Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Holographic Interferometry Device Set-Up
2.3. Analysis of Holographic Interferograms
2.4. Calculation of the Heat Transfer Coefficient
2.5. Data Selection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kain, G.; Idam, F.; Federspiel, F.; Réh, R.; Krišťák, Ľ. Suitability of Wooden Shingles for Ventilated Roofs: An Evaluation of Ventilation Efficiency. Appl. Sci. 2020, 10, 6499. [Google Scholar] [CrossRef]
- International Thermowood Association. Thermo Wood Handbook; Unioninkatu: Helsinky, Finland, 2003; 66p, Available online: https://asiakas.kotisivukone.com/files/en.thermowood.palvelee.fi/downloads/tw_handbook_080813.pdf (accessed on 2 October 2020).
- Stamm, A.J.; Hansen, L.A. Minimizing Wood Shrinkage and Swelling Effect of Heating in Various Gases. Ind. Eng. Chem. 1937, 29, 831–833. [Google Scholar] [CrossRef]
- Seborg, R.; Millett, M.A.; Stamm, A.J. Heat-Stabilized Compressed Wood (Staypack): Technical Report; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1956; 11p, Available online: https://www.fpl.fs.fed.us/documnts/fplr/fplr1580.pdf (accessed on 15 October 2020).
- Kollmann, F.; Schneider, A. Über das Sorptionsverhalten wärmebehandelter Hölzer. Holz Als Roh- Und Werkst. 1963, 21, 77–85. [Google Scholar] [CrossRef]
- Burmester, A. Einfluß einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Als Roh- Und Werkst. 1973, 31, 237–243. [Google Scholar] [CrossRef]
- Giebeler, E. Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme Druck-Behandlung. Holz Als Roh- Und Werkst. 1983, 41, 87–94. [Google Scholar] [CrossRef]
- Reinprecht, L.; Vidholdová, Z. Mould resistance, water resistance and mechanical properties of OHT-thermowoods. In Sustainability through New Technologies for Enhanced Wood Durability, Proceedings of the Socio-Economic Perspectives of Treated Wood for the Common European Market Final Conference, Bordeaux, France, 29–30 September 2008; Ghent University: Gent, Belgium, 2008; pp. 159–165. ISBN 9789080656505. [Google Scholar]
- Boonstra, M. A Two-Stage Thermal Modification of Wood. Doctor’s Thesis, Université Henri Poincaré, Nancy, France, 2008. Available online: https://hal.univ-lorraine.fr/tel-01748345/document (accessed on 10 December 2020).
- Niemz, P.; Hoffman, T.; Rétfalvi, T. Investigation of chemical changes in the structure of thermally modified wood. Maderas. Cienc. Tecnol. 2010, 12, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Kol, S.H.; Keshin, S.A. The thermal conductivity of solid wood heat-treated using the thermowood method. In Proceedings of the Interational Conference on Material Science and Technology in Cappadoccia (IMSTEC’16), Nevsehir, Turkey, 6–8 April 2016; Kurt, B., Carboga, C., Öztürk, B.Z., Eds.; pp. 942–946. Available online: https://www.imstec.org/yazim_formatlari/IMSTEC’16%20PROCEEDINGS%202.revize.pdf (accessed on 7 January 2021).
- Kol, H.Ş.; Sefil, Y. The thermal conductivity of fir and beech wood heat treated at 170, 180, 190, 200, and 212 °C. Appl. Polym. Sci. 2011, 121, 2473–2480. [Google Scholar] [CrossRef]
- Korkut, D.; Hiziroglu, S.; Aytin, A. Effect of Heat Treatment on Surface Characteristics of Wild Cherry Wood. BioResources 2013, 8, 1582–1590. [Google Scholar] [CrossRef]
- Olarescu, C.M.; Campean, M.; Cosereanu, C. Thermal conductivity of solid wood panels made from heat-treated spruce and lime wood strips. PRO Ligno 2015, 11, 377–382. [Google Scholar]
- Pásztory, Z.; Horváth, N.; Börcsök, Z. Effect of heat treatment duration on the thermal conductivity of spruce and poplar wood. Eur. J. Wood Wood Prod. 2017, 75, 843–845. [Google Scholar] [CrossRef]
- Czajkowski, Ł.; Olek, W.; Weres, J. Effects of heat treatment on thermal properties of European beech wood. Eur. J. Wood Wood Prod. 2020, 78, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Barcík, Š.; Gašparík, M. Effect of Tool and Milling Parameters on the Size Distribution of Splinters of Planed Native and Thermally Modified Beech Wood. BioResources 2014, 9, 1346–1360. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/4990 (accessed on 1 October 2020). [CrossRef]
- Kol, H.Ş.; Sefil, I.; Aysal, S. Effect of heat treatment on the mechanical properties, and dimensional stability of fir wood. In Proceedings of the 27th International Conference Research for Furniture Industry, Ankara, Turkey, 17–18 September 2015; pp. 269–279. Available online: http://www.furnituredesign2015.org/assets/icrfi_tr_138.pdf (accessed on 7 January 2021).
