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Abstract: The Prasher analytical model was used for calculating the thermal conductivity of the
embedded nanoparticles of Al2O3, CuO, ZnO, and SiO2 in conventional fluids, such as water and
ethylene glycol. The values that were obtained were used in the nanofluid theoretical models
for comparison with experimental data, where good agreement was obtained. Liang and Li’s
theoretical model was also used to calculate the thermal conductivity of these nanoparticles, where
the results agreed with those obtained using the Prasher model. The effect of the liquid nanolayer
thickness around the nanoparticles that was used to enhance the effective thermal conductivity of
nanofluids was explained. The role of the nanoparticles’ surface specularity parameter, which was
size-dependent, was clarified. This theoretical trend provides a simple method for estimating the
thermal conductivity of nanoparticles and nanofluids.
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1. Introduction

Traditional thermal fluids, such as ethylene glycol (EG), oil and water, play an im-
portant role in many engineering sectors, such as power generation and heating and
cooling processes. However, their heat transfer capability is limited by their very low
thermal conductivity. Nanofluids (NFs) are fluids produced by the dispersion of metallic
or nonmetallic nanoparticlesor nanofibers in a liquid. The addition of these dispersed
particles in traditional fluids produces an enhancement of the thermal conductivity in
the host liquids [1–3]. According to their potential applications in the heat transfer field,
NFs have been a subject of intensive investigations [4–9]. Over the past two decades,
asignificant amount of experimental data has been gatheredon the thermal conductivity
enhancement capabilities of metallic and oxide nanoparticles, carbon nanofibers, and
carbon nanotubes in these traditional fluids. Comprehensive recent reviews and studies
about thermal conductivity enhancement and heat transfer characteristics of NFs were
presented in the literature [10–19]. Many parameters affected the thermal conductivity of
the resultant NFs: the kind of nanoparticles, shape and diameter of the particles, particle
volume concentrations, temperatures, type of the base fluid, acidity (pH) of the base fluid,
preparation techniques, and clustering [2,6,20]. Several theoretical models and mechanisms
have been proposed in the literature for explaining the measured thermal conductivity
of NFs using various assumptions [11,21–30]. However, reported works on theoretical
and experimental investigations to understand the science and mechanisms behind the
thermal conductivity enhancement of NFs continue to be controversial and far from com-
prehensive [31,32]. Jang and Choi [23,33] concluded that the hydrodynamic effect of the
Brownian motion of nanoparticles causes an enhancement in the thermal conductivity of
the NFs and was a crucial factor regarding the mechanism governing the thermal behaviors.
Contradicting this, Evans et al. [34] suggested that the nanoparticles’ Brownian motion
had a negligible effect on the extraordinary thermal transport properties of NFs. Evans
and co-workers concluded that the nanofluids’ thermal conductivity was described by
effective medium theory, where aggregation of the particles causes an enhancement of
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the nanofluids’ thermal conductivity. Furthermore, experimental studies showed that the
nanofluids’ thermal conductivity increased with the decrease of the particle size [35–39],
while other studies reported the opposite conclusions, where the thermal conductivity
increased with the increase of particle size [40–46].

Recently, Pryazhnikov et al. [47] and Ceotto and Rudyak [48] studied the dependence
of NFs’ thermal conductivity on the nanoparticles’ material. They argued and showed
that the thermal conductivity of NFs has a direct connection with the density of the
nanoparticles’ material, even though they did not focus their attention on the value of the
nanoparticles’ thermal conductivity.

Most of the theoretical models for thermal conductivity of NFs embedded with
nanoparticles fail to fit the experimental data, maybe because of the lack of nanoparticle
thermal conductivity data [49–53]. Practically, however, measuring thermal conductivity
for individual nanoparticles is very difficult. Therefore, the objective of this work was to
calculate the thermal conductivity of nanoparticles dispersed in EG and water by using
the Prasher analytical model [54]. Afterward, the analytical formula that was given by
Liang and Li [55] and the Yu and Choi model [56] were used to verify the obtained values
of nanoparticles’ thermal conductivity.

2. Theories

Prasher [54] derived an equation based on the solution of the Boltzmann transport
equation for calculating the thermal conductivity of nanocomposites made from micro-
and nanowires. The effective thermal conductivity of the base-fluid embedded nanowires,
Kce f f , is given by:

Kce f f = (1 − ϕ)Km + ϕKw − (∆K1 + ∆K2), (1)

where; Km and Kw are the thermal conductivities of the host medium and nanowire,
respectively; ϕ is the volume fraction of a nanowire;
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r1 is the radius of the nanowire; r2 is the radius of the specular phonon scattering at
the boundary of the nanowire. Equation (1) is applicable for a grey medium, that is, the
mean free path (in the nanowire, lw, and in the base fluid, lm) and the phonon velocity does
not depend on the phonon frequency [54]. The details of the derivation of Equation (1) and
all the parameters in Equations (2) and (3) can be found in [54]. Equation (1) was used in
the present work for nanoparticles instead of nanowires dispersed in a given base fluid.

