Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Ding, S.; Zhu, D.; Xue, W.; Liu, W.; Cao, Y. Picosecond Laser-Induced Hierarchical Periodic Near-and Deep-Subwavelength Ripples on Stainless-Steel Surfaces. Nanomaterials 2020, 10, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrhardt, M.; Han, B.; Frost, F.; Lorenz, P.; Zimmer, K. Generation of laser-induced periodic surface structures (LIPSS) in fused silica by single NIR nanosecond laser pulse irradiation in confinement. Appl. Surf. Sci. 2019, 470, 56–62. [Google Scholar] [CrossRef]
- Chang, C.-L.; Cheng, C.-W.; Chen, J.-K. Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Appl. Surf. Sci. 2019, 469, 904–910. [Google Scholar] [CrossRef]
- Miyagawa, R.; Ohno, Y.; Deura, M.; Yonenaga, I.; Eryu, O. Characterization of femtosecond-laser-induced periodic structures on SiC substrates. Jpn. J. Appl. Phys. 2018, 57, 025602. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, D.; Han, W.; Zhao, K.; Chen, J. Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation. Appl. Sci. 2019, 9, 3401. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, G.; Hu, Y.; Zhang, C.; Li, X.; Chu, J.; Huang, W. Selective display of multiple patterns encoded with different oriented ripples using femtosecond laser. Opt. Laser Technol. 2015, 71, 85–88. [Google Scholar] [CrossRef]
- Sobolewski, R.; Shi, L.; Gong, T.; Xiong, W.; Weng, X.; Kostoulas, Y.; Fauchet, P.M. Femtosecond Optical Response of Y-Ba-Cu-O Films and Their Applications in Optoelectronics. In Proceedings of the High-Temperature Superconducting Detectors: Bolometric and Nonbolometric; International Society for Optics and Photonics, Los Angeles, CA, USA, 20 May 1994; pp. 110–120. [Google Scholar]
- Liao, Y.; Cheng, Y. Femtosecond laser 3D fabrication in porous glass for micro-and nanofluidic applications. Micromachines 2014, 5, 1106–1134. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.; Elie, A.-M.; Plawinski, L.; Serro, A.P.; do Rego, A.M.B.; Almeida, A.; Urdaci, M.C.; Durrieu, M.-C.; Vilar, R. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, D.; Chen, S.C.; Kong, S.K.; Hu, M.; Cao, Y.; He, H. Photoactivation of Extracellular-Signal-Regulated Kinase Signaling in Target Cells by Femtosecond Laser. Laser Photonics Rev. 2018, 12, 1700137. [Google Scholar] [CrossRef]
- Lin, C.; Cheng, C.-W.; Ou, K. Micro/nano-structuring of medical stainless steel using femtosecond laser pulses. Phys. Procedia 2012, 39, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Vorobyev, A.; Guo, C. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting. Appl. Phys. B 2013, 113, 423–428. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.N.; Lim, K.-T.; Kim, Y.; Pandey, S.; Garg, P.; Choung, Y.-H.; Choung, P.-H.; Suh, K.-Y.; Chung, J.H. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials 2013, 34, 7257–7268. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, J.W.; Shin, J.H.; Yang, D.-Y. Quantitatively controlled fabrication of uniaxially aligned nanofibrous scaffold for cell adhesion. J. Nanomater. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Mao, F.; He, F.; Han, Y.; Li, H.; Chen, J.; Wei, S. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants. Colloids Surf. B Biointerfaces 2019, 178, 515–524. [Google Scholar] [CrossRef]
- Srivas, P.K.; Kapat, K.; Das, B.; Pal, P.; Ray, P.G.; Dhara, S. Hierarchical surface morphology on Ti6Al4V via patterning and hydrothermal treatment towards improving cellular response. Appl. Surf. Sci. 2019, 478, 806–817. [Google Scholar] [CrossRef]
