, V.; Sitaraman, J.; Yang, Z.; Mavriplis, D. A Coupled Unstructured-Adaptive Cartesian CFD Approach for Hover Prediction. In Proceedings of the American Helicopter Society 66th Annual Forum Proceedings, Phoenix, AZ, USA, 11–13 May 2010. [Google Scholar]
- Maisel, M.D.; Giulianetti, D.J.; Dugan, D.C. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight; Number 17; National Aeronautics and Space Administration, Office of Policy and Plans, NASA History Division: Washington, DC, USA, 2000.
- Cambier, L.; Heib, S.; Plot, S. The Onera elsA CFD software: Input from research and feedback from industry. Mech. Ind. 2013, 14, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Kroll, N.; Eisfeld, B.; Bleecke, H. The Navier-Stokes Code FLOWer. Notes Numer. Fluid Mech. 1999, 71, 58–71. [Google Scholar]
- Biava, M.; Woodgate, M.; Barakos, G. Fully implicit discrete-adjoint methods for rotorcraft applications. AIAA J. 2016, 54, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Biava, M. RANS Computations of Rotor/Fuselage Unsteady Interactional Aerodynamics. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2007. [Google Scholar]
- Droandi, G.; Zanotti, A.; Gibertini, G. Aerodynamic interaction between rotor and tilting wing in hovering flight condition. J. Am. Helicopter Soc. 2015, 60, 1–20. [Google Scholar] [CrossRef]
- Jimenez Garcia, A.; Barakos, G. CFD Simulations on the ERICA Tiltrotor using HMB2. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Decours, J.; Beaumier, P.; Khier, W.; Kneisch, T.; Valentini, M.; Vigevano, L. Experimental validation of tilt-rotor aerodynamic predictions. In Proceedings of the 40th European Rotorcraft Forum, Southampton, UK, 2–5 September 2014. [Google Scholar]
- Tran, S.A.; Lim, J.W. Investigation of the Interactional Aerodynamics of the XV-15 Tiltrotor Aircraft. In Proceedings of the 76th Annual Vertical Flight Society Forum and Technology Display, Virtual. 6–8 October 2020. [Google Scholar]
- Tran, S.; Lim, J.; Nunez, G.; Wissink, A.; Bowen-Davies, G. CFD Calculations of the XV-15 tiltrotor during transition. In Proceedings of the American Helicopter Society 75th Annual Forum, Philadelphia, PA, USA, 13–16 May 2019. [Google Scholar]
- Lim, J.W. Fundamental Investigation of Proprotor and Wing Interactions in Tiltrotor Aircraft. In Proceedings of the 75th Annual Vertical Flight Society Forum and Technology Display, Philadelphia, PA, USA, 13–16 May 2019. [Google Scholar]
- Lim, J.; Tran, S. Interactional Structural Loads of the XV-15 Rotor in Airplane Mode. In Proceedings of the 45th European Rotorcraft Forum, Warsaw, Poland, 17–20 September 2019. [Google Scholar]
- Gennaretti, M.; Bernardini, G. Novel Boundary Integral Formulation for Blade–Vortex Interaction Aerodynamics of Helicopter Rotors. AIAA J. 2007, 45, 1169–1176. [Google Scholar] [CrossRef]
- Gennaretti, M.; Molica Colella, M.; Bernardini, G. Prediction of Tiltrotor Vibratory Loads with Inclusion of Wing–Proprotor Aerodynamic Interaction. J. Aircr. 2010, 47, 71–79. [Google Scholar] [CrossRef]
- Wentrup, M.; Yin, J.; Kunze, P.; Streit, T.; Wendisch, J.H.; Schwarz, T.; Pinacho, J.; Kicker, K.; Fukari, R. An overview of DLR compound rotorcraft aerodynamics and aeroacoustics activities within the CleanSky2 NACOR Project. In Proceedings of the 74th AHS Annual Forum & Technology Display, Phoenix, AZ, USA, 14–17 May 2018. [Google Scholar]
- Cottet, G.H.; Koumoutsakos, P.D.; Petros, D. Vortex Methods: Theory and Practice; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Winckelmans, G.S. Topics in Vortex Methods for the Computation of Three-and Two-Dimensional Incompressible Unsteady Flows. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1989. [Google Scholar]
