Nano- and Micropatterning on Optical Fibers by Bottom-Up Approach: The Importance of Being Ordered
Abstract
:1. Introduction
2. The Importance of Order
2.1. Periodic Ordered Structures
2.2. Aperiodic Ordered Structures
3. Bottom-Up Fabrication of Periodic Structures on OFs
3.1. Colloidal Self-Assembly
3.2. Other Self-Assembly Methods
3.2.1. Breath Figures
3.2.2. Directed Self-Assembly
3.3. Post-Processing Methods to Increase the Order
4. Methods for Order Quantification
4.1. Order Quantification by Fourier Transform
4.2. Order Quantification by Pair Correlation Function
4.3. Order Quantification by Voronoi Tessellation
4.4. Laser Diffraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, J.S.; Smith, N.A.; Francis, C.D. Removing the entropy from the definition of entropy: Clarifying the relationship between evolution, entropy, and the second law of thermodynamics. Evol. Educ. Outreach 2013, 6, 30. [Google Scholar] [CrossRef]
- Ricciardi, A.; Crescitelli, A.; Vaiano, P.; Quero, G.; Consales, M.; Pisco, M.; Esposito, E.; Cusano, A. Lab-on-fiber technology: A new vision for chemical and biological sensing. Analyst 2015, 140, 8068–8079. [Google Scholar] [CrossRef] [PubMed]
- Vaiano, P.; Carotenuto, B.; Pisco, M.; Ricciardi, A.; Quero, G.; Consales, M.; Crescitelli, A.; Esposito, E.; Cusano, A. Lab on Fiber Technology for biological sensing applications. Laser Photonics Rev. 2016, 10, 922–961. [Google Scholar] [CrossRef]
- Galeotti, F.; Pisco, M.; Cusano, A. Self-assembly on optical fibers: A powerful nanofabrication tool for next generation “lab-on-fiber” optrodes. Nanoscale 2018, 10, 22673–22700. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008; pp. 1–286. [Google Scholar]
- Lin, S.Y.; Chow, E.; Hietala, V.; Villeneuve, P.R.; Joannopoulos, J.D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 1998, 282, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.; Lin, S.Y.; Johnson, S.G.; Villeneuve, P.R.; Joannopoulos, J.D.; Wendt, J.R.; Vawter, G.A.; Zubrzycki, W.; Hou, H.; Alleman, A. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 2000, 407, 983–986. [Google Scholar] [CrossRef] [Green Version]
- Valanju, P.M.; Walser, R.M.; Valanju, A.P. Wave refraction in negative-index media: Always positive and very inhomogeneous. Phys. Rev. Lett. 2002, 88. [Google Scholar] [CrossRef]
- Noda, S.; Chutinan, A.; Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 2000, 407, 608–610. [Google Scholar] [CrossRef]
- Knight, J.C.; Broeng, J.; Birks, T.A.; Russel, P.S.J. Photonic band cap guidance in optical fibers. Science 1998, 282, 1476–1478. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef]
- Pitruzzello, G.; Krauss, T.F. Photonic crystal resonances for sensing and imaging. J. Opt. 2018, 20. [Google Scholar] [CrossRef]
- Macia, E. The role of aperiodic order in science and technology. Rep. Prog. Phys. 2006, 69, 397–441. [Google Scholar] [CrossRef]
- Press Release. NobelPrize.org. Nobel Media AB 2021. Available online: https://www.nobelprize.org/prizes/chemistry/2011/press-release/ (accessed on 11 February 2021).
