Salmonids as Natural Functional Food Rich in Omega-3 PUFA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Determination of Fat Content
2.3. Fatty Acid Analysis
2.4. Chromatography
2.5. Data Analysis
3. Results
3.1. Fat Content
3.2. Fatty Acids Content
3.3. Omega-3 VLC PUFA in Fillets
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siscovick, D.S.; Barringer, T.A.; Fretts, A.M.; Wu, J.H.Y.; Lichtenstein, A.H.; Costello, R.B.; Kris-Etherton, P.M.; Jacobson, T.A.; Engler, M.B.; Alger, H.M.; et al. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease. Circulation 2017, 135, 867–884. [Google Scholar] [CrossRef] [PubMed]
- Link, J.S.; Watson, R.A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 2019, 5, 0474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campoy, C.; Escolano-Margarit, V.; Anjos, T.; Szajewska, H.; Uauy, R. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br. J. Nutr. 2012, 107, S85–S106. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Perez-Martinez, P.; Lopez-Miranda, J.; Perez-Jimenez, F. Long chain omega-3 fatty acids and cardiovascular disease: A systematic review. Br. J. Nutr. 2012, 107, S201–S213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid Sci. Technol. 2014, 116, 1280–1300. [Google Scholar] [CrossRef]
- von Schacky, C. Omega-3 Fatty Acids in Pregnancy—The Case for a Target Omega-3 Index. Nutrients 2020, 12, 898. [Google Scholar] [CrossRef] [Green Version]
- Drouin, G.; Rioux, V.; Legrand, P. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie 2019, 159, 36–48. [Google Scholar] [CrossRef] [PubMed]
- von Schacky, C.; Harris, W.S. Cardiovascular benefits of omega-3 fatty acids. J. Cardiores. 2006, 73, 310–315. [Google Scholar]
- Kwon, Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Mol. Nutr. Food Res. 2020, 64, 1900824. [Google Scholar] [CrossRef] [PubMed]
- Skulas-Ray, A.C.; Flock, M.R.; Richter, C.K.; Harris, W.S.; West, S.G.; Kris-Etherton, P.M. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation. Nutrients 2015, 7, 6390–6404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffens, W.; Wirth, M. Freshwater fish—An important source of n-3 polyunsaturated fatty acids: A review. Fish. Aquat. Life 2005, 13, 5–16. [Google Scholar]
- Usydus, Z.; Szlinder-Richert, J. Functional Properties of Fish and Fish Products: A Review. Int. J. Food Propert. 2012, 15, 823–846. [Google Scholar] [CrossRef]
- Roy, J.; Mercier, Y.; Tonnet, L.; Burel, C.; Lanuque, A.; Surget, A.; Larroquet, L.; Corraze, G.; Terrier, F.; Panserat, S.; et al. Rainbow trout prefer diets rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Physiol. Behav. 2020, 213, 112692. [Google Scholar] [CrossRef] [PubMed]
- Kolanowski, W.; Stolyhwo, A.; Grabowski, M. Fatty Acid Composition of Selected Fresh Water Gammarids (Amphipoda, Crustacea): A Potentially Innovative Source of Omega-3 LC PUFA. J. Am. Oil Chem. Soc. 2007, 84, 827–833. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Tolomeev, A.P.; Dgebuadze, Y.Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish Biol. Fisher. 2018, 28, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Ribeiroa, A.R.; Altintzoglouc, T.; Mendesa, J.; Nunese, M.L.; Dinisa, M.T.; Diasf, J. Farmed fish as a functional food: Perception of fish fortification and the influence of origin—Insights from Portugal. Aquaculture 2019, 501, 22–31. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Official Method Ce 1b-89 Fatty acid Composition by GLC-Marine Oils (Modified); AOCS: Champaign, IL, USA, 1997. [Google Scholar]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.S.; Sonesson, A.K.; Krasnov, A.; Moghadam, H.; Hillestad, B.; Meuwissen, T.H.E.; Ruyter, B. Individual differences in EPA and DHA content of Atlantic salmon are associated with gene expression of key metabolic processes. Sci. Rep. 2019, 9, 3889. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012, 10, 2815. [Google Scholar]
- EFSA Opinion of the scientific panel on contaminants in the food chain on a request from the European Parliament related to the safety assessment of wild and farmed fish. EFSA J. 2005, 236, 1–118.