Liang and Li [55] derived a theory for the size-dependent thermal conductivity of
nanoscale semiconducting thin films, nanowires, and nanoparticles, in which the mean free
path, l, the size effect, L, and the surface scattering effect (through the specularity parameter,
β) of phonon transport were considered. The thermal conductivity of a nanomaterial, K,
is [55]:

K = KB βexp
(
− lo

L

)
·
[

exp

(
1 − α
L
Lo

− 1

)]3/2

(4)

where KB is the bulk thermal conductivity of the nanoparticles. Definitions of all the
parameters can be found in [55]. This theory has been applied to different crystalline
nanomaterials [55,57–59].

An experimental study [60] proved that there is an adsorbed layer of liquid molecules
around the nanomaterials in NFs. Yu and Choi [56] utilized the Maxwell equation [61] for
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the effective thermal conductivity of NFs, which suggested that liquid layering is one of
the parameters that are responsible for the enhanced thermal conductivity of NFs. Yu and
Choi [56] assumed that an equivalent particle could be formed from the combination with
its coated nanolayer with a radius of r1 + h (where r1 is the original particle radius and h
is the nanolayer thickness). Unfortunately, there is no experimental data for the thermal
conductivity of liquid layering. This is why the thermal conductivity of the nanoparticle,
Kp, is equal to that of nanolayer, as suggested by Yu and Choi [56]. The conventional
Maxwell equation for homogeneous mixtures is [61]:

Kce f f

Km
=

Kp + 2Km − 2ϕ
(
Km − Kp

)
Kp + 2Km + ϕ

(
Km − Kp

) . (5)

This Maxwell equation can be modified to [56]:

Kce f f

Km
=

[
Kp + 2Km + 2ϕ

(
Kp − Km

)
(1 + y)3

]
[
Kp + 2Km − ϕ

(
Kp − Km

)
(1 + y)3

] , (6)

where yis equal to h/r1.

3. Results

According to the experimental data obtained at room temperature by Eastman et al. [62],
calculations of the thermal conductivity ratio (the ratio between the effective thermal
conductivity of the NFs and the thermal conductivity of the base fluid) for copper oxide
(CuO) and alumina (Al2O3) nanoparticles of diameters 36 nm and 33 nm, respectively,
that were dispersed in deionized water were performed using Equation (1). The results
are delineated (dotted lines) in Figure 1. The thermal conductivities of CuO and Al2O3
nanoparticles found using the trial and error method were equal to 7.8 W/m·K and
4 W/m·K, respectively. According to Yu and Choi’s model (Equation (6)), these results
(7.8 W/m·K and 4 W/m·K) give a good thermal conductivity ratio compared to that of the
experimental data shown in Figure 1. The data of the base fluid, nanoparticles, and the
parameter values are shown in Table 1. However, the thermal conductivities of the two
oxide nanoparticles were calculated based on Equation (4) and Tables 1 and 2, which give
7.76 W/m·K and 4.04 W/m·K, respectively, and were in good agreement with the results
obtained using Equation (1).

In Figure 1, for comparative purposes, Kole and Dey’s [63] calculations were con-
sidered for the Al2O3 nanoparticles represented by Eastman et al.’s [62] data. Kole and
Dey [63] used Feng et al.’s [64] model, in which contributions from both the interfacial layer
and aggregation of the nanoparticles were taken into account. The results underpredicted
the reported data. Kole and Dey [63] attributed this underprediction of their calculations
to another contributing parameter that may be required to predict the thermal conductivity
ratio of NFs. A detailed exposition that discusses the results and parameters is provided in
the next section.