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef] [Green Version]
- Bendersky, L. Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation Axis. Phys. Rev. Lett. 1985, 55, 1461–1463. [Google Scholar] [CrossRef]
- Bancel, P.A.; Heiney, P.A. Icosahedral Aluminum Transition-Metal Alloys. Phys. Rev. B 1986, 33, 7917–7922. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.; Kuo, K.H. Two-Dimensional Quasi-Crystal with Eightfold Rotational Symmetry. Phys. Rev. Lett. 1987, 59, 1010–1013. [Google Scholar] [CrossRef] [Green Version]
- Ishimasa, T.; Nissen, H.U.; Fukano, Y. New Ordered State between Crystalline and Amorphous in Ni-Cr Particles. Phys. Rev. Lett. 1985, 55, 511–513. [Google Scholar] [CrossRef]
- Fischer, S.; Exner, A.; Zielske, K.; Perlich, J.; Deloudi, S.; Steurer, W.; Lindner, P.; Foerster, S. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl. Acad. Sci. USA 2011, 108, 1810–1814. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.B.; Ungar, G.; Liu, Y.S.; Percec, V.; Dulcey, S.E.; Hobbs, J.K. Supramolecular dendritic liquid quasicrystals. Nature 2004, 428, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, K.; Dotera, T.; Takano, A.; Matsushita, Y. Polymeric quasicrystal: Mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 2007, 98. [Google Scholar] [CrossRef] [Green Version]
- Talapin, D.V.; Shevchenko, E.V.; Bodnarchuk, M.I.; Ye, X.; Chen, J.; Murray, C.B. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 2009, 461, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.; Roth, J.; Helden, L.; Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 2008, 454, 501–504. [Google Scholar] [CrossRef] [Green Version]
- Vardeny, Z.V.; Nahata, A.; Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 2013, 7, 177–187. [Google Scholar] [CrossRef]
- Chan, Y.S.; Chan, C.T.; Liu, Z.Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 1998, 80, 956–959. [Google Scholar] [CrossRef] [Green Version]
- Kaliteevski, M.A.; Brand, S.; Abram, R.A.; Krauss, T.F.; DeLa Rue, R.; Millar, P. Two-dimensional Penrose-tiled photonic quasicrystals: From diffraction pattern to band structure. Nanotechnology 2000, 11, 274–280. [Google Scholar] [CrossRef]
- Dal Negro, L.; Oton, C.J.; Gaburro, Z.; Pavesi, L.; Johnson, P.; Lagendijk, A.; Righini, R.; Colocci, M.; Wiersma, D.S. Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 2003, 90. [Google Scholar] [CrossRef]
- Della Villa, A.; Enoch, S.; Tayeb, G.; Pierro, V.; Galdi, V.; Capolino, F. Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice. Phys. Rev. Lett. 2005, 94. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, A.; Gallina, I.; Campopiano, S.; Castaldi, G.; Pisco, M.; Galdi, V.; Cusano, A. Guided resonances in photonic quasicrystals. Opt. Exp. 2009, 17, 6335–6346. [Google Scholar] [CrossRef]
- Gallina, I.; Pisco, M.; Ricciardi, A.; Campopiano, S.; Castaldi, G.; Cusano, A.; Galdi, V. Guided resonances in photonic crystals with point-defected aperiodically-ordered supercells. Opt. Exp. 2009, 17, 19586–19598. [Google Scholar] [CrossRef] [Green Version]
- Pisco, M.; Ricciardi, A.; Gallina, I.; Castaldi, G.; Campopiano, S.; Cutolo, A.; Cusano, A.; Galdi, V. Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: A comparative study. Opt. Exp. 2010, 18, 17280–17293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciardi, A.; Pisco, M.; Gallina, I.; Campopiano, S.; Galdi, V.; O’Faolain, L.; Krauss, T.F.; Cusano, A. Experimental evidence of guided-resonances in photonic crystals with aperiodically ordered supercells. Opt. Lett. 2010, 35, 3946–3948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciardi, A.; Pisco, M.; Cutolo, A.; Cusano, A.; Faolain, L.O.; Krauss, T.F.; Castaldi, G.; Galdi, V. Evidence of guided resonances in photonic quasicrystal slabs. Phys. Rev. B 2011, 84. [Google Scholar] [CrossRef] [Green Version]
