Thermal Conductivity Calculations for Nanoparticles Embedded in a Base Fluid
Abstract
:1. Introduction
2. Theories
3. Results
4. Discussion
4.1. Nanoparticles’Thermal Conductivity and Specularity Parameter,
4.2. Liquid Nanolayer Thickness, h
5. A Brief Synopsis for Future Work
6. Conclusions
- Prasher’s model is a successful method for numerical calculations of the thermal conductivity ofAl2O3, CuO, ZnO, and SiO2 nanoparticles suspended in water and EG base fluids.
- The nanoparticles’ thermal conductivity is one of the main parameters that govern the thermal conductivity of NFs.
- The adjustable parameters, such as the specularity parameter, and the liquid nanolayer thickness, h, allowed for a correlation between the theoretical calculations and experimental data of NFs, indicating the significance of their effects and values.
- This trend of theoretical calculation is promising as a simple and easy method for finding the unknown thermal conductivity values of nanoparticles.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duangthongsuk, W.; Wongwises, S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transf. 2010, 53, 334–344. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 1995, 231, 99–106. [Google Scholar]
- Garg, J.; Poudel, B.; Chiesa, M.; Gordon, J.B.; Ma, J. Enhansed thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 2008, 103, 074301–074306. [Google Scholar] [CrossRef]
- Keblinski, P.; Prasher, R.; Eapen, J. Thermal conductance of nanofluids: Is the controversy over? J. Nanopart Res. 2008, 10, 1089–1097. [Google Scholar] [CrossRef]
- Wen, D.; Lin, G.; Vafaei, S.; Zhang, K. Review of nanofluids for heat transfer applications. Particuology 2009, 7, 141–150. [Google Scholar] [CrossRef]
- Keblinski, P. Thermal conductivity of nanofluids. Appl. Phys. 2009, 118, 213–221. [Google Scholar]
- Putra, N.; Roetzel, W.; Das, S.K. Natural convection of nano-fluids. Heat Mass Transf. 2003, 39, 775–784. [Google Scholar] [CrossRef]
- Ghodsinezhad, H.; Sharifpur, M.J.; Meyer, P. Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids. Inter. Comm. Heat Mass Transfer. 2016, 76, 316–324. [Google Scholar] [CrossRef]
- Nkurikiyimfura, I.; Wang, Y.; Pan, Z. Heat transfer enhancement by magnetic nanofluids—A review. Renew. Sustain. Energy Rev. 2013, 21, 548–561. [Google Scholar] [CrossRef]
- Tawfik, M.M. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renew. Sustain. Energy Rev. 2017, 75, 1239–1253. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Singh, V.; Kumar, R.; Said, Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. 2017, 74, 638–670. [Google Scholar] [CrossRef]
- Nadooshan, A.A.; Eshgarf, H.; Afrand, M. Evaluating the effects of different parameters on rheological behavior of nanofluids: A comprehensive review. Powder Technol. 2018, 338, 342–353. [Google Scholar] [CrossRef]
- Ali, H.M.; Babar, H.; Shah, T.R.; Sajid, M.U.; Qasim, M.A.; Javed, S. Preparation techniques of TiO2 nanofluids and challenges: A review. Appl. Sci. 2018, 8, 587–617. [Google Scholar]
- Sajid, M.U.; Ali, H.M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew. Sustain. Energy Rev. 2019, 103, 556–592. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594. [Google Scholar] [CrossRef]
- Babar, H.; Sajid, M.; Ali, H. Viscosity of hybrid nanofluids: A critical review. Science 2019, 23, 1713–1754. [Google Scholar] [CrossRef] [Green Version]
- Izadi, S.; Armaghani, T.; Ghasemiasl, R.; Chamkha, A.J.; Molana, M. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2019, 343, 880–907. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys. Lett. A 2020, 384, 126500. [Google Scholar] [CrossRef]
