Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Ding, S.; Zhu, D.; Xue, W.; Liu, W.; Cao, Y. Picosecond Laser-Induced Hierarchical Periodic Near-and Deep-Subwavelength Ripples on Stainless-Steel Surfaces. Nanomaterials 2020, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, M.; Han, B.; Frost, F.; Lorenz, P.; Zimmer, K. Generation of laser-induced periodic surface structures (LIPSS) in fused silica by single NIR nanosecond laser pulse irradiation in confinement. Appl. Surf. Sci. 2019, 470, 56–62. [Google Scholar] [CrossRef]
- Chang, C.-L.; Cheng, C.-W.; Chen, J.-K. Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Appl. Surf. Sci. 2019, 469, 904–910. [Google Scholar] [CrossRef]
- Miyagawa, R.; Ohno, Y.; Deura, M.; Yonenaga, I.; Eryu, O. Characterization of femtosecond-laser-induced periodic structures on SiC substrates. Jpn. J. Appl. Phys. 2018, 57, 025602. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, D.; Han, W.; Zhao, K.; Chen, J. Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation. Appl. Sci. 2019, 9, 3401. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Hu, Y.; Zhang, C.; Li, X.; Chu, J.; Huang, W. Selective display of multiple patterns encoded with different oriented ripples using femtosecond laser. Opt. Laser Technol. 2015, 71, 85–88. [Google Scholar] [CrossRef]
- Sobolewski, R.; Shi, L.; Gong, T.; Xiong, W.; Weng, X.; Kostoulas, Y.; Fauchet, P.M. Femtosecond Optical Response of Y-Ba-Cu-O Films and Their Applications in Optoelectronics. In Proceedings of the High-Temperature Superconducting Detectors: Bolometric and Nonbolometric; International Society for Optics and Photonics, Los Angeles, CA, USA, 20 May 1994; pp. 110–120. [Google Scholar]
- Liao, Y.; Cheng, Y. Femtosecond laser 3D fabrication in porous glass for micro-and nanofluidic applications. Micromachines 2014, 5, 1106–1134. [Google Scholar] [CrossRef]
- Cunha, A.; Elie, A.-M.; Plawinski, L.; Serro, A.P.; do Rego, A.M.B.; Almeida, A.; Urdaci, M.C.; Durrieu, M.-C.; Vilar, R. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, D.; Chen, S.C.; Kong, S.K.; Hu, M.; Cao, Y.; He, H. Photoactivation of Extracellular-Signal-Regulated Kinase Signaling in Target Cells by Femtosecond Laser. Laser Photonics Rev. 2018, 12, 1700137. [Google Scholar] [CrossRef]
- Lin, C.; Cheng, C.-W.; Ou, K. Micro/nano-structuring of medical stainless steel using femtosecond laser pulses. Phys. Procedia 2012, 39, 661–668. [Google Scholar] [CrossRef]
- Vorobyev, A.; Guo, C. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting. Appl. Phys. B 2013, 113, 423–428. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.N.; Lim, K.-T.; Kim, Y.; Pandey, S.; Garg, P.; Choung, Y.-H.; Choung, P.-H.; Suh, K.-Y.; Chung, J.H. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials 2013, 34, 7257–7268. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, J.W.; Shin, J.H.; Yang, D.-Y. Quantitatively controlled fabrication of uniaxially aligned nanofibrous scaffold for cell adhesion. J. Nanomater. 2011, 2011, 1–9. [Google Scholar] [CrossRef][Green Version]
- Zhou, P.; Mao, F.; He, F.; Han, Y.; Li, H.; Chen, J.; Wei, S. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants. Colloids Surf. B Biointerfaces 2019, 178, 515–524. [Google Scholar] [CrossRef]
- Srivas, P.K.; Kapat, K.; Das, B.; Pal, P.; Ray, P.G.; Dhara, S. Hierarchical surface morphology on Ti6Al4V via patterning and hydrothermal treatment towards improving cellular response. Appl. Surf. Sci. 2019, 478, 806–817. [Google Scholar] [CrossRef]
- Deka, A.; Barman, P.; Bhattacharjee, G.; Bhattacharyya, S. Evolution of ion-induced nano-dot patterns on silicon surface in presence of seeding materials. Appl. Surf. Sci. 2020, 526, 146645. [Google Scholar] [CrossRef]