- Notomi, M.; Suzuki, H.; Tamamura, T.; Edagawa, K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Phys. Rev. Lett. 2004, 92. [Google Scholar] [CrossRef] [PubMed]
- Mahler, L.; Tredicucci, A.; Beltram, F.; Walther, C.; Faist, J.; Beere, H.E.; Ritchie, D.A.; Wiersma, D.S. Quasi-periodic distributed feedback laser. Nat. Photonics 2010, 4, 165–169. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Lee, S.Y.K.; Amsden, J.J.; Omenetto, F.G.; Dal Negro, L. Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces. Opt. Exp. 2010, 18, 14568–14576. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Amsden, J.J.; Boriskina, S.V.; Gopinath, A.; Mitropolous, A.; Kaplan, D.L.; Omenetto, F.G.; Dal Negro, L. Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 12086–12090. [Google Scholar] [CrossRef] [Green Version]
- Mokkapati, S.; Catchpole, K.R. Nanophotonic light trapping in solar cells. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef] [Green Version]
- Benagli, S.; Borrello, D.; Vallat-Sauvain, E.; Meier, J.; Kroll, U.; Hoetzel, H.; Bailat, J.; Steinhauser, J.; Marmelo, M.; Monteduro, G.; et al. High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI-M Reactor. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–25 September 2009; pp. 2293–2298. [Google Scholar]
- Battaglia, C.; Hsu, C.-M.; Söderström, K.; Escarré, J.; Haug, F.-J.; Charrière, M.; Boccard, M.; Despeisse, M.; Alexander, D.T.L.; Cantoni, M.; et al. Light Trapping in Solar Cells: Can Periodic Beat Random? ACS Nano 2012, 6, 2790–2797. [Google Scholar] [CrossRef] [Green Version]
- Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Mercaldo, L.V.; Veneri, P.D.; Cutolo, A.; Cusano, A. Light trapping efficiency of periodic and quasiperiodic back-reflectors for thin film solar cells: A comparative study. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Li, J.; Herman, P.R.; Valdivia, C.E.; Kitaev, V.; Ozin, G.A. Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber. Opt. Exp. 2005, 13, 6454–6459. [Google Scholar] [CrossRef]
- Lin, Y.; Herman, P.R.; Xu, W. In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. J. Appl. Phys. 2007, 102, 073106. [Google Scholar] [CrossRef]
- Yan, H.; Wang, M.; Ge, Y.; Yu, P. Colloidal crystals self-assembled on the end face of fiber: Fabrication and characterizations. Opt. Fiber Technol. 2009, 15, 324–327. [Google Scholar] [CrossRef]
- Sansone, L.; Macchia, E.; Taddei, C.; Torsi, L.; Giordano, M. Label-free optical biosensing at femtomolar detection limit. Sens. Actuators B Chem. 2018, 255, 1097–1104. [Google Scholar] [CrossRef]
- Moon, J.H.; Yi, G.-R.; Yang, S.-M. Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas. J. Colloid Interf. Sci. 2005, 287, 173–177. [Google Scholar] [CrossRef]
- Haibin, N.; Ming, W.; Wei, C. Sol-gel co-assembly of hollow cylindrical inverse opals and inverse opal columns. Opt. Exp. 2011, 19, 25900–25910. [Google Scholar] [CrossRef]
- Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K.H.; Aizenberg, J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. USA 2010, 107, 10354. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Wang, M.; Li, L.; Chen, W.; Wang, T. Photonic-Crystal-Based Optical Fiber Bundles and Their Applications. IEEE Photonics J. 2013, 5, 2400213. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, L.; Zhu, J.; Ni, H.; Xia, W.; Wang, M. Compact 3D photonic crystals sensing platform with 45 degree angle polished fibers. Opt. Fiber Technol. 2017, 36, 187–194. [Google Scholar] [CrossRef]
