Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space
Abstract
1. Introduction
2. Materials and Methods
2.1. Spectral Solvers
2.2. Problem Statement
2.3. Mapping to and from the Computational Subregion
3. Results and Discussion
3.1. Verification and Accuracy Determination
3.2. Examples
3.2.1. Focusing of a Gaussian Laser Pulse
3.2.2. Focusing of a Laser Pulse with a Circular Flat-Top Transverse Profile
3.2.3. Focusing of Realistic Laser Pulses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Marklund, M.; Shukla, P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 2006, 78, 591–640. [Google Scholar] [CrossRef]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177–1228. [Google Scholar] [CrossRef]
- Yanovsky, V.; Chvykov, V.; Kalinchenko, G.; Rousseau, P.; Planchon, T.; Matsuoka, T.; Maksimchuk, A.; Nees, J.; Cheriaux, G.; Mourou, G.; et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 2008, 16, 2109. [Google Scholar] [CrossRef] [PubMed]
- Chatziathanasiou, S.; Kahaly, S.; Skantzakis, E.; Sansone, G.; Lopez-Martens, R.; Haessler, S.; Varju, K.; Tsakiris, G.; Charalambidis, D.; Tzallas, P. Generation of Attosecond Light Pulses from Gas and Solid State Media. Photonics 2017, 4, 26. [Google Scholar] [CrossRef]
- Harvey, C.N.; Gonoskov, A.; Ilderton, A.; Marklund, M. Quantum Quenching of Radiation Losses in Short Laser Pulses. Phys. Rev. Lett. 2017, 118, 105004. [Google Scholar] [CrossRef]
- Davis, L.W. Theory of electromagnetic beams. Phys. Rev. A 1979, 19, 1177–1179. [Google Scholar] [CrossRef]
- Barton, J.P.; Alexander, D.R. Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam. J. Appl. Phys. 1989, 66, 2800–2802. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Saghafi, S. Electromagnetic Gaussian beams beyond the paraxial approximation. J. Opt. Soc. Am. A 1999, 16, 1381. [Google Scholar] [CrossRef]
- Sepke, S.M.; Umstadter, D.P. Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length. Opt. Lett. 2006, 31, 2589. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Salamin, Y. Fields of a Gaussian beam beyond the paraxial approximation. Appl. Phys. B 2006, 86, 319–326. [Google Scholar] [CrossRef]
- Couture, M.; Belanger, P.A. From Gaussian beam to complex-source-point spherical wave. Phys. Rev. A 1981, 24, 355–359. [Google Scholar] [CrossRef]
- Narozhny, N.B.; Fofanov, M.S. Scattering of relativistic electrons by a focused laser pulse. J. Exp. Theor. Phys. 2000, 90, 753–768. [Google Scholar] [CrossRef]
- Lin, Q.; Zheng, J.; Becker, W. Subcycle Pulsed Focused Vector Beams. Phys. Rev. Lett. 2006, 97, 253902. [Google Scholar] [CrossRef]
- Fedotov, A.M.; Korolev, K.Y.; Legkov, M.V. Exact analytical expression for the electromagnetic field in a focused laser beam or pulse. In Physics of Intense and Superintense Laser Fields; Attosecond Pulses; Quantum and Atomic Optics; and Engineering of Quantum Information, Proceedings of the International Conference on Coherent and Nonlinear Optics, Minsk, Belarus, 28 May–1 June 2007; Fedorov, M.V., Sandner, W., Giacobino, E., Kilin, S., Kulik, S., Sergienko, A., Bandrauk, A., Sergeev, A.M., Eds.; SPIE: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Sapozhnikov, O.A. An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates. Acoust. Phys. 2012, 58, 41–47. [Google Scholar] [CrossRef]
- Yu, B.; Lin, Z.; Pu, J. Comparative study on the paraxial approximation errors of tightly focused fundamental Gaussian beams. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef]
- Popov, K.I.; Bychenkov, V.Y.; Rozmus, W.; Sydora, R.D. Electron vacuum acceleration by a tightly focused laser pulse. Phys. Plasmas 2008, 15, 013108. [Google Scholar] [CrossRef]
- Bochkarev, S.G.; Bychenkov, V.Y. Acceleration of electrons by tightly focused femtosecond laser pulses. Quantum Electron. 2007, 37, 273–284. [Google Scholar] [CrossRef]
- Harvey, C.; Marklund, M.; Holkundkar, A.R. Focusing effects in laser-electron Thomson scattering. Phys. Rev. Accel. Beams 2016, 19, 094701. [Google Scholar] [CrossRef]
- Gonoskov, A.A.; Korzhimanov, A.V.; Kim, A.V.; Marklund, M.; Sergeev, A.M. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E 2011, 84, 046403. [Google Scholar] [CrossRef] [PubMed]
- Kormin, D.; Borot, A.; Ma, G.; Dallari, W.; Bergues, B.; Aladi, M.; Földes, I.B.; Veisz, L. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces. Nat. Commun. 2018, 9, 4992. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, D.E.; Ostermayr, T.M.; Lucchio, L.D.; Hofmann, L.; Kling, M.F.; Gibbon, P.; Schreiber, J.; Veisz, L. Sub-cycle dynamics in relativistic nanoplasma acceleration. Sci. Rep. 2019, 9, 7321. [Google Scholar] [CrossRef]