- Maleki, A.; Haghighi, A.; Mahariq, I. Machine learning-based approaches for modeling thermophysical properties of hybrid nanofluids: A comprehensive review. J. Mol. Liq. 2021, 322, 114843. [Google Scholar] [CrossRef]
- Asadi, A.; Aberoumand, S.; Moradikazerouni, A.; Pourfattah, F.; Żyła, G.; Estellé, P.; Mahian, O.; Wongwises, S.; Nguyen, H.M.; Arabkoohsar, A. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state –of-the-art review. Powder Technol. 2019, 352, 209–226. [Google Scholar] [CrossRef]
- Xue, Q.Z. Model for Effective Thermal Conductivity of Nanofluids. Phys. Lett. A 2003, 307, 313–317. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles. Int. J. Heat Mass Transfer. 2003, 46, 2665–2672. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids. Appl. Phys. Lett. 2004, 84, 4316–4318. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. A New Thermal Conductivity Model for Nanofluids. J. Nanopart. Res. 2004, 6, 577–588. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Saha, S.K.; Yadav, A.; Phelan, P.E.; Prasher, R.S. Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids. J. Appl. Phys. 2004, 95, 6492–6494. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Hu, W. Aggregation structure and thermal conductivity of nanofluids. J. AIChE 2003, 49, 1038–1043. [Google Scholar] [CrossRef]
- Kumar, D.H.; Patel, H.E.; Ragev Kumar, V.R.; Sundararajan, T.; Pradeep, T.; Das, S.K. Model for heat conduction in nanofluids. Phys. Rev. Lett. 2004, 93, 144301–144304. [Google Scholar] [CrossRef] [Green Version]
- Prasher, R.; Bhattacharya, P.; Phelan, P.E. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 2005, 94, 025901–025904. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluids). Nano Lett. 2006, 6, 1529. [Google Scholar] [CrossRef]
- Patel, H.E.; Sundararajan, T.; Das, S.K. A cell model approach for thermal conductivity of nanofluids. J. Nanopart. Res. 2008, 10, 87–97. [Google Scholar] [CrossRef]
- Kihm, K.D.; Chon, C.H.; Lee, J.S.; Choi, S.U.S. A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids. Nanoscale Res. Lett. 2011, 6, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, N.R.; Philip, J.; Raj, B. Effect of clustering on the thermal conductivity of Nanofluids. Mater. Chem. Phys. 2008, 109, 50–55. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Effect of various parameters on nanofluid thermal conductivity. J. Heat Transf. 2007, 129, 617–623. [Google Scholar] [CrossRef]
- Evans, W.; Fish, J.; Keblinski, P. Role ofBrownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 2006, 88, 093116–093118. [Google Scholar] [CrossRef] [Green Version]
- Chon, C.H.; Kihm, K.D.; Lee, S.P.; Choi, S.U.S. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 2005, 87, 153107–153109. [Google Scholar] [CrossRef]
- Mintsa, H.A.; Roy, G.; Nguyen, C.T.; Doucet, D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 2009, 48, 363–371. [Google Scholar] [CrossRef]
- Hong, J.; Kim, S.H.; Kim, D. Effect of laser irradiation on thermal conductivity of ZnO nanofluids. J. Phys. Conf. Ser. 2007, 59, 301–304. [Google Scholar] [CrossRef]
- He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H. Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 2007, 50, 2272–2281. [Google Scholar] [CrossRef]
- Sundar, L.S.; Sharma, K.V. Thermal conductivity enhancement of nanoparticles in distilled water. Int. J. Nanoparticles 2008, 1, 66–77. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, S.R.; Kim, D. Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. ASME J. Heat Transf. 2007, 129, 298–307. [Google Scholar] [CrossRef]
- Chen, G.; Yu, W.; Singh, D.; Cookson, D.; Routbort, J. Application of SAXS to the study of particle size dependent thermal conductivity in silica nanofluids. J. Nanopart. Res. 2008, 10, 1109–1114. [Google Scholar] [CrossRef]
