Design and Validation of an Adjustable Large-Scale Solar Simulator
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Radiation Nonuniformity
3.2. Radiation Instability over Time
3.3. I–V Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Moss, R.W.; Shire, G.S.F.; Eames, P.C.; Henshall, P.; Hyde, T.; Arya, F. Design and commissioning of a virtual image solar simulator for testing thermal collectors. Sol. Energy 2018, 159, 234–242. [Google Scholar]
- Kongtragool, B.; Wongwises, S. A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source. Sol. Energy 2008, 82, 493–500. [Google Scholar]
- Decker, A.J.; Pollack, J.L. A 400 kW Argon Arc Lamp for Solar Simulation; Space Simulation Conference: New York, NY, USA, 1972. [Google Scholar]
- Codd, D.S.; Carlson, A.; Rees, J.; Slocum, A.H. A low cost high flux solar simulator. Sol. Energy 2010, 84, 2202–2212. [Google Scholar]
- Meng, Q.; Wang, Y.; Zhang, L. Irradiance characteristics and optimization design of a large-scale solar simulator. Sol. Energy 2011, 85, 1758–1767. [Google Scholar]
- Dibowski, G.; Eber, K. Hazards caused by UV rays of xenon light based high performance solar simulators. Saf. Health Work 2017, 8, 237–245. [Google Scholar]
- Song, J.; Wang, J.; Niu, Y.; Wang, W.; Tong, K.; Yu, H.; Yang, Y. Flexible highflux solar simulator based on opticalfiber bundles. Sol. Energy 2019, 193, 576–583. [Google Scholar]
- Kolberg, D.; Schubert, F.; Lontke, N.; Zwigart, A.; Spinner, D.M. Development of tunable close match LED solar simulator with extended spectral range to UV and IR. Energy Procedia 2011, 8, 100–105. [Google Scholar]
- Tavakoli, M.; Jahantigh, F.; Zarookian, H. Adjustable high-power-LED solar simulator with extended spectrum in UV region. Sol. Energy 2020. [Google Scholar] [CrossRef]
- Watjanatepin, N. Design construct and evaluation of six-spectral LEDs-based solar simulator based on IEC 60904–9. Int. J. Eng. Technol. 2017, 9, 923–931. [Google Scholar]
- Georgescu, A.; Damache, G.; Gîrţu, M.A. Class A small area solar simulator for dye-sensitized solar cell testing. J. Optoelectron. Adv. Mater. 2008, 10, 3003–3007. [Google Scholar]
- Leary, G.; Switzer, G.; Kuntz, G.; Kaiser, T. Comparison of xenon lamp-based and led-based solar simulators. In Proceedings of the IEEE 43th Photovoltaic Specialist Conference, Portland, OR, USA, 5–10 June 2017; pp. 1–6. [Google Scholar]
- Esen, V.; Saglam, S.; Oral, B.; Esen, O.C. Spectrum measurement of variable irradiance controlled LED-based solar simulator. Int. J. Renew. Energy Res. 2020, 10, 109–116. [Google Scholar]
- Sabahi, H.; Tofigh, A.A.; Kakhki, I.M.; Bungypoor-Fard, H. Design, construction and performance test of an efficient large-scale solar simulator for investigation of solar thermal collectors. Sustain. Energy Technol. Assess. 2016, 15, 35–41. [Google Scholar]
- ASTM Standard G173-03. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; West Conshohocken, PA, USA, 2012. [Google Scholar]
- ISO 9806. Solar Energy. Solar Thermal Collectors. Test Methods; British Standards Institute: London, UK, 2013. [Google Scholar]
- Holmberg, J.; Flynn, C.; Portinari, L. The colours of the Sun. Mon. Not. R. Astron. Soc. 2006, 367, 449–453. [Google Scholar]
- ISO 19467. Thermal Performance of Windows and Doors—Determination of Solar Heat Gain Coefficient Using Solar Simulator; British Standards Institute: London, UK, 2016. [Google Scholar]
- EN 12975-1. Thermal Solar Systems and Components—Solar Collectors—Part 1: General Requirements; British Standards Institute: London, UK, 2006. [Google Scholar]
- EN 12976-1. Thermal Solar Systems and Components—Factory Made Systems—Part 1: General Requirements; British Standards Institute: London, UK, 2017. [Google Scholar]
- IEC 60904-9. Photovoltaic Devices—Part 9: Solar Simulator Performance Requirements. Geneva: IEC; International Electrotechnical Commission, 2007. [Google Scholar]
- Philips. Product Datasheet: MASTER Colour CDM-T MW eco/360 W842 E40. Available online: http://www.lighting.philips.it/api/assets/v1/file/content/fp928070319230-pss-it_it/928070319230_EU.it_IT.PROF.FP.pdf (accessed on 29 July 2020).