- Rivas, D.E.; Borot, A.; Cardenas, D.E.; Marcus, G.; Gu, X.; Herrmann, D.; Xu, J.; Tan, J.; Kormin, D.; Ma, G.; et al. Next Generation Driver for Attosecond and Laser-plasma Physics. Sci. Rep. 2017, 7, 5224. [Google Scholar] [CrossRef] [PubMed]
- Thiele, I.; Skupin, S.; Nuter, R. Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes. J. Comput. Phys. 2016, 321, 1110–1119. [Google Scholar] [CrossRef]
- Pérez, F.; Grech, M. Oblique-incidence, arbitrary-profile wave injection for electromagnetic simulations. Phys. Rev. E 2019, 99, 033307. [Google Scholar] [CrossRef] [PubMed]
- Bahk, S.W.; Rousseau, P.; Planchon, T.A.; Chvykov, V.; Kalintchenko, G.; Maksimchuk, A.; Mourou, G.A.; Yanovsky, V. Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2). Appl. Phys. B 2005, 80, 823–832. [Google Scholar] [CrossRef]
- Gonoskov, A.; Wallin, E.; Polovinkin, A.; Meyerov, I. Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics. Sci. Rep. 2019, 9, 7043. [Google Scholar] [CrossRef]
- Gonoskov, A.; Gonoskov, I.; Harvey, C.; Ilderton, A.; Kim, A.; Marklund, M.; Mourou, G.; Sergeev, A. Probing Nonperturbative QED with Optimally Focused Laser Pulses. Phys. Rev. Lett. 2013, 111, 060404. [Google Scholar] [CrossRef]
- Gonoskov, A.; Bashinov, A.; Gonoskov, I.; Harvey, C.; Ilderton, A.; Kim, A.; Marklund, M.; Mourou, G.; Sergeev, A. Anomalous Radiative Trapping in Laser Fields of Extreme Intensity. Phys. Rev. Lett. 2014, 113, 014801. [Google Scholar] [CrossRef]
- Gelfer, E.G.; Mironov, A.A.; Fedotov, A.M.; Bashmakov, V.F.; Nerush, E.N.; Kostyukov, I.Y.; Narozhny, N.B. Optimized multibeam configuration for observation of QED cascades. Phys. Rev. A 2015, 92, 022113. [Google Scholar] [CrossRef]
- Gonoskov, A.; Bashinov, A.; Bastrakov, S.; Efimenko, E.; Ilderton, A.; Kim, A.; Marklund, M.; Meyerov, I.; Muraviev, A.; Sergeev, A. Ultrabright GeV Photon Source via Controlled Electromagnetic Cascades in Laser-Dipole Waves. Phys. Rev. X 2017, 7, 041003. [Google Scholar] [CrossRef]
- Vranic, M.; Grismayer, T.; Fonseca, R.A.; Silva, L.O. Electron–positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion 2016, 59, 014040. [Google Scholar] [CrossRef]
- Gong, Z.; Hu, R.H.; Shou, Y.R.; Qiao, B.; Chen, C.E.; He, X.T.; Bulanov, S.S.; Esirkepov, T.Z.; Bulanov, S.V.; Yan, X.Q. High-efficiency γ-ray flash generation via multiple-laser scattering in ponderomotive potential well. Phys. Rev. E 2017, 95, 013210. [Google Scholar] [CrossRef] [PubMed]
- Efimenko, E.S.; Bashinov, A.V.; Bastrakov, S.I.; Gonoskov, A.A.; Muraviev, A.A.; Meyerov, I.B.; Kim, A.V.; Sergeev, A.M. Extreme plasma states in laser-governed vacuum breakdown. Sci. Rep. 2018, 8, 2329. [Google Scholar] [CrossRef]
- Efimenko, E.S.; Bashinov, A.V.; Gonoskov, A.A.; Bastrakov, S.I.; Muraviev, A.A.; Meyerov, I.B.; Kim, A.V.; Sergeev, A.M. Laser-driven plasma pinching in e−e+ cascade. Phys. Rev. E 2019, 99, 031201. [Google Scholar] [CrossRef]
- Magnusson, J.; Gonoskov, A.; Marklund, M.; Esirkepov, T.Z.; Koga, J.K.; Kondo, K.; Kando, M.; Bulanov, S.V.; Korn, G.; Bulanov, S.S. Laser-Particle Collider for Multi-GeV Photon Production. Phys. Rev. Lett. 2019, 122, 254801. [Google Scholar] [CrossRef]
- Magnusson, J.; Gonoskov, A.; Marklund, M.; Esirkepov, T.Z.; Koga, J.K.; Kondo, K.; Kando, M.; Bulanov, S.V.; Korn, G.; Geddes, C.G.R.; et al. Multiple colliding laser pulses as a basis for studying high-field high-energy physics. Phys. Rev. A 2019, 100, 063404. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Bulanov, S.S.; Esirkepov, T.Z.; Thomas, A.G.R.; Koga, J.K.; Bulanov, S.V. Schwinger Limit Attainability with Extreme Power Lasers. Phys. Rev. Lett. 2010, 105, 220407. [Google Scholar] [CrossRef]
- Gonoskov, I.; Aiello, A.; Heugel, S.; Leuchs, G. Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses. Phys. Rev. A 2012, 86, 053836. [Google Scholar] [CrossRef]
- Naumova, N.M.; Nees, J.A.; Mourou, G.A. Relativistic attosecond physics. Phys. Plasmas 2005, 12, 056707. [Google Scholar] [CrossRef]
- Blinne, A.; Schinkel, D.; Kuschel, S.; Elkina, N.; Rykovanov, S.G.; Zepf, M. A systematic approach to numerical dispersion in Maxwell solvers. Comput. Phys. Commun. 2018, 224, 273–281. [Google Scholar] [CrossRef]
- hi-χ Project. Available online: https://github.com/hi-chi (accessed on 12 December 2020).