- Deka, A.; Barman, P.; Bhattacharjee, G.; Bhattacharyya, S. Evolution of ion-induced nano-dot patterns on silicon surface in presence of seeding materials. Appl. Surf. Sci. 2020, 526, 146645. [Google Scholar] [CrossRef]
- Hu, J.; Hardy, C.; Chen, C.-M.; Yang, S.; Voloshin, A.S.; Liu, Y. Enhanced cell adhesion and alignment on micro-wavy patterned surfaces. PLoS ONE 2014, 9, e104502. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Calderon, M.; Martín-Palma, R.J.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J.P.; Olaizola, S.M.; Manso-Silván, M. Biomimetic hierarchical micro/nano texturing of TiAlV alloys by femtosecond laser processing for the control of cell adhesion and migration. Phys. Rev. Mater. 2020, 4, 056008. [Google Scholar] [CrossRef]
- Tiainen, L.; Abreu, P.; Buciumeanu, M.; Silva, F.; Gasik, M.; Guerrero, R.S.; Carvalho, O. Novel laser surface texturing for improved primary stability of titanium implants. J. Mech. Behav. Biomed. Mater. 2019, 98, 26–39. [Google Scholar] [CrossRef]
- Yasumaru, N.; Sentoku, E.; Kiuchi, J. Formation of organic layer on femtosecond laser-induced periodic surface structures. Appl. Surf. Sci. 2017, 404, 267–272. [Google Scholar] [CrossRef]
- Zwahr, C.; Welle, A.; Weingärtner, T.; Heinemann, C.; Kruppke, B.; Gulow, N.; Holthaus, M.; Lasagni, A.F. Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants. Adv. Eng. Mater. 2019, 21, 1900639. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, Y.; Yang, L.; Shi, Z.; Yang, P.; Cheng, G. In vitro bioactivity and biocompatibility of bio-inspired ti-6al-4v alloy surfaces modified by combined laser micro/nano structuring. Molecules 2020, 25, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Duan, J.; Zhou, X.; Wang, C. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam. Opt. Express 2018, 26, 34016–34030. [Google Scholar] [CrossRef]
- Han, W.; Liu, F.; Yuan, Y.; Li, X.; Wang, Q.; Wang, S.; Jiang, L. Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure. Nanotechnology 2018, 29, 305301. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Han, W.; Liu, W.; Hu, J.; Wang, S.; Lu, Y. Controllable formation of laser-induced periodic surface structures on ZnO film by temporally shaped femtosecond laser scanning. Opt. Lett. 2020, 45, 2411–2414. [Google Scholar] [CrossRef]
- Liang, Q.; Zhong, Y.; Fan, Z.; Diao, H.; Jukna, V.; Chen, W.; Houard, A.; Zeng, Z.; Li, R.; Liu, Y. Optical transmission during mid-infrared femtosecond laser pulses ablation of fused silica. Appl. Surf. Sci. 2019, 471, 506–515. [Google Scholar] [CrossRef]
- Shi, X.; Xu, X. Laser fluence dependence of ripple formation on fused silica by femtosecond laser irradiation. Appl. Phys. A 2019, 125, 256. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, J. Grating-assisted fabrication of sub-wavelength ripples during femtosecond laser processing of dielectrics. Chin. Opt. Lett. 2016, 14, 011404. [Google Scholar] [CrossRef]
- Young, J.F.; Preston, J.; Van Driel, H.; Sipe, J. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 1983, 27, 1155. [Google Scholar] [CrossRef]
- Sipe, J.; Young, J.F.; Preston, J.; Van Driel, H. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141. [Google Scholar] [CrossRef]
- Gemini, L.; Hashida, M.; Shimizu, M.; Miyasaka, Y.; Inoue, S.; Tokita, S.; Limpouch, J.; Mocek, T.; Sakabe, S. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses. J. Appl. Phys. 2013, 114, 194903. [Google Scholar] [CrossRef]
- Li, F.; Schellekens, M.; de Bont, J.; Peters, R.; Overbeek, A.; Leermakers, F.A.; Tuinier, R. Self-Assembled Structures of PMAA–PMMA Block Copolymers: Synthesis, Characterization, and Self-Consistent Field Computations. Macromolecules 2015, 48, 1194–1203. [Google Scholar] [CrossRef]