- Hu, J.; Hardy, C.; Chen, C.-M.; Yang, S.; Voloshin, A.S.; Liu, Y. Enhanced cell adhesion and alignment on micro-wavy patterned surfaces. PLoS ONE 2014, 9, e104502. [Google Scholar] [CrossRef]
- Martínez-Calderon, M.; Martín-Palma, R.J.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J.P.; Olaizola, S.M.; Manso-Silván, M. Biomimetic hierarchical micro/nano texturing of TiAlV alloys by femtosecond laser processing for the control of cell adhesion and migration. Phys. Rev. Mater. 2020, 4, 056008. [Google Scholar] [CrossRef]
- Tiainen, L.; Abreu, P.; Buciumeanu, M.; Silva, F.; Gasik, M.; Guerrero, R.S.; Carvalho, O. Novel laser surface texturing for improved primary stability of titanium implants. J. Mech. Behav. Biomed. Mater. 2019, 98, 26–39. [Google Scholar] [CrossRef]
- Yasumaru, N.; Sentoku, E.; Kiuchi, J. Formation of organic layer on femtosecond laser-induced periodic surface structures. Appl. Surf. Sci. 2017, 404, 267–272. [Google Scholar] [CrossRef]
- Zwahr, C.; Welle, A.; Weingärtner, T.; Heinemann, C.; Kruppke, B.; Gulow, N.; Holthaus, M.; Lasagni, A.F. Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants. Adv. Eng. Mater. 2019, 21, 1900639. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Yang, L.; Shi, Z.; Yang, P.; Cheng, G. In vitro bioactivity and biocompatibility of bio-inspired ti-6al-4v alloy surfaces modified by combined laser micro/nano structuring. Molecules 2020, 25, 1494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Duan, J.; Zhou, X.; Wang, C. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam. Opt. Express 2018, 26, 34016–34030. [Google Scholar] [CrossRef]
- Han, W.; Liu, F.; Yuan, Y.; Li, X.; Wang, Q.; Wang, S.; Jiang, L. Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure. Nanotechnology 2018, 29, 305301. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Han, W.; Liu, W.; Hu, J.; Wang, S.; Lu, Y. Controllable formation of laser-induced periodic surface structures on ZnO film by temporally shaped femtosecond laser scanning. Opt. Lett. 2020, 45, 2411–2414. [Google Scholar] [CrossRef]
- Liang, Q.; Zhong, Y.; Fan, Z.; Diao, H.; Jukna, V.; Chen, W.; Houard, A.; Zeng, Z.; Li, R.; Liu, Y. Optical transmission during mid-infrared femtosecond laser pulses ablation of fused silica. Appl. Surf. Sci. 2019, 471, 506–515. [Google Scholar] [CrossRef]
- Shi, X.; Xu, X. Laser fluence dependence of ripple formation on fused silica by femtosecond laser irradiation. Appl. Phys. A 2019, 125, 256. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, J. Grating-assisted fabrication of sub-wavelength ripples during femtosecond laser processing of dielectrics. Chin. Opt. Lett. 2016, 14, 011404. [Google Scholar] [CrossRef]
- Young, J.F.; Preston, J.; Van Driel, H.; Sipe, J. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 1983, 27, 1155. [Google Scholar] [CrossRef]
- Sipe, J.; Young, J.F.; Preston, J.; Van Driel, H. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141. [Google Scholar] [CrossRef]
- Gemini, L.; Hashida, M.; Shimizu, M.; Miyasaka, Y.; Inoue, S.; Tokita, S.; Limpouch, J.; Mocek, T.; Sakabe, S. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses. J. Appl. Phys. 2013, 114, 194903. [Google Scholar] [CrossRef]
- Li, F.; Schellekens, M.; de Bont, J.; Peters, R.; Overbeek, A.; Leermakers, F.A.; Tuinier, R. Self-Assembled Structures of PMAA–PMMA Block Copolymers: Synthesis, Characterization, and Self-Consistent Field Computations. Macromolecules 2015, 48, 1194–1203. [Google Scholar] [CrossRef]