- Pisco, M.; Galeotti, F.; Quero, G.; Grisci, G.; Micco, A.; Mercaldo, L.V.; Veneri, P.D.; Cutolo, A.; Cusano, A. Nanosphere lithography for optical fiber tip nanoprobes. Light Sci. Appl. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Quero, G.; Zito, G.; Manago, S.; Galeotti, F.; Pisco, M.; De Luca, A.C.; Cusano, A. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes. Sensors 2018, 18, 680. [Google Scholar] [CrossRef] [Green Version]
- Managò, S.; Quero, G.; Zito, G.; Tullii, G.; Galeotti, F.; Pisco, M.; De Luca, A.C.; Cusano, A. Tailoring lab-on-fiber SERS optrodes towards biological targets of different sizes. Sens. Actuators B Chem. 2020, 129321. [Google Scholar] [CrossRef]
- Chang, S.-H.; Nyagilo, J.; Wu, J.; Hao, Y.; Davé, D.P. Optical Fiber-Based Surface-Enhanced Raman Scattering Sensor Using Au Nanovoid Arrays. Plasmonics 2012, 7, 501–508. [Google Scholar] [CrossRef]
- Antohe, I.; Spasic, D.; Delport, F.; Li, J.; Lammertyn, J. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology 2017, 28, 215301. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, P.; Leung, C.; Xie, Y.-H. SERS optical fiber probe with plasmonic end-facet. J. Raman Spectrosc. 2017, 48, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Yu, Z.; Li, L.; Xu, T. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Sci. Rep. 2019, 9, 7379. [Google Scholar] [CrossRef]
- Liu, Y.; Guang, J.; Liu, C.; Bi, S.; Liu, Q.; Li, P.; Zhang, N.; Chen, S.; Yuan, H.; Zhou, D.; et al. Simple and Low-Cost Plasmonic Fiber-Optic Probe as SERS and Biosensing Platform. Adv. Opt. Mater. 2019, 7, 1900337. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Li, P.; Bi, S.; Zhang, X.; Chen, S.; Peng, W. Nanopatterned evanescent-field fiber-optic interferometer as a versatile platform for gas sensing. Sens. Actuators B Chem. 2019, 301, 127136. [Google Scholar] [CrossRef]
- Aitken, J. Breath Figures. Nature 1913, 90, 619–621. [Google Scholar] [CrossRef]
- Zhang, A.; Bai, H.; Li, L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, V.-T.; Ko, S.H.; Choi, H.-S. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. ACS Appl. Mater. Interf. 2015, 7, 10541–10547. [Google Scholar] [CrossRef]
- Tullii, G.; Donini, S.; Bossio, C.; Lodola, F.; Pasini, M.; Parisini, E.; Galeotti, F.; Antognazza, M.R. Micro- and Nanopatterned Silk Substrates for Antifouling Applications. ACS Appl. Mater. Interf. 2020, 12, 5437–5446. [Google Scholar] [CrossRef]
- Galeotti, F.; Hartmann, L.; Botta, C. Robust surface patterning by parylene-reinforced breath figures: An enabling tool for liquid crystal microcell arrays. J. Colloid Interf. Sci. 2016, 465, 47–53. [Google Scholar] [CrossRef]
- Galeotti, F.; Trespidi, F.; Pasini, M. Breath Figure-Assisted Fabrication of Nanostructured Coating on Silicon Surface and Evaluation of Its Antireflection Power. J. Nanomater. 2016, 2016, 3502310. [Google Scholar] [CrossRef] [Green Version]
- Galeotti, F.; Mróz, W.; Scavia, G.; Botta, C. Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach. Org. Electron. 2013, 14, 212–218. [Google Scholar] [CrossRef]
- Galeotti, F.; Chiusa, I.; Morello, L.; Gianì, S.; Breviario, D.; Hatz, S.; Damin, F.; Chiari, M.; Bolognesi, A. Breath figures-mediated microprinting allows for versatile applications in molecular biology. Eur. Polym. J. 2009, 45, 3027–3034. [Google Scholar] [CrossRef]
- Galeotti, F.; Kozma, E.; Mróz, W.; Kutrzeba-Kotowska, B. Single-step shaping of fluorescent polymer beads by a reverse breath figure approach. RSC Adv. 2015, 5, 36315–36319. [Google Scholar] [CrossRef]
- Leone, G.; Giovanella, U.; Bertini, F.; Hoseinkhani, S.; Porzio, W.; Ricci, G.; Botta, C.; Galeotti, F. Hierarchically structured, blue-emitting polymer hybrids through surface-initiated nitroxide-mediated polymerization and water templated assembly. J. Mater. Chem. C 2013, 1, 6585–6593. [Google Scholar] [CrossRef]
