# Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Spectral Solvers

#### 2.2. Problem Statement

#### 2.3. Mapping to and from the Computational Subregion

## 3. Results and Discussion

#### 3.1. Verification and Accuracy Determination

#### 3.2. Examples

#### 3.2.1. Focusing of a Gaussian Laser Pulse

#### 3.2.2. Focusing of a Laser Pulse with a Circular Flat-Top Transverse Profile

#### 3.2.3. Focusing of Realistic Laser Pulses

## 4. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys.
**2009**, 81, 163–234. [Google Scholar] [CrossRef][Green Version] - Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys.
**2006**, 78, 309–371. [Google Scholar] [CrossRef][Green Version] - Marklund, M.; Shukla, P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys.
**2006**, 78, 591–640. [Google Scholar] [CrossRef][Green Version] - Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys.
**2012**, 84, 1177–1228. [Google Scholar] [CrossRef][Green Version] - Yanovsky, V.; Chvykov, V.; Kalinchenko, G.; Rousseau, P.; Planchon, T.; Matsuoka, T.; Maksimchuk, A.; Nees, J.; Cheriaux, G.; Mourou, G.; et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express
**2008**, 16, 2109. [Google Scholar] [CrossRef] [PubMed] - Chatziathanasiou, S.; Kahaly, S.; Skantzakis, E.; Sansone, G.; Lopez-Martens, R.; Haessler, S.; Varju, K.; Tsakiris, G.; Charalambidis, D.; Tzallas, P. Generation of Attosecond Light Pulses from Gas and Solid State Media. Photonics
**2017**, 4, 26. [Google Scholar] [CrossRef][Green Version] - Harvey, C.N.; Gonoskov, A.; Ilderton, A.; Marklund, M. Quantum Quenching of Radiation Losses in Short Laser Pulses. Phys. Rev. Lett.
**2017**, 118, 105004. [Google Scholar] [CrossRef][Green Version] - Davis, L.W. Theory of electromagnetic beams. Phys. Rev. A
**1979**, 19, 1177–1179. [Google Scholar] [CrossRef] - Barton, J.P.; Alexander, D.R. Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam. J. Appl. Phys.
**1989**, 66, 2800–2802. [Google Scholar] [CrossRef] - Sheppard, C.J.R.; Saghafi, S. Electromagnetic Gaussian beams beyond the paraxial approximation. J. Opt. Soc. Am. A
**1999**, 16, 1381. [Google Scholar] [CrossRef] - Sepke, S.M.; Umstadter, D.P. Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length. Opt. Lett.
**2006**, 31, 2589. [Google Scholar] [CrossRef] [PubMed][Green Version] - Salamin, Y. Fields of a Gaussian beam beyond the paraxial approximation. Appl. Phys. B
**2006**, 86, 319–326. [Google Scholar] [CrossRef] - Couture, M.; Belanger, P.A. From Gaussian beam to complex-source-point spherical wave. Phys. Rev. A
**1981**, 24, 355–359. [Google Scholar] [CrossRef][Green Version] - Narozhny, N.B.; Fofanov, M.S. Scattering of relativistic electrons by a focused laser pulse. J. Exp. Theor. Phys.
**2000**, 90, 753–768. [Google Scholar] [CrossRef] - Lin, Q.; Zheng, J.; Becker, W. Subcycle Pulsed Focused Vector Beams. Phys. Rev. Lett.
**2006**, 97, 253902. [Google Scholar] [CrossRef] - Fedotov, A.M.; Korolev, K.Y.; Legkov, M.V. Exact analytical expression for the electromagnetic field in a focused laser beam or pulse. In Physics of Intense and Superintense Laser Fields; Attosecond Pulses; Quantum and Atomic Optics; and Engineering of Quantum Information, Proceedings of the International Conference on Coherent and Nonlinear Optics, Minsk, Belarus, 28 May–1 June 2007; Fedorov, M.V., Sandner, W., Giacobino, E., Kilin, S., Kulik, S., Sergienko, A., Bandrauk, A., Sergeev, A.M., Eds.; SPIE: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef][Green Version]
- Sapozhnikov, O.A. An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates. Acoust. Phys.