- Beck, M.P.; Yuan, Y.; Warrier, P.; Teja, A.S. The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanopart. Res. 2009, 11, 1129–1136. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids. J. Appl. Phys. 2011, 109, 014914–014918. [Google Scholar] [CrossRef] [Green Version]
- Timofeeva, E.V.; Smith, D.S.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based a-SiC nanofluids. Nanotechnology 2010, 21, 215703–215713. [Google Scholar] [CrossRef] [PubMed]
- Darvanjooghi, M.H.K.; Esfahany, M.N. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid. Int. Com. Heat Mass Transf. 2016, 77, 148–154. [Google Scholar] [CrossRef]
- Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U.S. Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. Heat Transf. Eng. 2008, 29, 432–460. [Google Scholar] [CrossRef]
- Pryazhnikov, M.I.; Minakov, A.V.; Rudyak, V.Y.; Guzei, D.V. Thermal conductivity measurements of nanofluids. Int. J. Heat Mass Transf. 2017, 104, 1275–1282. [Google Scholar] [CrossRef] [Green Version]
- Ceotto, D.; Rudyak, V.Y. Phenomenological Formula for Thermal Conductivity Coefficient of Water Based Nanofluids. Colloid J. 2016, 78, 509–514. [Google Scholar] [CrossRef]
- Zhua, H.; Zhang, C.; Liu, S.; Tang, Y.; Yina, Y. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl. Phys. Lett. 2006, 89, 023123–023125. [Google Scholar] [CrossRef]
- Aybar, H.Ş.; Sharifpur, M.; Azizian, M.R.; Mehrabi, M.; Meyer, J.P. A Review of Thermal Conductivity Models for Nanofluids. Heat Transf. Eng. 2015, 36, 1085–1171. [Google Scholar] [CrossRef] [Green Version]
- Calvin, H.L.; Peterson, G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 2006, 99, 084314–084322. [Google Scholar]
- Yu, W.; Xie, H.; Chen, L.; Li, Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim. Acta 2009, 491, 92–96. [Google Scholar]
- Ho, C.J.; Liu, W.K.; Chang, Y.S.; Lin, C.C. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. Int. J. Therm. Sci. 2010, 49, 1345–1353. [Google Scholar] [CrossRef]
- Prasher, R. Thermal conductivity of composite of aligned nanoscale and microscale wires and pores. J. Appl. Phys. 2006, 100, 034307–034317. [Google Scholar] [CrossRef]
- Liang, L.H.; Li, B. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B 2006, 73, 153303–153306. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanoparticle Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
- Gao, T.; Jelle, B.P. Thermal conductivity of TiO2 nanotubes. J. Phys. Chem. C 2013, 117, 1401. [Google Scholar] [CrossRef]
- Teja, A.S.; Beck, M.P.; Yuan, Y.; Warrier, P. The limiting behavior of the thermal conductivity of nanoparticles and nanofluids. J. Appl. Phys. 2010, 107, 114319–114322. [Google Scholar] [CrossRef]
- Gao, T.; Jelle, B.P. Thermal conductivity of amorphous silica nanoparticles. J. Nanoparticle Res. 2019, 21, 108–113. [Google Scholar] [CrossRef]
- Yu, C.-J.; Richter, A.G.; Datta, A.; Durbin, M.K.; Dutta, P. Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys. Rev. Lett. 1999, 82, 2326–2330. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.C. Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. Mat. Res. Soc. Symp. Proc. 1997, 457, 01997–019105. [Google Scholar] [CrossRef] [Green Version]
- Kole, M.; Dey, T.K. Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp. Therm. Fluid Sci. 2011, 35, 1490–1495. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, B.; Xu, P.; Zou, M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J. Phys. D Appl. Phys. 2007, 40, 3164–3171. [Google Scholar] [CrossRef]
- Huang, Z.X.; Tang, Z.; Yu, J.; Bai, S. Thermal conductivity of nanoscale polycrystalline ZnO thin films. Physica B 2011, 406, 818–823. [Google Scholar] [CrossRef]