- Lu, Y.; Su, T.; Chen, R.; Li, P.; Wang, Y. A method for optimizing the aerodynamic layout of a helicopter that reduces the effects of aerodynamic interaction. Aerosp. Sci. Technol. 2019, 88, 73–83. [Google Scholar] [CrossRef]
- Opoku, D.; Triantos, D.; Nitzsche, F.; Voutsinas, S. Rotorcraft Aerodynamic and Aeroacoustic Modelling using Vortex Particle Methods. In Proceedings of the 23rd International Congress of Aeronautical Sciences, Toronto, ON, Canada, 8–13 September 2002. [Google Scholar]
- Alvarez, E.; Ning, A. Development of a Vortex Particle Code for the Modeling of Wake Interaction in Distributed Propulsion. In Proceedings of the AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Zhou, T.; Sun, J.; Barakos, G. Numerical investigation of the aerodynamic interaction between a tiltrotor and a tandem rotor during shipboard operations. Aerosp. Sci. Technol. 2019, 87, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Droandi, G.; Syal, M.; Bower, G. Tiltwing Multi-Rotor Aerodynamic Modeling in Hover, Transition and Cruise Flight Conditions. In Proceedings of the 74th Annual Forum, Phoenix, AZ, USA, 14–17 May 2018. [Google Scholar]
- Montagnani, D.; Tugnoli, M.; Zanotti, A.; Syal, M.; Droandi, G. Analysis of the Interactional Aerodynamics of the Vahana eVTOL Using a Medium Fidelity Open Source Tool. In Proceedings of the VFS Aeromechanics for Advanced Vertical Flight Technical Meeting, San Jose, CA, USA, 21–23 January 2020. [Google Scholar]
- Piccinini, R.; Tugnoli, M.; Zanotti, A. Numerical Investigation of the Rotor-RotorAerodynamic Interaction for eVTOL AircraftConfigurations. Energies 2020, 13, 5995. [Google Scholar] [CrossRef]
- Jimenez-Garcia, A.; Barakos, G.; Gates, S. Tiltrotor CFD Part I—validation. Aeronaut. J. 2017, 121, 577–610. [Google Scholar] [CrossRef] [Green Version]
- Morino, L.; Kuot, C.C. Subsonic potential aerodynamics for complex configurations: A general theory. AIAA J. 1974, 12, 191–197. [Google Scholar] [CrossRef]
- Gallay, S.; Laurendeau, E. Nonlinear generalized lifting-line coupling algorithms for pre/poststall flows. AIAA J. 2015, 53, 1784–1792. [Google Scholar] [CrossRef]
- Piszkin, S.T.; Levinsky, E. Nonlinear Lifting Line Theory for Predicting Stalling Instabilities on Wings of Moderate Aspect Ratio; Technical Report, General Dynamics/Convair; National Technical Information Service: San Diego, CA, USA, June 15; 1976.
- Montagnani, D.; Tugnoli, M.; Fonte, F.; Zanotti, A.; Droandi, G.; Syal, M. Mid-Fidelity Analysis of Unsteady Interactional Aerodynamics of Complex VTOL Configurations. In Proceedings of the 45th European Rotorcraft Forum, Warsaw, Poland, 17–20 September 2019. [Google Scholar]
- Brown, R.E.; Line, A.J. Efficient high-resolution wake modeling using the vorticity transport equation. AIAA J. 2005, 43, 1434–1443. [Google Scholar] [CrossRef]
- Lindsay, K.; Krasny, R. A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 2001, 172, 879–907. [Google Scholar] [CrossRef] [Green Version]
- Felker, F.F.; Young, L.A.; Signor, D.B. Performance and Loads Data from a Hover Test of a Full-Scale Advanced Technology XV-15 Rotor; Technical Memorandum 86854; NASA Ames Research Center: Mountain View, CA, USA, 1986.
- Bartie, K.; Alexander, H.; McVeigh, M.; Lamon, S.; Bishop, H. Hover Performance Tests of Baseline Metal and Advanced Technology Blade (ATB) Rotor Systems for the XV-15 Tilt Rotor Aircraft; Contractor Report 177436; NASA Ames Research Center: Mountain View, CA, USA, 1986.