**2012**, 58, 41–47. [Google Scholar] [CrossRef] - Yu, B.; Lin, Z.; Pu, J. Comparative study on the paraxial approximation errors of tightly focused fundamental Gaussian beams. Opt. Eng.
**2019**, 58, 1. [Google Scholar] [CrossRef] - Popov, K.I.; Bychenkov, V.Y.; Rozmus, W.; Sydora, R.D. Electron vacuum acceleration by a tightly focused laser pulse. Phys. Plasmas
**2008**, 15, 013108. [Google Scholar] [CrossRef] - Bochkarev, S.G.; Bychenkov, V.Y. Acceleration of electrons by tightly focused femtosecond laser pulses. Quantum Electron.
**2007**, 37, 273–284. [Google Scholar] [CrossRef] - Harvey, C.; Marklund, M.; Holkundkar, A.R. Focusing effects in laser-electron Thomson scattering. Phys. Rev. Accel. Beams
**2016**, 19, 094701. [Google Scholar] [CrossRef] - Gonoskov, A.A.; Korzhimanov, A.V.; Kim, A.V.; Marklund, M.; Sergeev, A.M. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E
**2011**, 84, 046403. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kormin, D.; Borot, A.; Ma, G.; Dallari, W.; Bergues, B.; Aladi, M.; Földes, I.B.; Veisz, L. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces. Nat. Commun.
**2018**, 9, 4992. [Google Scholar] [CrossRef] [PubMed] - Cardenas, D.E.; Ostermayr, T.M.; Lucchio, L.D.; Hofmann, L.; Kling, M.F.; Gibbon, P.; Schreiber, J.; Veisz, L. Sub-cycle dynamics in relativistic nanoplasma acceleration. Sci. Rep.
**2019**, 9, 7321. [Google Scholar] [CrossRef][Green Version] - Rivas, D.E.; Borot, A.; Cardenas, D.E.; Marcus, G.; Gu, X.; Herrmann, D.; Xu, J.; Tan, J.; Kormin, D.; Ma, G.; et al. Next Generation Driver for Attosecond and Laser-plasma Physics. Sci. Rep.
**2017**, 7, 5224. [Google Scholar] [CrossRef] [PubMed][Green Version] - Thiele, I.; Skupin, S.; Nuter, R. Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes. J. Comput. Phys.
**2016**, 321, 1110–1119. [Google Scholar] [CrossRef][Green Version] - Pérez, F.; Grech, M. Oblique-incidence, arbitrary-profile wave injection for electromagnetic simulations. Phys. Rev. E
**2019**, 99, 033307. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bahk, S.W.; Rousseau, P.; Planchon, T.A.; Chvykov, V.; Kalintchenko, G.; Maksimchuk, A.; Mourou, G.A.; Yanovsky, V. Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm
^{2}). Appl. Phys. B**2005**, 80, 823–832. [Google Scholar] [CrossRef][Green Version] - Gonoskov, A.; Wallin, E.; Polovinkin, A.; Meyerov, I. Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics. Sci. Rep.
**2019**, 9, 7043. [Google Scholar] [CrossRef] - Gonoskov, A.; Gonoskov, I.; Harvey, C.; Ilderton, A.; Kim, A.; Marklund, M.; Mourou, G.; Sergeev, A. Probing Nonperturbative QED with Optimally Focused Laser Pulses. Phys. Rev. Lett.
**2013**, 111, 060404. [Google Scholar] [CrossRef][Green Version] - Gonoskov, A.; Bashinov, A.; Gonoskov, I.; Harvey, C.; Ilderton, A.; Kim, A.; Marklund, M.; Mourou, G.; Sergeev, A. Anomalous Radiative Trapping in Laser Fields of Extreme Intensity. Phys. Rev. Lett.
**2014**, 113, 014801. [Google Scholar] [CrossRef][Green Version] - Gelfer, E.G.; Mironov, A.A.; Fedotov, A.M.; Bashmakov, V.F.; Nerush, E.N.; Kostyukov, I.Y.; Narozhny, N.B. Optimized multibeam configuration for observation of QED cascades. Phys. Rev. A
**2015**, 92, 022113. [Google Scholar] [CrossRef][Green Version] - Gonoskov, A.; Bashinov, A.; Bastrakov, S.; Efimenko, E.; Ilderton, A.; Kim, A.; Marklund, M.; Meyerov, I.; Muraviev, A.; Sergeev, A. Ultrabright GeV Photon Source via Controlled Electromagnetic Cascades in Laser-Dipole Waves. Phys. Rev. X
**2017**, 7, 041003. [Google Scholar] [CrossRef][Green Version] - Vranic, M.; Grismayer, T.; Fonseca, R.A.; Silva, L.O. Electron–positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion
**2016**, 59, 014040. [Google Scholar] [CrossRef][Green Version] - Gong, Z.; Hu, R.H.; Shou, Y.R.; Qiao, B.; Chen, C.E.; He, X.T.; Bulanov, S.S.; Esirkepov, T.Z.; Bulanov, S.V.; Yan, X.Q. High-efficiency γ-ray flash generation via multiple-laser scattering in ponderomotive potential well. Phys. Rev. E
**2017**, 95, 013210. [Google Scholar] [CrossRef] [PubMed][Green Version] - Efimenko, E.S.; Bashinov, A.V.; Bastrakov, S.I.; Gonoskov, A.A.; Muraviev, A.A.; Meyerov, I.B.; Kim, A.V.; Sergeev, A.M. Extreme plasma states in laser-governed vacuum breakdown. Sci. Rep.