- Le Harzic, R.; Dörr, D.; Sauer, D.; Stracke, F.; Zimmermann, H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl. Phys. Lett. 2011, 98, 211905. [Google Scholar] [CrossRef]
- Dong, Y.; Molian, P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Appl. Phys. Lett. 2004, 84, 10–12. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Xiao, H.; Lu, Y.; Tsai, H. Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics. J. Phys. D Appl. Phys. 2012, 45, 175301. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef]
- Wang, J.; Guo, C. Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses. J. Appl. Phys. 2006, 100, 023511. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Lu, Y. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains. J. Appl. Phys. 2012, 112, 103103. [Google Scholar] [CrossRef]
- Lou, K.; Qian, J.; Shen, D.; Wang, H.; Ding, T.; Wang, G.; Dai, Y.; Zhao, Q.-Z. Recording, erasing, and rewriting of ripples on metal surfaces by ultrashort laser pulses. Opt. Lett. 2018, 43, 1778–1781. [Google Scholar] [CrossRef] [PubMed]
- Gräf, S.; Kunz, C.; Engel, S.; Derrien, T.J.-Y.; Müller, F.A. Femtosecond laser-induced periodic surface structures on fused silica: The impact of the initial substrate temperature. Materials 2018, 11, 1340. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Zhang, Y.; Xie, C.; Liu, K.; Zhou, Q. Periodic structures on germanium induced by high repetition rate femtosecond laser. Opt. Laser Technol. 2018, 101, 291–297. [Google Scholar] [CrossRef]
- Fraggelakis, F.; Stratakis, E.; Loukakos, P. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl. Surf. Sci. 2018, 444, 154–160. [Google Scholar] [CrossRef]
- Garcell, E.M.; Guo, C. Polarization-controlled microgroove arrays induced by femtosecond laser pulses. J. Appl. Phys. 2018, 123, 213103. [Google Scholar] [CrossRef]
- Giannuzzi, G.; Gaudiuso, C.; Di Franco, C.; Scamarcio, G.; Lugarà, P.M.; Ancona, A. Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays. Opt. Lasers Eng. 2019, 114, 15–21. [Google Scholar] [CrossRef]
- Han, W.; Han, Z.; Yuan, Y.; Wang, S.; Li, X.; Liu, F. Continuous control of microlens morphology on Si based on the polarization-dependent femtosecond laser induced periodic surface structures modulation. Opt. Laser Technol. 2019, 119, 105629. [Google Scholar] [CrossRef]
- Yin, K.; Chu, D.; Dong, X.; Wang, C.; Duan, J.-A.; He, J. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 2017, 9, 14229–14235. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, H.; Duan, J.A.; Wang, C.; Zhou, J.; Lu, Y.; Yin, K.; Dong, X.; Su, W.; Sun, X. Experimental research of laser-induced periodic surface structures in a typical liquid by a femtosecond laser. Chin. Opt. Lett. 2017, 15, 021404. [Google Scholar]
- Han, W.; Jiang, L.; Li, X.; Liu, P.; Xu, L.; Lu, Y. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes. Opt. Express 2013, 21, 15505–15513. [Google Scholar] [CrossRef]




Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Guo, X.; Shang, Y.; Chen, J. Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses. Appl. Sci. 2021, 11, 2250. https://doi.org/10.3390/app11052250
Yuan Y, Guo X, Shang Y, Chen J. Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses. Applied Sciences. 2021; 11(5):2250. https://doi.org/10.3390/app11052250
Chicago/Turabian StyleYuan, Yanping, Xinyang Guo, Yitong Shang, and Jimin Chen. 2021. "Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses" Applied Sciences 11, no. 5: 2250. https://doi.org/10.3390/app11052250
APA StyleYuan, Y., Guo, X., Shang, Y., & Chen, J. (2021). Adjustment of Subwavelength Rippled Structures on Titanium by Two-Step Fabrication Using Femtosecond Laser Pulses. Applied Sciences, 11(5), 2250. https://doi.org/10.3390/app11052250