- Muraviev, A.; Bashinov, A.; Efimenko, E.; Volokitin, V.; Meyerov, I.; Gonoskov, A. Strategies for particle resampling in PIC simulations. Comput. Phys. Commun. 2021, 107826. [Google Scholar] [CrossRef]
- Weideman, J.A.C.; Herbst, B.M. Split-Step Methods for the Solution of the Nonlinear Schrödinger Equation. SIAM J. Numer. Anal. 1986, 23, 485–507. [Google Scholar] [CrossRef]
- Birdsall, C.K.; Langdon, A.B. Plasma Physics via Computer Simulation; IOP: Bristol, UK, 1991. [Google Scholar]
- Haber, I.; Lee, R.; Klein, H.; Boris, J. Advances in electromagnetic simulation techniques. In Proceedings of the Sixth Conference Numerical Simulation Plasmas, Berkeley, CA, USA, 18 July 1973; pp. 46–48. [Google Scholar]
- Lin, A.T. Application of electromagnetic particle simulation to the generation of electromagnetic radiation. Phys. Fluids 1974, 17, 1995. [Google Scholar] [CrossRef]
- Buneman, O.; Barnes, C.; Green, J.; Nielsen, D. Principles and capabilities of 3-D, E-M particle simulations. J. Comput. Phys. 1980, 38, 1–44. [Google Scholar] [CrossRef]
- Gustafsson, B.; Kreiss, H.O.; Oliger, J. Time Dependent Problems and Difference Methods; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 24. [Google Scholar]
- Vay, J.L.; Haber, I.; Godfrey, B.B. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 2013, 243, 260–268. [Google Scholar] [CrossRef]
- Gonoskov, A. Ultra-Intense Laser-Plasma Interaction for Applied and Fundamental Physics. Ph.D. Thesis, Umeå University, Umeå, Sweden, 2013. [Google Scholar]
- Gerchberg, R.W.; Saxton, W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Ferri, J.; Davoine, X.; Fourmaux, S.; Kieffer, J.; Corde, S.; Phuoc, K.T.; Lifschitz, A. Effect of experimental laser imperfections on laser wakefield acceleration and betatron source. Sci. Rep. 2016, 6, 27846. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panova, E.; Volokitin, V.; Efimenko, E.; Ferri, J.; Blackburn, T.; Marklund, M.; Muschet, A.; De Andres Gonzalez, A.; Fischer, P.; Veisz, L.; et al. Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space. Appl. Sci. 2021, 11, 956. https://doi.org/10.3390/app11030956
Panova E, Volokitin V, Efimenko E, Ferri J, Blackburn T, Marklund M, Muschet A, De Andres Gonzalez A, Fischer P, Veisz L, et al. Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space. Applied Sciences. 2021; 11(3):956. https://doi.org/10.3390/app11030956
Chicago/Turabian StylePanova, Elena, Valentin Volokitin, Evgeny Efimenko, Julien Ferri, Thomas Blackburn, Mattias Marklund, Alexander Muschet, Aitor De Andres Gonzalez, Peter Fischer, Laszlo Veisz, and et al. 2021. "Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space" Applied Sciences 11, no. 3: 956. https://doi.org/10.3390/app11030956
APA StylePanova, E., Volokitin, V., Efimenko, E., Ferri, J., Blackburn, T., Marklund, M., Muschet, A., De Andres Gonzalez, A., Fischer, P., Veisz, L., Meyerov, I., & Gonoskov, A. (2021). Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space. Applied Sciences, 11(3), 956. https://doi.org/10.3390/app11030956