**2018**, 8, 2329. [Google Scholar] [CrossRef][Green Version] - Efimenko, E.S.; Bashinov, A.V.; Gonoskov, A.A.; Bastrakov, S.I.; Muraviev, A.A.; Meyerov, I.B.; Kim, A.V.; Sergeev, A.M. Laser-driven plasma pinching in e
^{−}e^{+}cascade. Phys. Rev. E**2019**, 99, 031201. [Google Scholar] [CrossRef][Green Version] - Magnusson, J.; Gonoskov, A.; Marklund, M.; Esirkepov, T.Z.; Koga, J.K.; Kondo, K.; Kando, M.; Bulanov, S.V.; Korn, G.; Bulanov, S.S. Laser-Particle Collider for Multi-GeV Photon Production. Phys. Rev. Lett.
**2019**, 122, 254801. [Google Scholar] [CrossRef][Green Version] - Magnusson, J.; Gonoskov, A.; Marklund, M.; Esirkepov, T.Z.; Koga, J.K.; Kondo, K.; Kando, M.; Bulanov, S.V.; Korn, G.; Geddes, C.G.R.; et al. Multiple colliding laser pulses as a basis for studying high-field high-energy physics. Phys. Rev. A
**2019**, 100, 063404. [Google Scholar] [CrossRef][Green Version] - Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng.
**2019**, 7. [Google Scholar] [CrossRef] - Bulanov, S.S.; Esirkepov, T.Z.; Thomas, A.G.R.; Koga, J.K.; Bulanov, S.V. Schwinger Limit Attainability with Extreme Power Lasers. Phys. Rev. Lett.
**2010**, 105, 220407. [Google Scholar] [CrossRef][Green Version] - Gonoskov, I.; Aiello, A.; Heugel, S.; Leuchs, G. Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses. Phys. Rev. A
**2012**, 86, 053836. [Google Scholar] [CrossRef] - Naumova, N.M.; Nees, J.A.; Mourou, G.A. Relativistic attosecond physics. Phys. Plasmas
**2005**, 12, 056707. [Google Scholar] [CrossRef][Green Version] - Blinne, A.; Schinkel, D.; Kuschel, S.; Elkina, N.; Rykovanov, S.G.; Zepf, M. A systematic approach to numerical dispersion in Maxwell solvers. Comput. Phys. Commun.
**2018**, 224, 273–281. [Google Scholar] [CrossRef][Green Version] - hi-χ Project. Available online: https://github.com/hi-chi (accessed on 12 December 2020).
- Muraviev, A.; Bashinov, A.; Efimenko, E.; Volokitin, V.; Meyerov, I.; Gonoskov, A. Strategies for particle resampling in PIC simulations. Comput. Phys. Commun.
**2021**, 107826. [Google Scholar] [CrossRef] - Weideman, J.A.C.; Herbst, B.M. Split-Step Methods for the Solution of the Nonlinear Schrödinger Equation. SIAM J. Numer. Anal.
**1986**, 23, 485–507. [Google Scholar] [CrossRef] - Birdsall, C.K.; Langdon, A.B. Plasma Physics via Computer Simulation; IOP: Bristol, UK, 1991. [Google Scholar]
- Haber, I.; Lee, R.; Klein, H.; Boris, J. Advances in electromagnetic simulation techniques. In Proceedings of the Sixth Conference Numerical Simulation Plasmas, Berkeley, CA, USA, 18 July 1973; pp. 46–48. [Google Scholar]
- Lin, A.T. Application of electromagnetic particle simulation to the generation of electromagnetic radiation. Phys. Fluids
**1974**, 17, 1995. [Google Scholar] [CrossRef] - Buneman, O.; Barnes, C.; Green, J.; Nielsen, D. Principles and capabilities of 3-D, E-M particle simulations. J. Comput. Phys.
**1980**, 38, 1–44. [Google Scholar] [CrossRef] - Gustafsson, B.; Kreiss, H.O.; Oliger, J. Time Dependent Problems and Difference Methods; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 24. [Google Scholar]
- Vay, J.L.; Haber, I.; Godfrey, B.B. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys.
**2013**, 243, 260–268. [Google Scholar] [CrossRef] - Gonoskov, A. Ultra-Intense Laser-Plasma Interaction for Applied and Fundamental Physics. Ph.D. Thesis, Umeå University, Umeå, Sweden, 2013. [Google Scholar]
- Gerchberg, R.W.; Saxton, W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik
**1972**, 35, 237–246. [Google Scholar] - Ferri, J.; Davoine, X.; Fourmaux, S.; Kieffer, J.; Corde, S.; Phuoc, K.T.; Lifschitz, A. Effect of experimental laser imperfections on laser wakefield acceleration and betatron source. Sci. Rep.
**2016**, 6, 27846. [Google Scholar] [CrossRef]