The same calculation procedure was performed for 20 nm ZnO nanoparticles that
were dispersed in EG with Yu et al.’s [52] experimental data by using Equations (1) and
(6) and Table 1. The results are reported in Figure 2. The obtained thermal conductivity
value 1.6 W/m·K of ZnO nanoparticles obtained from Equation (1) was close to that of
the previously reported values of 1.4 W/m·K for polycrystalline ZnO thin films [65], and
1.16 W/m·K for 20 nm ZnO nanoparticles [66]. However, according to the theoretical model
of Chen et al. [67], calculations of the thermal conductivity ratio due to aggregations of
nanoparticles were performed by Yu et al. [52] for their experimental data (solid blue-line),
as seen in Figure 2. Our calculation was more precise than Yu et al.’s [52] calculation.
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Figure 1. (Color online) Calculated thermal conductivity ratio (Kceff/Km) versus the particle vol-
ume fraction for Al2O3 and CuO nanoparticles in a water base fluid using the Prasher’s model
(Equation (1)) and Yu and Choi’s model (Equation (6)). Expt. data are from [62]. The solid black-line
is from Kole and Dey’s calculations [63].
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Figure 2. (Color online) Calculated thermal conductivity ratio (Kceff/Km) versus the nanoparticle
volume fraction for a ZnO–ethylene glycol (EG) nanofluid, using the Prasher’s (Equation (1)) and Yu
and Choi’s models (Equation (6)). Experimental data are from [52]. The solid blue-line represents Yu
et al.’s calculations [52].
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Using Equation (4) and the data in Tables 1 and 2, a calculation of the thermal conduc-
tivity of ZnO nanoparticles with a phonon mean free path, l, equal to 24.35 nm as estimated
by the equation l = 10aTm/γT [68], where a is the lattice constant equal to 0.325 nm [69],
γ ≈ 1 is the Gruneisen parameter [33], T is the absolute temperature equal to 300 K, and
Tm is the melting point—gives the value of 1.618 W/m·K, which agrees well with the value
obtained by using Equation (1).

Table 1. The nanoparticle and base fluid data at T = 300 K.

Parameters Water EG ZnO SiO2 Al2O3 CuO

Bulk conductivity (W/m·K) 0.61 a 0.25 a 37 c 2–4 d 30 f 32.9 f

Mean free path (nm) 0.738 a 0.875 a 24.35 g 0.6 e 35 a 27 a

Nanoparticle conductivity(W/m·K) b 1.61 1.39 4 7.8
h in Equation (6) b 3-2.8 2.9-1.5 6.4–6 11–10.8

a: [33], b: present work, c: (for wurtiziteZnO) [66], d: [70], e: [71], f: [72], g: calculated using the equation in [68].

Furthermore, for the sake of verifying this trend, the same calculation method was
used for SiO2 nanoparticles that were 20 nm in diameter and dispersed in water, where
the results are plotted versus the particle volume concentration for the experimental data
reported by Kang et al. [70] in Figure 3. The value of 1.39 W/m·K for thermal conductivity
that was obtained using Equation (1) agrees well with that of the experimental data and
is equal to that obtained by using Equation (4) and the data in Tables 1 and 2, which was
1.391 W/m·K.

Table 2. Material properties of oxide nanoparticles (at T = 300 K) used in Equation (4).

Parameters ZnO SiO2 Al2O3 CuO

Melting temperature (K) 2248 b 1700 d 2345 f 1600 i

Formation enthalpy (kJ/mol) 350 b 9.39 d 167.5 g 156.06 j

Interatomic distance (nm) 0.1976 c 0.16 e 0.176 h 0.172 k

Specularity parameter β 0.45 a 0.46 a 0.55 a 0.69 a

a: present work, b: [73], c: [74], d: [75], e: [76], f: [77], g: [78], h: [79], i: [80], j: [81], k: [82].
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4. Discussion
4.1. Nanoparticles’Thermal Conductivity and Specularity Parameter, β

Experimental investigations [47,48,83,84] and the molecular dynamics method [85,86]
revealed that an increase in the thermal conductivity of nanofluids is related to an increase
in the nanoparticle material density rather than its material. The density of a nanosized
material is a size-dependent parameter. Abdullah et al. [87] showed that the densities of Si
nanoparticles with 20 nm and 5 nm diameters decrease by amounts of 6% and 18%, respec-
tively. Experimental studies [88,89] have also shown that the density of nanosized materials
decreases as their size decreases, particularly at a diameter of less than 20 nm. Accordingly,
the decreases in the density of CuO and Al2O3 nanoparticles with diameters of 36 nm and
33 nm, respectively, were not significant since their size ranges were larger than 20 nm [87].
The experimental data from Eastman et al. [62] at room temperature is seen in Figure 1,
where the enhancement of the nanofluid thermal conductivity of CuO was higher than
Al2O3 by 28% at a 5% volume concentration. This enhancement return to a higher density
of CuO (bulk density = 6.3 gm/cm3) than Al2O3 (bulk density = 3.9 gm/cm3) [47,85,86].
However, CuO and Al2O3 cannot be compared with the other two oxides (ZnO and SiO2)
because of their different diameters and the great dependence of the properties on the
different preparation conditions. Comparisons should be done between nanofluids with
the same base fluid, same particle size, and the same volume fraction. In this work, the
thermal conductivity of CuO nanoparticles was higher than for Al2O3 nanoparticles, while
their bulk thermal conductivity was close to each other (as seen in Table 1). However, the
values of the intrinsic thermal conductivity of nanoparticles were due to their material
type. The lower value of the nanoparticles’ thermal conductivities compared to that of the
bulk material can be explained as follows.