- Kubs, J.; Gašparík, M.; Gaff, M.; Kaplan, L.; Čekovská, H.; Ježek, J.; Štícha, V. Influence of Thermal Treatment on Power Consumption during Plain Milling of Lodgepole Pine (Pinus contorta subsp. murrayana) BioResources 2017, 12, 407–418. [Google Scholar]
- Koleda, P.; Korčok, M.; Barcík, Š.; Iľaš, Š. Effect of temperature of heat treatment on energetic intensity of flat milling of picea abies. Manag. Syst. Prod. Eng. 2018, 26, 151–156. [Google Scholar] [CrossRef]
- Korčok, M.; Koleda, P.; Barcík, Š.; Vančo, M. Effect of technical and technological parameters on the surface quality when milling thermally modified European oak wood. Manag. Syst. Prod. Eng. 2018, 26, 151–156. [Google Scholar] [CrossRef]
- Cui, X.; Matsumura, J. Wood Surface Changes of Heat-Treated Cunninghamia Inaceolate Following Natural Weathering. Forests 2019, 10, 791. [Google Scholar] [CrossRef] [Green Version]
- Kačíková, D.; Kubovský, I.; Ulbriková, N.; Kačík, F. The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Appl. Sci. 2020, 10, 5021. [Google Scholar] [CrossRef]
- Kminiak, R.; Orlowski, K.A.; Dzurenda, L.; Chuchala, D.; Banski, A. Effect of Thermal Treatment of Birch Wood by Saturated Water Vapor on Granulometric Composition of Chips from Sawing and Milling Processes from the Point of View of Its Processing to Composites. Appl. Sci. 2020, 10, 7545. [Google Scholar] [CrossRef]
- Hrčková, M.; Koleda, P.; Koleda, P.; Barcík, Š.; Štefková, J. Color Change of Selected Wood Spieces Affected by Thermal Treatment and Sanding. BioResources 2018, 13, 8956–8975. Available online: https://bioresources.cnr.ncsu.edu/resources/color-change-of-selected-wood-species-affected-by-thermal-treatment-and-sanding/ (accessed on 10 December 2020). [CrossRef]
- Pivarčiová, E. Possibilities of Visualization and Analysis of Temperature Fields at Thermic Degradation of Wood. Dissertation Thesis, Technická univerzita vo Zvolene, Zvolen, Slovak, 2002. [Google Scholar]
- Pivarčiová, E.; Barcík, Š.; Štefková, J.; Škultéty, E. Investigation of Temperature Fields in the Air Environment above Wood Subjected to Thermal Degradation. Drv. Ind. 2019, 70, 319–327. Available online: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=334009 (accessed on 16 February 2021). [CrossRef]
- Pivarčiová, E.; Božek, P.; Domnina, K.; Škultéty, E.; Fedosov, S. Interferometric measurement of heat transfer above new generation foam concrete. Meas. Sci. Rev. 2019, 19, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Vizualizační a Optické Měřicí Metody. Available online: https://eu.fme.vutbr.cz/file/vomm/index.htm (accessed on 10 January 2021).
- Possibilities and Prospects of Holography. Available online: http://www.holografia.wz.cz/holography/index.php (accessed on 12 October 2020).
- Černecký, J.; Koniar, J.; Brodnianska, Z. Optimalizácia Výmenníkov Tepla s Využitím Experimentálnych Metód a Fyzikálneho Modelovania; Technická univerzita vo Zvolene: Zvolen, Slovak, 2012; ISBN 978-80-228-2325-8. [Google Scholar]
- Kossaczký, E.; Surový, J. Chemické Inžinierstvo I, 3rd ed.; Slovenské vydavateľstvo technickej a ekonomickel literatúry: Bratislava, Slovak, 1963; pp. 250–252. [Google Scholar]
- Brodnianska, Z. Experimental investigation of convective heat transfer between corrugated heated surfaces of rectangular channel. Heat Mass Transf. 2019, 55, 3151–3164. [Google Scholar] [CrossRef]
- Božek, P. Automated Detection Type Body and Shape Deformation for Robotic Welding Line. In Advances in Systems Science, Advances in Intelligent Systems and Computing; Swiątek, J., Grzech, A., Swiątek, P., Tomczak, J., Eds.; Springer: Cham, Switzerland, 2014; Volume 240, pp. 229–240. [Google Scholar]
- Božek, P.; Pivarčiová, E. Registration of Holographic Images Based on Integral Transformation. Comput. Inform. 2012, 31, 1369–1383. Available online: http://www.cai.sk/ojs/index.php/cai/article/view/772/0 (accessed on 7 January 2021).