- Harris, F.D. Hover Performance of Isolated Proprotors and Propellers-Experimental Data; Technical Report CR—2017–219486; NASA: Moffett Field, CA, USA, 2017.
- Bell Helicopter Co. Advancement of Proprotor Technology Task II: Wind-Tunnel Test Results; Contractor Report 114363; NASA: Fort Worth, TX, USA, 1971.
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Low Reynolds Number Aerodynamics; Mueller, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–12. [Google Scholar]
- Viterna, L.A.; Janetzke, D.C. Theoretical and Experimental Power from Large Horizontal-Axis Wind Turbines; Technical Report; Washington Procurement Operations Office: Washington, DC, USA, 1982.
- Johnson, W. CAMRAD II, Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Volume I: Theory; Johnson Aeronautics: Johnson Aeronautics, CA, USA, 1992. [Google Scholar]
- Ferguson, S.W. Development and Validation of A Simulation for A Generic Tilt-Rotor Aircraft; Technical Report CR-166537; NASA: Mountain View, CA, USA, 1989.
- Palazzi, M. Mid-Fidelity Approach to Tiltrotor Aerodynamics. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2020. [Google Scholar]
- Arrington, W.; Kumpel, M.; Marr, R. XV-15 Tilt Rotor Research Aircraft Flight Test Data Report; Contractor Report 177406; NASA: Washington, DC, USA, 1985.
- Polak, D.; Rehm, W.; George, A. Effects of an Image Plane on the Tiltrotor Fountain Flow. J. Am. Helicopter Soc. 2000, 45, 90–96. [Google Scholar] [CrossRef]
Number of Blades | 3 |
Radius [m] | 3.81 |
Disc Area [m] | 45.6 |
Solidity | 0.089 |
Precone angle [] | 2.5 |
Overall twist [] | −40.9 |
Hover RPM | 589 |
r/R | Airfoil |
---|---|
0.09 | NACA 64-935 a = 0.3 |
0.17 | NACA 64-528 |
0.51 | NACA 64-118 |
0.80 | NACA 64-(1.5)12 |
1.00 | NACA 64-208 a = 0.3 |
Wing | Horizontal Tail | Vertical Tail | |
---|---|---|---|
Airfoil | NACA 64A223 | NACA 64015 | NACA 0009 |
Span | 9.8 m | 3.91 m | 2.34 m |
Mean aerodynamic chord | 1.60 m | 1.20 m | 1.13 m |
Sweep () | |||
Dihedral | - | ||
Incidence | |||
Flap | Flaperon | ||
Span along hinge line | 1.30 m | 2.40 m | |
Chord/Wing chord | |||
Maximum deflection |
Flight Condition | Vehicle Pitch | Nacelle | Rotor Speed | Flap | Flaperon | |
---|---|---|---|---|---|---|
Attitude () | Angle () | Angle | Angle | |||
Hover | 0 knots | 589 RPM | ||||
Conversion | 40 knots | 589 RPM | ||||
Conversion | 100 knots | 589 RPM | ||||
Conversion | 140 knots | 589 RPM | ||||
Cruise | 160 knots | 517 RPM |
CFD | DUST | |||
---|---|---|---|---|
% | % | |||
Thrust [lbs] | 104 | 12.7 | 64.5 | 7.9 |
Power [hp] | 64 | 8.1 | 41.7 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanotti, A.; Savino, A.; Palazzi, M.; Tugnoli, M.; Muscarello, V. Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics. Appl. Sci. 2021, 11, 3385. https://doi.org/10.3390/app11083385
Zanotti A, Savino A, Palazzi M, Tugnoli M, Muscarello V. Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics. Applied Sciences. 2021; 11(8):3385. https://doi.org/10.3390/app11083385
Chicago/Turabian StyleZanotti, Alex, Alberto Savino, Michele Palazzi, Matteo Tugnoli, and Vincenzo Muscarello. 2021. "Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics" Applied Sciences 11, no. 8: 3385. https://doi.org/10.3390/app11083385
APA StyleZanotti, A., Savino, A., Palazzi, M., Tugnoli, M., & Muscarello, V. (2021). Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics. Applied Sciences, 11(8), 3385. https://doi.org/10.3390/app11083385