In experimental studies [90], the thermal conductivity of Si nanowires is less than the
bulk value by an order of magnitude. In a molecular dynamics study [91], if the size of Si
nanoparticles decreased below about 10 nm, their thermal conductivity decreased by two
orders of magnitude compared to that of the bulk value. Mamand et al. [92,93] showed that
the thermal conductivities of GaN and Ge nanowires are size-dependent. The reduction in
value is due to both phonon confinement and boundary scattering effects; however, these
depend on size-dependent parameters, such as the Debye temperature, surface roughness,
the Gruneisen parameter, and the group velocity of phonons [94,95].

In NFs, the thermal energy interaction takes place at the nanoparticles’ surface [52,63].
The specularity parameter, β, is a function of the surface roughness, µ [96], which reflects the
probability of diffusive or specular scattering of phonons and is denoted by the following
equation [55]: β = 1 − 10µ/D, where D is the nanoparticles’ diameter. The values of β are
between 1 and 0. Due to the lack of experimental values for the surface roughness, β, was
treated in this work as an adjustable parameter [93,94], where the values for all materials
are listed in Table 2. These results suggested that nanoparticles’ thermal conductivity
through phonon scattering processes at the surface plays a significant role in transferring
energy in NFs.

4.2. Liquid Nanolayer Thickness, h

The interface between the liquid and nanoparticles plays an important role that
influences the thermal conductivity in NFs, which is known as the interface effect [97]. The
liquid molecules form a layered structure close to the nanoparticle’s surface [98]. This layer
of atoms (nanolayer) around the particles is more ordered and its thermal conductivity is
higher than that of the bulk liquid [56,99]. However, the nanolayer plays a key role in heat
transfer but is not solely responsible for the thermal conductivity enhancement in NFs [32,100].
Recently, Song et al. [101] reported that the phonon frequency plays a vital role in the liquid
and nanoparticles in NFs. An increase in the nanolayer molecule density and the ordered
molecules causes an increase in the phonon group velocity and the phonon scattering at
the particle–nanolayer interface will decrease. Thus, as the nanolayer thickness increases,
the effective thermal conductivity will increase [83,97,102]. Many authors reported that the
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nanolayer thickness, h, is in the range of 1–3 nm [56,63,64,72,99,100,103], while others have
stated that a thickness of the nanolayer within the range of 1–3 nm does not affect the
enhancement of the thermal conductivity in NFs [104]. Several authors [63,102] considered
thenanolayers’ thermal conductivity, Klayer, as being equal to 2Km or even 3–5Km with this
range of thickness (1–3 nm) without getting a precise fitting to the experimental data at a
wide range of particle volume concentrations.

In the present work, the effect of the nanolayer without the assumption of nanoparticle
agglomeration was taken into account. To the best of our knowledge, the value of the
nanolayer thickness, h, has unfortunately not been measured experimentally; therefore, it
was used as an adjustable parameter (their values can be seen in Table 1), and according
to Equation (6), the thermal conductivity ratio that provided the best fit to that of the
experimental data was calculated.

5. A Brief Synopsis for Future Work

This trend in calculations is the first tendency toward finding nanoparticles’ thermal
conductivity (which is difficult practically) till now using the effective thermal conductivity
data of NFs. The results can be used in other theoretical trends, such as statistically driven
machine learning methods [18,19], for comparison. Moreover, this tendency can be used
for finding the thermal conductivity of very small and large nanoparticles embedded
in different kinds of fluids at different temperatures and comparing these results with
experimental data.

Because of the different results found between the experimental data and theoretical
models of the effective thermal conductivity of NFs in the literature, which shows contra-
dictions, more work is needed to build a unified and universal theory for explaining the
discrepancies and enhancement of the thermal conductivity of NFs.

6. Conclusions

This work concentrated on the utilization of theoretical trends for measuring nanopar-
ticles’ thermal conductivity, which is very difficult to achieve experimentally. The conclu-
sions from this work are summarized in the following points:

• Prasher’s model is a successful method for numerical calculations of the thermal
conductivity ofAl2O3, CuO, ZnO, and SiO2 nanoparticles suspended in water and EG
base fluids.

• The nanoparticles’ thermal conductivity is one of the main parameters that govern the
thermal conductivity of NFs.

• The adjustable parameters, such as the specularity parameter, β, and the liquid
nanolayer thickness, h, allowed for a correlation between the theoretical calculations
and experimental data of NFs, indicating the significance of their effects and values.

• This trend of theoretical calculation is promising as a simple and easy method for
finding the unknown thermal conductivity values of nanoparticles.
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