- Galeotti, F.; Trespidi, F.; Timò, G.; Pasini, M. Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns. ACS Appl. Mater. Interf. 2014, 6, 5827–5834. [Google Scholar] [CrossRef]
- Colombo, R.N.P.; Petri, D.F.S.; Córdoba de Torresi, S.I.; Gonçales, V.R. Porous Polymeric Templates on ITO Prepared by Breath Figure Method for Gold Electrodeposition. Electrochim. Acta 2015, 158, 187–195. [Google Scholar] [CrossRef]
- Kon, K.; Brauer, C.N.; Hidaka, K.; Löhmannsröben, H.-G.; Karthaus, O. Preparation of Patterned Zinc Oxide Films by Breath Figure Templating. Langmuir 2010, 26, 12173–12176. [Google Scholar] [CrossRef]
- Hirai, Y.; Yabu, H.; Matsuo, Y.; Ijiro, K.; Shimomura, M. Biomimetic bi-functional silicon nanospike-array structures prepared by using self-organized honeycomb templates and reactive ion etching. J. Mater. Chem. 2010, 20, 10804–10808. [Google Scholar] [CrossRef]
- Pisco, M.; Galeotti, F.; Quero, G.; Iadicicco, A.; Giordano, M.; Cusano, A. Miniaturized Sensing Probes Based on Metallic Dielectric Crystals Self-Assembled on Optical Fiber Tips. ACS Photonics 2014, 1, 917–927. [Google Scholar] [CrossRef]
- Koo, K.; Ahn, H.; Kim, S.-W.; Ryu, D.Y.; Russell, T.P. Directed self-assembly of block copolymers in the extreme: Guiding microdomains from the small to the large. Soft Matter 2013, 9, 9059–9071. [Google Scholar] [CrossRef]
- Evangelio, L.; Fernández-Regúlez, M.; Borrisé, X.; Lorenzoni, M.; Fraxedas, J.; Pérez-Murano, F. Creation of guiding patterns for directed self-assembly of block copolymers by resistless direct e-beam exposure. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 033511. [Google Scholar] [CrossRef]
- Liu, C.-C.; Franke, E.; Mignot, Y.; Xie, R.; Yeung, C.W.; Zhang, J.; Chi, C.; Zhang, C.; Farrell, R.; Lai, K.; et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 2018, 1, 562–569. [Google Scholar] [CrossRef]
- Tsai, H.; Guillorn, M.; Doerk, G.; Cheng, J.; Sanders, D.; Lai, K.; Liu, C.; Colburn, M. Directed self-assembly for ever-smaller printed circuits. Spie Newsroom 2013. [Google Scholar] [CrossRef]
- Choi, H.K.; Chang, J.-B.; Hannon, A.F.; Yang, J.K.W.; Berggren, K.K.; Alexander-Katz, A.; Ross, C.A. Nanoscale spirals by directed self-assembly. Nano Futures 2017, 1, 015001. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Cara, E.; Ferrarese Lupi, F.; Fretto, M.; De Leo, N.; Tortello, M.; Gonnelli, R.; Sparnacci, K.; Boarino, L. Directed Self-Assembly of Polystyrene Nanospheres by Direct Laser-Writing Lithography. Nanomaterials 2020, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Yap, F.L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S. Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers. ACS Nano 2012, 6, 2056–2070. [Google Scholar] [CrossRef]
- Colusso, E.; De Ferrari, F.; Minzioni, P.; Martucci, A.; Wang, Y.; Omenetto, F.G. Engineering optical defects in biopolymer photonic lattices. J. Mater. Chem. C 2018, 6, 966–971. [Google Scholar] [CrossRef]
- Rogers, J.A.; Lee, H.H.; Patterning with Block Copolymers. Unconventional Nanopatterning Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 233–289. [Google Scholar]
- Baruth, A.; Seo, M.; Lin, C.H.; Walster, K.; Shankar, A.; Hillmyer, M.A.; Leighton, C. Optimization of Long-Range Order in Solvent Vapor Annealed Poly(styrene)-block-poly(lactide) Thin Films for Nanolithography. ACS Appl. Mater. Interf. 2014, 6, 13770–13781. [Google Scholar] [CrossRef]
- Wei, X.; Zhuang, X.; Hong, S.-C.; Goto, T.; Shen, Y.R. Sum-Frequency Vibrational Spectroscopic Study of a Rubbed Polymer Surface. Phys. Rev. Lett. 1999, 82, 4256–4259. [Google Scholar] [CrossRef] [Green Version]