Final Temperature (°C) | I. Phase (h) | II Phase (h) | III. Phase (h) | IV. Phase (h) | V. Phase (h) | VI. Phase (h) | Sum (h) |
---|---|---|---|---|---|---|---|
160 | 1.0 | 6.9 | 3.0 | 3.0 | 1.2 | 1.8 | 16.9 |
180 | 1.0 | 7.5 | 4.5 | 3.0 | 2.0 | 1.8 | 19.8 |
200 | 1.0 | 6.9 | 6.4 | 3.0 | 2.8 | 1.8 | 21.9 |
220 | 1.0 | 7.5 | 8.2 | 3.0 | 3.6 | 1.8 | 25.1 |
Final Temperature of Heat Treatment [°C] | |||||
---|---|---|---|---|---|
Heating Time [min] | Control | 160 | 180 | 200 | 220 |
13 | 21.58 (1.32) | 21.26 (0.92) | 20.09 (1.54) | 14.84 (0.79) | 11.14 (0.67) |
15 | 19.42 (0.64) | 19.07 (0.48) | 17.97 (0.1) | 13.51 (0.86) | 10.2 (0.64) |
17 | 17.25 (1.22) | 16.89 (0.92) | 15.85 (0.85) | 12.18 (0.83) | 9.26 (0.63) |
19 | 15.09 (1.28) | 14.7 (0.36) | 13.73 (1.13) | 10.85 (0.87) | 8.32 (0.81) |
21 | 12.93 (1.02) | 12.52 (0.54) | 11.61 (0.89) | 9.53 (0.55) | 7.38 (0.65) |
23 | 10.76 (0.66) | 10.34 (0.85) | 9.48 (0.84) | 8.2 (0.66) | 6.44 (0.4) |
25 | 8.6 (0.54) | 8.15 (0.78) | 7.36 (0.42) | 6.87 (0.55) | 5.5 (0.49) |
mean | 15.63 (0.94) | 15.25 (0.63) | 14.26 (0.89) | 11.19 (0.7) | 8.56 (0.52) |
Control | 160 °C | 180 °C | 200 °C | 220 °C | |
---|---|---|---|---|---|
r | −0.971 | −0.993 | −0.977 | −0.964 | −0.962 |
t-test | −23.374 | −47.441 | −26.624 | −28.477 | −19.377 |
p-level | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Equation | y = 35.641 − 1.082x | y = 35.453 − 1.092x | y = 33.874 − 1.06x | y = 23.471 − 0.664x | y = 17.25 − 0.47x |
Sample (Mean) | Data Normality p-level | Variance Analysis, p | Tuckey HSD Unequal Sample Size Significance Test | ||||
---|---|---|---|---|---|---|---|
Control | 160 °C | 180 °C | 200 °C | 220 °C | |||
Control (15.63) | 0.260 | 0.000 | 0.996 | 0.104 | 0.000 | 0.000 | |
160 °C (15.25) | 0.128 | 0.996 | 0.229 | 0.000 | 0.000 | ||
180 °C (14.21) | 0.040 | 0.104 | 0.229 | 0.045 | 0.000 | ||
200 °C (11.19) | 0.010 | 0.000 | 0.000 | 0.045 | 0.040 | ||
220 °C (0.52) | 0.237 | 0.000 | 0.000 | 0.000 | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hortobágyi, Á.; Pivarčiová, E.; Koleda, P. Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties. Appl. Sci. 2021, 11, 2516. https://doi.org/10.3390/app11062516
Hortobágyi Á, Pivarčiová E, Koleda P. Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties. Applied Sciences. 2021; 11(6):2516. https://doi.org/10.3390/app11062516
Chicago/Turabian StyleHortobágyi, Áron, Elena Pivarčiová, and Pavol Koleda. 2021. "Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties" Applied Sciences 11, no. 6: 2516. https://doi.org/10.3390/app11062516
APA StyleHortobágyi, Á., Pivarčiová, E., & Koleda, P. (2021). Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties. Applied Sciences, 11(6), 2516. https://doi.org/10.3390/app11062516