- Olorunyolemi, T.; Birnboim, A.; Carmel, Y.; Wilson, O.; Lloyd, I. Thermal Conductivity of Zinc Oxide: From Green to Sintered State. J. Am. Ceram Soc. 2002, 85, 1249–1253. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; He, Y.; Tan, C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 2007, 444, 333–337. [Google Scholar] [CrossRef]
- Geiger, G.H.; Poirier, D.R. Transport Phenomena in Metallurgy, 19; Addison-Wesley: Boston, MA, USA, 1973; p. 190. [Google Scholar]
- Kisi, E.; Ekombe, M.M. Parameters for the wurtizite structure of ZnS and ZnO using powder neuron diffraction. Actacrystallographica Sect. C 1989, 45, 1867–1870. [Google Scholar] [CrossRef]
- Kang, H.U.; Kim, S.H.; Oh, J.M. Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume. Exp. Heat Transfer. 2006, 19, 181–191. [Google Scholar] [CrossRef]
- Chen, G. Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles. J. Heat Transf. 1996, 118, 539–545. [Google Scholar] [CrossRef]
- Senthilraja, S.; Vijayakumar, K.; Gangadevi, R. A comparative study on thermal conductivity of Al2O3/water, CuO/water and Al2O3–CuO/water nanofluids. Dig. J. Nanomat. Biol. 2015, 10, 1449–1458. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1439855119. [Google Scholar]
- Seetawan, U.; Jugsujinda, S.; Seetawan, T.; Ratchasin, A.; Euvananont, C.; Junin, C.; Thanachayanont, C.; Chainaronk, P. Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Mat. Sci. Appl. 2011, 2, 1302–1306. [Google Scholar] [CrossRef] [Green Version]
- Richet, P.; Bottinga, Y.; Denielou, L.; Petitet, J.P.; Tequi, C. Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Acta 1982, 46, 2639–2658. [Google Scholar] [CrossRef]
- Brown, I.D.; Shannon, R.D. Empirical bond-strength-bond length curves for oxides. ActaCrystallogrophy A 1973, 29, 266–283. [Google Scholar] [CrossRef]
- Vinodkumar, T.; Reddy, B.M. Catalytic Combustion over Cheaper Metal Oxides; Nova Science Publishers: Hauppauge, NY, USA, 2011; ISBN 978-1-61324-279-7. [Google Scholar]
- Zumdahl, S.S. Chemical Principles, 6th ed.; Houghton Mifflin Company: Boston, MA, USA, 2009; ISBN 978-0-618-94690-7. [Google Scholar]
- Gutierrez, G.; Johansson, B. Molecular dynamics study of structural properties of amorphous Al2O3. Phys. Rev. B 2002, 65, 104202–104210. [Google Scholar] [CrossRef]
- Ahmed, A.; Elvati, P.; Violi, A. Size-and phase-dependent structure of copper (II) oxidenanoparticles. RSC Adv. 2015, 5, 35033–35054. [Google Scholar] [CrossRef]
- Chase, M.W. Themochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data Monogr. 1998, 9, 1–195. [Google Scholar]
- Polak, M.L.; Gilles, M.K.; Ho, J.; Lineberger, W.C. Photoelectron spectroscopy of copper oxide (CuO-). J. Phys. Chem. 1991, 95, 3460–3463. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables, 4th ed.; American Institute of Physics: College Park, MD, USA, 1998. [Google Scholar]
- Xie, H.; Yu, W.; Chen, W. MgO nanofluids: Higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J. Exp. Nanosci. 2010, 5, 463–472. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Belkin, A.A. Simulation of transport coefficients, Nanosystems. Phys. Chem. Math. 2010, 1, 156–177. [Google Scholar]
- Rudyak, V.Y.; Belkin, A.A.; Tomilina, E.A. On the thermal conductivity of nanofluids. Tech. Phys. Lett. 2010, 36, 49–54. [Google Scholar] [CrossRef]
- Abdullah, B.J.; Omar, M.S.; Jiang, Q. Size dependence of the bulk modulus of Si nanocrystals. Sådhanå 2018, 43, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Siegel, J.; Lyutakov, O.; Rybka, V.; Kolska, Z.; Švorčík, V. Properties of gold nanostructures sputtered on glass. Nanoscale Res. Lett. 2011, 6, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Opalinska, A.; Malka, I.; Dzwolak, W.; Chudoba, T.; Presz, A.; Lojkowski, W. Size-dependent density of zirconia nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. J. Appl. Phys. Lett. 2003, 83, 2934–2936. [Google Scholar] [CrossRef]