- Amit, Y.; Faust, A.; Lieberman, I.; Yedidya, L.; Banin, U. Semiconductor nanorod layers aligned through mechanical rubbing. Phys. Status Solid. A 2012, 209, 235–242. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Y.; Wang, Q.; Wang, J.; Lu, H.; Zhu, J. CsPbBr3 nanowire polarized light-emitting diodes through mechanical rubbing. Chem. Commun. 2020, 56, 5413–5416. [Google Scholar] [CrossRef]
- Heil, H.; Finnberg, T.; Malm, N.v.; Schmechel, R.; Seggern, H.v. The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene. J. Appl. Phys. 2003, 93, 1636–1641. [Google Scholar] [CrossRef]
- Park, C.; Lee, T.; Xia, Y.; Shin, T.J.; Myoung, J.; Jeong, U. Quick, Large-Area Assembly of a Single-Crystal Monolayer of Spherical Particles by Unidirectional Rubbing. Adv. Mater. 2014, 26, 4633–4638. [Google Scholar] [CrossRef]
- Meng, X.; Qiu, D. Gas-Flow-Induced Reorientation to Centimeter-Sized Two-Dimensional Colloidal Single Crystal of Polystyrene Particle. Langmuir 2014, 30, 3019–3023. [Google Scholar] [CrossRef]
- Ramananarivo, S.; Ducrot, E.; Palacci, J. Activity-controlled annealing of colloidal monolayers. Nat. Commun. 2019, 10, 3380. [Google Scholar] [CrossRef] [Green Version]
- Toolan, D.T.W.; Fujii, S.; Ebbens, S.J.; Nakamura, Y.; Howse, J.R. On the mechanisms of colloidal self-assembly during spin-coating. Soft Matter 2014, 10, 8804–8812. [Google Scholar] [CrossRef]
- Lotito, V.; Zambelli, T. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene. J. Colloid Interf. Sci. 2015, 447, 202–210. [Google Scholar] [CrossRef]
- Escalé, P.; Save, M.; Lapp, A.; Rubatat, L.; Billon, L. Hierarchical structures based on self-assembled diblock copolymers within honeycomb micro-structured porous films. Soft Matter 2010, 6, 3202–3210. [Google Scholar] [CrossRef]
- Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim. Acta 2010, 55, 4359–4367. [Google Scholar] [CrossRef]
- Bigioni, T.P.; Lin, X.-M.; Nguyen, T.T.; Corwin, E.I.; Witten, T.A.; Jaeger, H.M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270. [Google Scholar] [CrossRef]
- Rengarajan, R.; Mittleman, D.; Rich, C.; Colvin, V. Effect of disorder on the optical properties of colloidal crystals. Phys. Rev. E 2005, 71, 016615. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Bumstead, M.; Liang, K.; Hanta, G.; Hui, L.S.; Turak, A. disLocate: Tools to rapidly quantify local intermolecular structure to assess two-dimensional order in self-assembled systems. Sci. Rep. 2018, 8, 1554. [Google Scholar] [CrossRef] [Green Version]
- Chieffi, G.; Di Girolamo, R.; Aronne, A.; Pernice, P.; Fanelli, E.; Lazzari, M.; De Rosa, C.; Auriemma, F. Rapid-flux-solvent-atmosphere method for tailoring the morphology of titania substrates over a large area via direct self-assembly of block copolymers. RSC Adv. 2014, 4, 16721–16725. [Google Scholar] [CrossRef]
- Park, M.S.; Kim, J.K. Breath Figure Patterns Prepared by Spin Coating in a Dry Environment. Langmuir 2004, 20, 5347–5352. [Google Scholar] [CrossRef] [PubMed]
- Prevo, B.G.; Velev, O.D. Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions. Langmuir 2004, 20, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.L.; Coukouma, A.; Dubnik, S.; Asher, S.A. Debye ring diffraction elucidation of 2D photonic crystal self-assembly and ordering at the air–water interface. Phys. Chem. Chem. Phys. 2017, 19, 31813–31822. [Google Scholar] [CrossRef]
- Kim, M.H.; Im, S.H.; Park, O.O. Rapid Fabrication of Two- and Three-Dimensional Colloidal Crystal Films via Confined Convective Assembly. Adv. Funct. Mater. 2005, 15, 1329–1335. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Y.; Duan, G.; Jia, L.; Cai, W. Phase Diagram, Design of Monolayer Binary Colloidal Crystals, and Their Fabrication Based on Ethanol-Assisted Self-Assembly at the Air/Water Interface. ACS Nano 2012, 6, 6706–6716. [Google Scholar] [CrossRef]