- Santigosa, E.; Constant, D.; Prudence, D.; Wahli, T.; Verlhac-Trichet, V. A novel marine algal oil containing both EPA and DHA is an effective source of omega-3 fatty acids for rainbow trout (Oncorhynchus mykiss). J. World Aquacult. Soc. 2020, 51, 649–665. [Google Scholar] [CrossRef]
- Brown, T.D.; Francis, D.S.; Turchini, G.M. Can dietary lipid source circadian alternation improve omega-3 deposition in rainbow trout? Aquaculture 2010, 300, 148–155. [Google Scholar] [CrossRef]
- Lundebye, A.K.; Lock, E.J.; Rasinger, J.D.; Nøstbakken, O.J.; Hannisdal, R.; Karlsbakk, E.; Wennevik, V.; Madhun, A.S.; Madsen, L.; Graff, I.E.; et al. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environ. Res. 2017, 155, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Weichselbaum, E.; Coe, S.; Buttriss, J.; Stanner, S. Fish in the diet: A review. Nutr. Bull. 2013, 38, 128–177. [Google Scholar] [CrossRef]
- Nichols, P.D.; Glencross, B.; Petrie, J.R.; Singh, S.P. Readily Available Sources of Long-Chain Omega-3 Oils: Is Farmed Australian Seafood a Better Source of the Good Oil than Wild-Caught Seafood? Nutrients 2014, 6, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Sissener, N.H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exper. Biol. 2018, 221, 161521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horna, S.S.; Meuwissenb, T.H.E.; Moghadamc, H.; Hillestadc, B.; Sonessona, A.K. Accuracy of selection for omega-3 fatty acid content in Atlantic salmon fillets. Aquaculture 2020, 519, 734767. [Google Scholar] [CrossRef]
- Foran, J.A.; Good, D.H.; Carpenter, D.O.; Hamilton, M.C.; Knuth, B.A.; Schwager, S.J. Quantitative analysis of the benefits and risks of consuming farmed and wild salmon. J. Nutr. 2005, 135, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
Sea Fish | Freshwater Fish | |||||
---|---|---|---|---|---|---|
Fat Content | Salmon Farmed (Norwegian) | Salmon Wild (Baltic) | Brown Trout | Rainbow Trout | ||
Farmed | Wild | Farmed | Wild | |||
Mean | 7.7 | 3.8 | 8.0 | 4.1 | 5.3 | 3.3 |
±SD | 0.2 | 0.3 | 0.2 | 0.1 | 0.2 | 0.1 |
Sea Fish | Freshwater Fish | |||||
---|---|---|---|---|---|---|
Fatty Acids | Salmon Farmed (Norwegian) | Salmon Wild (Baltic) | Brown Trout | Rainbow Trout | ||
Farmed | Wild | Farmed | Wild | |||
C12:0 | - | - | 0.1 ± 0.0 | 0.9 ± 0.1 | 0.2 ± 0.0 | 0.2± 0.0 |
C14:0 | 4.7 ± 0.3 | 4.1 ± 0.4 | 3.9 ± 0.2 | 4.1 ± 0.5 | 3.9 ± 0.2 | 3.6 ± 0.4 |
C16:0 | 14.2 ± 0.6 | 12.3 ± 0.8 | 15.0 ± 0.6 | 21.7 ± 1.1 | 15.7 ± 0.7 | 18.5 ± 0.9 |
C18:0 | 2.8 ± 0.2 | 2.6 ± 0.3 | 2.5 ± 0.2 | 4.2 ± 0.5 | 1.4 ± 0.1 | 3.5 ± 0.4 |