- Fang, K.C.; Weng, C.I.; Ju, S.P. An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology 2006, 17, 3909–3914. [Google Scholar] [CrossRef]
- Mamand, S.M.; Omar, M.S.; Muhammad, A.J. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires. Mater. Res. Bull. 2012, 47, 1264–1272. [Google Scholar] [CrossRef]
- Mamand, S.M.; Omar, M.S. Effect of Parameters on Lattice Thermal Conductivity in Germanium Nanowires. Adv. Mater. Res. 2014, 832, 33–38. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, J.; Kim, H.; Kim, I.; Lee, K.-Y.; Seo, D.; Choi, H.; Kim, W. Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters. Appl. Phys. A 2011, 104, 7–14. [Google Scholar] [CrossRef]
- Zou, J.; Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, 89, 2932–2938. [Google Scholar] [CrossRef] [Green Version]
- Ziman, J.M. Electrons and Phonon; Clarendon: Oxford, UK, 1960. [Google Scholar]
- Xie, H.Q.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture. Int. J. Heat Mass Transf. 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Henderson, J.R.; Swol, F. On the interface between a fluid and a planar wall: Theory and simulations of a hard sphere fluid at a hard wall. Mol. Phys. 1984, 51, 991–1010. [Google Scholar] [CrossRef]
- Yu, C.J.; Richter, A.G.; Datta, A.; Durbin, M.K.; Dutta, P. Molecular layering in a liquid on a solid substrate: An X-ray reflectivity study. Physica B 2000, 283, 27–31. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser. J. Nanoparticle Res. 2004, 6, 355–361. [Google Scholar] [CrossRef]
- Song, D.; Jing, D.; Ma, W.; Zhang, X. High thermal conductivity of nanoparticles not necessarily contributing more to nanofluids. Appl. Phys. Lett. 2018, 113, 223104–223109. [Google Scholar] [CrossRef]
- Leong, K.C.; Yang, C.; Murshed, S.M.S. A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J. Nanopart. Res. 2006, 8, 245–254. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.; Choi, S.U.S.; Eastman, J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluifs). Inter. J. Heat Mass Transf. 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. A combined model for the effective thermal conductivity of nanofluids. Appl. Therm. Eng. 2009, 29, 2477–2483. [Google Scholar] [CrossRef]
Parameters | Water | EG | ZnO | SiO2 | Al2O3 | CuO |
---|---|---|---|---|---|---|
Bulk conductivity (W/m·K) | 0.61 a | 0.25 a | 37 c | 2–4 d | 30 f | 32.9 f |
Mean free path (nm) | 0.738 a | 0.875 a | 24.35 g | 0.6 e | 35 a | 27 a |
Nanoparticle conductivity(W/m·K) b | 1.61 | 1.39 | 4 | 7.8 | ||
h in Equation (6) b | 3-2.8 | 2.9-1.5 | 6.4–6 | 11–10.8 |
Parameters | ZnO | SiO2 | Al2O3 | CuO |
---|---|---|---|---|
Melting temperature (K) | 2248 b | 1700 d | 2345 f | 1600 i |
Formation enthalpy (kJ/mol) | 350 b | 9.39 d | 167.5 g | 156.06 j |
Interatomic distance (nm) | 0.1976 c | 0.16 e | 0.176 h | 0.172 k |
Specularity parameter | 0.45 a | 0.46 a | 0.55 a | 0.69 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamand, S.M. Thermal Conductivity Calculations for Nanoparticles Embedded in a Base Fluid. Appl. Sci. 2021, 11, 1459. https://doi.org/10.3390/app11041459
Mamand SM. Thermal Conductivity Calculations for Nanoparticles Embedded in a Base Fluid. Applied Sciences. 2021; 11(4):1459. https://doi.org/10.3390/app11041459
Chicago/Turabian StyleMamand, Soran M. 2021. "Thermal Conductivity Calculations for Nanoparticles Embedded in a Base Fluid" Applied Sciences 11, no. 4: 1459. https://doi.org/10.3390/app11041459
APA StyleMamand, S. M. (2021). Thermal Conductivity Calculations for Nanoparticles Embedded in a Base Fluid. Applied Sciences, 11(4), 1459. https://doi.org/10.3390/app11041459