- Diba, F.S.; Boden, A.; Thissen, H.; Bhave, M.; Kingshott, P.; Wang, P.-Y. Binary colloidal crystals (BCCs): Interactions, fabrication, and applications. Adv. Colloid Interf. Sci. 2018, 261, 102–127. [Google Scholar] [CrossRef]
- Vogel, N.; de Viguerie, L.; Jonas, U.; Weiss, C.K.; Landfester, K. Wafer-Scale Fabrication of Ordered Binary Colloidal Monolayers with Adjustable Stoichiometries. Adv. Funct. Mater. 2011, 21, 3064–3073. [Google Scholar] [CrossRef]
- Paik, T.; Diroll, B.T.; Kagan, C.R.; Murray, C.B. Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods. J. A. Chem. Soc. 2015, 137, 6662–6669. [Google Scholar] [CrossRef]
Main Methods | Structures | Feature Sizes (for “Ordered” Patterns) | Symmetry | Applications (Experimentally Validated) |
---|---|---|---|---|
Colloidal Self-assembly (SA)—basic method [43,44,45,46,47,48,50,51] | 2D and 3D, opal and inverse opal, photonic crystals | from hundreds of nm up to a few μm | hexagonal | Refractive index and RH sensors [51], label-free biosensors [46] |
Nanosphere lithography (NSL) [52,53,54,55,56,57,58,59,60] | Closed packed array of nanospheres, sparse array of nanospheres, triangular nanoislands, honeycomb holey metallic film | from hundreds of nm up to a few μm | hexagonal | Refractive index [56], biological sensors [58], SERS probes [52,53,54,55,57], hydrogen sensor [60] |
Breath figures (BF) [75] | Microporous metallic-dielectric films | μm scale | hexagonal | Refractive index [75] |
Direct self-assembly (DSA)—hybrid method [80,81,82,83] | Concentric rings, spiral and chiral nanostructures, cluster array of nanoparticles | from nm scale up to μm scale | linear, circular, hexagonal | SERS probe [83] |
Main Methods | Source | Information Provided | Main Fields of Application |
---|---|---|---|
2D Fourier transform (2DFT) [94,95,96,97,98] | 2D image acquired by optical microscopy, SEM, TEM, AFM | Symmetry, periodicity and orientation. Quantification of degree of order | Block-copolymer self-assembly, breath figures, colloidal assembly |
Pair correlation function (PCF) [99,100,101] | 2D image acquired by optical microscopy, SEM, TEM, AFM | Quantification of order by deviation from the expected periodicity | Block-copolymer self-assembly, colloidal assembly |
Voronoi tessellation [102,103] | 2D image acquired by optical microscopy, SEM, TEM, AFM | Identification and quantification of defects. Quantification of order by conformal entropy calculation | Block-copolymer self-assembly, breath figures, colloidal assembly |
Debye ring [104,105] | Real sample, possibility of real-time monitoring | Qualitative information about periodicity and crystallite size. Determination of the spacing. | Breath figures, colloidal assembly |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisco, M.; Galeotti, F. Nano- and Micropatterning on Optical Fibers by Bottom-Up Approach: The Importance of Being Ordered. Appl. Sci. 2021, 11, 3254. https://doi.org/10.3390/app11073254
Pisco M, Galeotti F. Nano- and Micropatterning on Optical Fibers by Bottom-Up Approach: The Importance of Being Ordered. Applied Sciences. 2021; 11(7):3254. https://doi.org/10.3390/app11073254
Chicago/Turabian StylePisco, Marco, and Francesco Galeotti. 2021. "Nano- and Micropatterning on Optical Fibers by Bottom-Up Approach: The Importance of Being Ordered" Applied Sciences 11, no. 7: 3254. https://doi.org/10.3390/app11073254
APA StylePisco, M., & Galeotti, F. (2021). Nano- and Micropatterning on Optical Fibers by Bottom-Up Approach: The Importance of Being Ordered. Applied Sciences, 11(7), 3254. https://doi.org/10.3390/app11073254