- Le Harzic, R.; Dörr, D.; Sauer, D.; Stracke, F.; Zimmermann, H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl. Phys. Lett. 2011, 98, 211905. [Google Scholar] [CrossRef]
- Dong, Y.; Molian, P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Appl. Phys. Lett. 2004, 84, 10–12. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Xiao, H.; Lu, Y.; Tsai, H. Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics. J. Phys. D Appl. Phys. 2012, 45, 175301. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef]
- Wang, J.; Guo, C. Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses. J. Appl. Phys. 2006, 100, 023511. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Lu, Y. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains. J. Appl. Phys. 2012, 112, 103103. [Google Scholar] [CrossRef]
- Lou, K.; Qian, J.; Shen, D.; Wang, H.; Ding, T.; Wang, G.; Dai, Y.; Zhao, Q.-Z. Recording, erasing, and rewriting of ripples on metal surfaces by ultrashort laser pulses. Opt. Lett. 2018, 43, 1778–1781. [Google Scholar] [CrossRef] [PubMed]
- Gräf, S.; Kunz, C.; Engel, S.; Derrien, T.J.-Y.; Müller, F.A. Femtosecond laser-induced periodic surface structures on fused silica: The impact of the initial substrate temperature. Materials 2018, 11, 1340. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Li, X.; Zhang, Y.; Xie, C.; Liu, K.; Zhou, Q. Periodic structures on germanium induced by high repetition rate femtosecond laser. Opt. Laser Technol. 2018, 101, 291–297. [Google Scholar] [CrossRef]
- Fraggelakis, F.; Stratakis, E.; Loukakos, P. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl. Surf. Sci. 2018, 444, 154–160. [Google Scholar] [CrossRef]
- Garcell, E.M.; Guo, C. Polarization-controlled microgroove arrays induced by femtosecond laser pulses. J. Appl. Phys. 2018, 123, 213103. [Google Scholar] [CrossRef] [Green Version]
- Giannuzzi, G.; Gaudiuso, C.; Di Franco, C.; Scamarcio, G.; Lugarà, P.M.; Ancona, A. Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays. Opt. Lasers Eng. 2019, 114, 15–21. [Google Scholar] [CrossRef]
- Han, W.; Han, Z.; Yuan, Y.; Wang, S.; Li, X.; Liu, F. Continuous control of microlens morphology on Si based on the polarization-dependent femtosecond laser induced periodic surface structures modulation. Opt. Laser Technol. 2019, 119, 105629. [Google Scholar] [CrossRef]
- Yin, K.; Chu, D.; Dong, X.; Wang, C.; Duan, J.-A.; He, J. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 2017, 9, 14229–14235. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, H.; Duan, J.A.; Wang, C.; Zhou, J.; Lu, Y.; Yin, K.; Dong, X.; Su, W.; Sun, X. Experimental research of laser-induced periodic surface structures in a typical liquid by a femtosecond laser. Chin. Opt. Lett. 2017, 15, 021404. [Google Scholar]
- Han, W.; Jiang, L.; Li, X.; Liu, P.; Xu, L.; Lu, Y. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes. Opt. Express 2013, 21, 15505–15513. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Guo, X.; Shang, Y.; Chen, J. Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses. Appl. Sci. 2021, 11, 2250. https://doi.org/10.3390/app11052250
Yuan Y, Guo X, Shang Y, Chen J. Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses. Applied Sciences. 2021; 11(5):2250. https://doi.org/10.3390/app11052250
Chicago/Turabian StyleYuan, Yanping, Xinyang Guo, Yitong Shang, and Jimin Chen. 2021. "Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses" Applied Sciences 11, no. 5: 2250. https://doi.org/10.3390/app11052250
APA StyleYuan, Y., Guo, X., Shang, Y., & Chen, J. (2021). Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses. Applied Sciences, 11(5), 2250. https://doi.org/10.3390/app11052250