Sum saturates | 21.7 ± 0.5 | 19.0 ± 0.7 | 21.5 ± 0.5 | 30.9 ± 0.9 | 21.2 ± 0.6 | 25.8 ± 0.8 |
C14:1 | - | - | - | 0.3 ± 0.0 | - | 0.2 ± 0.0 |
C15:1 | 0.4 ± 0.0 | - | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 |
C16:1 | 5.9 ± 0.2 | 5.7 ± 0.3 | 5.8 ± 0.2 | 8.0 ± 0.5 | 4.1 ± 0.2 | 6.6 ± 0.4 |
C18:1 | 19.9 ± 0.9 | 18.3 ± 1.1 | 23.4 ± 0.9 | 20.4 ± 1.2 | 26.2 ± 1.0 | 21.6 ± 1.3 |
C20:1 | 6.4 ± 0.4 | 8.4 ± 0.6 | 2.7 ± 0.3 | 2.2 ± 0.4 | 4.5 ± 0.3 | 2.3 ± 0.3 |
C22:1 | 7.6 ± 0.3 | 8.6 ± 0.5 | 3.2 ± 0.2 | 2.7 ± 0.2 | 5.6 ± 0.4 | 2.8 ± 0.4 |
C24:1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.3 ± 0.0 | - | - | 0.2 ± 0.0 |
Sum monoenes | 40.7 ± 0.8 | 41.5 ± 0.9 | 35.7 ± 0.7 | 34.0 ± 0.8 | 40.8 ± 0.8 | 34.1 ± 0.9 |
C18:2n-6 LA | 8.1 ± 0.4 | 4.9 ± 0.3 | 17.0 ± 0.6 | 8.2 ± 0.5 | 7.9 ± 0.4 | 7.7 ± 0.5 |
C18:3n-3 ALA | 1.6 ± 0.1 | 1.1 ± 0.1 | 2.9 ± 0.2 | 2.9 ± 0.2 | 2.6 ± 0.2 | 2.6 ± 0.2 |
C18:4n-3 | 1.4 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.1 ± 0.1 | 1.4 ± 0.1 | 1.1 ± 0.1 |
C20:2n-6 | 0.6 ± 0.0 | - | 0.6 ± 0.0 | - | 0.4 ± 0.0 | - |
C20:3n-6 | 0.7 ± 0.0 | 0.8 ± 0.1 | 0.6 ± 0.0 | 0.7 ± 0.1 | 0.5 ± 0.0 | 0.8 ± 0.1 |
C20:4n-6 AA | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.4 ± 0.0 | - | 0.6 ± 0.1 | - |
C20:5n-3 EPA | 7.0 ± 0.2 | 8.6 ± 0.3 | 5.7 ± 0.1 | 6.4 ± 0.2 | 5.1 ± 0.1 | 7.4 ± 0.2 |
C22:5n-3 DPA | 4.1 ± 0.2 | 5.7 ± 0.3 | 2.0 ± 0.1 | 1.9 ± 0.1 | 1.7 ± 0.1 | 1.9 ± 0.1 |
C22:6n-3 DHA | 13.3 ± 0.5 | 16.9 ± 0.7 | 12.1 ± 0.4 | 13.1 ± 0.6 | 15.8 ± 0.5 | 17.6 ± 0.6 |
Sum PUFA | 37.5 ± 0.4 | 40.3 ± 0.6 | 42.7 ± 0.5 | 34.3 ± 0.5 | 36.0 ± 0.4 | 39.1 ± 0.5 |
Sum omega-3 | 27.4 ± 0.4 | 33.8 ± 0.6 | 24.1 ± 0.4 | 25.4 ± 0.5 | 26.6 ± 0.4 | 30.6 ± 0.5 |
Omega-3 VLC PUFA | 24.4 ± 0.4 | 31.2 ± 0.6 | 19.8 ± 0.4 | 21.4 ± 0.5 | 22.6 ± 0.5 | 26.9 ± 0.5 |
Sum omega-6 | 10.1 ± 0.3 | 6.5 ± 0.3 | 18.6 ± 0.5 | 8.9 ± 0.5 | 9.4 ± 0.4 | 8.5 ± 0.5 |
Omega-6/omega-3 ratio | 0.37 | 0.19 | 0.77 | 0.35 | 0.35 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanowski, W. Salmonids as Natural Functional Food Rich in Omega-3 PUFA. Appl. Sci. 2021, 11, 2409. https://doi.org/10.3390/app11052409
Kolanowski W. Salmonids as Natural Functional Food Rich in Omega-3 PUFA. Applied Sciences. 2021; 11(5):2409. https://doi.org/10.3390/app11052409
Chicago/Turabian StyleKolanowski, Wojciech. 2021. "Salmonids as Natural Functional Food Rich in Omega-3 PUFA" Applied Sciences 11, no. 5: 2409. https://doi.org/10.3390/app11052409
APA StyleKolanowski, W. (2021). Salmonids as Natural Functional Food Rich in Omega-3 PUFA. Applied Sciences, 11(5), 2409. https://doi.org/10.3390/app11052409