- Tawfik, M.; Tonnellier, X.; Sansom, C. Light source selection for a solar simulator for thermal application: A review. Renew. Sustain. Energy Rev. 2018, 90, 802–813. [Google Scholar]
- Duran, E.; Piliougine, M.; Sidrach-de-Cardona, M.; Galan, J.; Andujar, J.M. Different methods to obtain the I–V curve of PV modules: A review. In Proceedings of the 2008 33th IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–6. [Google Scholar]
- Boutana, N.; Mellit, A.; Haddad, S.; Rabhi, A.; Pavan, A.M. An explicit IV model for photovoltaic module technologies. Energy Convers. Manag. 2017, 138, 400–412. [Google Scholar]
- Nassar-eddine, I.; Obbadi, A.; Errami, Y.; Agunaou, M. Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study. Energy Convers Manag. 2016, 119, 37–48. [Google Scholar]
- Green, M.A. Solar cell fill factors: General graph and empirical expressions. Solid State Electron 1981, 24, 788–789. [Google Scholar]
- Pavan, A.; Mellit, A.; de Pieri, D.; Lughi, V. A study on the mismatch effect due to the use of different photovoltaic modules classes in large-scale solar parks. Prog. Photovolt. Res. Appl. 2014, 22, 332–345. [Google Scholar]
Characteristics | Class A | Class B | Class C |
---|---|---|---|
Nonuniformity | ≤2% | ≤5% | ≤10% |
Temporal instability | ≤2% | ≤5% | ≤10% |
|
E | F | G | H | |
---|---|---|---|---|
17 | 0.0% | 1.5% | 0.3% | 0.5% |
16 | 1.5% | 1.6% | 2.0% | 1.0% |
15 | 1.5% | 0.9% | 1.2% | 0.0% |
14 | 0.9% | 0.7% | 0.7% | 0.0% |
13 | 0.1% | 0.0% | 0.6% | 0.1% |
12 | 0.0% | 0.1% | 0.7% | 0.4% |
11 | 0.1% | 0.0% | 1.2% | 0.6% |
10 | 0.3% | 0.1% | 1.8% | 0.7% |
Class A | Class B | Class C | |
---|---|---|---|
Definition area | From E17 to H10 | From B20 to I4 | From B20 TO J1 |
Dimension area [cm] | 80 × 40 | 170 × 80 | 200 × 90 |
Max relative [W/m2] | 1031 | 1038 | 1038 |
Min relative [W/m2] | 990 | 925 | 919 |
Average [W/m2] | 1017 | 995 | 993 |
Cell Number | Max Irradiance [W] | Min Irradiance [W] | Error [%] | Class |
---|---|---|---|---|
H10 | 1022.5 | 1001.3 | 1.04% | A |
H17 | 1025.5 | 1001.3 | 1.19% | A |
B6 | 1034.5 | 1113.4 | 1.03% | A |
B13 | 1019.4 | 998.8 | 1.04% | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colarossi, D.; Tagliolini, E.; Principi, P.; Fioretti, R. Design and Validation of an Adjustable Large-Scale Solar Simulator. Appl. Sci. 2021, 11, 1964. https://doi.org/10.3390/app11041964
Colarossi D, Tagliolini E, Principi P, Fioretti R. Design and Validation of an Adjustable Large-Scale Solar Simulator. Applied Sciences. 2021; 11(4):1964. https://doi.org/10.3390/app11041964
Chicago/Turabian StyleColarossi, Daniele, Eleonora Tagliolini, Paolo Principi, and Roberto Fioretti. 2021. "Design and Validation of an Adjustable Large-Scale Solar Simulator" Applied Sciences 11, no. 4: 1964. https://doi.org/10.3390/app11041964
APA StyleColarossi, D., Tagliolini, E., Principi, P., & Fioretti, R. (2021). Design and Validation of an Adjustable Large-Scale Solar Simulator. Applied Sciences, 11(4), 1964. https://doi.org/10.3390/app11041964