**Figure 1.**An example of simulation of the tight focusing problem. The electric field intensity is shown for (

**a**) $t=-{R}_{0}/c$, (

**b**) $t=-{R}_{0}/2c$, (

**c**) $t=0$ and (

**d**) $t={R}_{0}/2c$ with f-number $=0.3$ ($\theta \approx 1$ rad), $\lambda =1$ μm, ${R}_{0}=16\lambda $, $L=2\lambda $, $\epsilon =0.1$ rad, ${P}_{0}=1$ W. The pulse propagates towards positive x direction, the transverse directions are spanned by y and z axes (see Equation (8)).

**Figure 2.**Illustration of the idea of the proposed method. The pictures show the evolution of the electromagnetic field composed by the equidistant replication of the initial pulse along the x axis: the field intensity is shown for (

**a**) $t=-{R}_{0}/c$, (

**b**) $t=-{R}_{0}/2c$, (

**c**) $t=0$ and (

**d**) $t={R}_{0}/2c$ with f-number $=0.3$ ($\theta \approx 1$ rad), $\lambda =1$ μm, ${R}_{0}=16\lambda $, $L=2\lambda $, $\epsilon =0.1$ rad, ${P}_{0}=1$ W.

**Figure 3.**Schematic illustration of the proposed method in 3D space (

**a**) and the cross-section in the x-y plane at $z=0$ (

**b**). The restriction given by Equation (12) is derived from requiring that the initial (red) and replicated (blue) pulses do not overlap. The shaded region is the subregion where the simulation is performed.

**Figure 4.**(

**a**) Relative error of the peak amplitude, comparing the computations in a subregion to that in the full domain, as a function of D, the subregion size. Here $f\text{-}\mathrm{number}=0.3$. (

**b**) Computational time of one iteration of the method (grid initialisation, forward FFT, spectral solver execution, and backward FFT), as a function of the parameter $D/L$. All the simulations were performed using Hi-Chi. Computation time of sequential (all lines except the brown one) and multithreaded (brown line, 36 physical cores) versions of the code are presented. Size of the computational grid varies with the parameter D and is equal to $(56D/L)\times $ 896 × 896.

**Figure 5.**Comparison of numerical and analytical results for a tightly focused pulse with Gaussian temporal and angular profiles and fixed peak power $P=1$ W: (

**a**) The peak intensity at focus. The (

**b**) transverse and (

**c**) longitudinal fields in the plane $z=0$, at focus, from simulations with an f-number of 1. (

**d**) Comparison of theoretical (solid colors) and simulation (black, dashed) results for the transverse field along $y=z=0$ (blue) and the longitudinal field along $y=\lambda $ and $z=0$, at focus, for $f=1$.

**Figure 6.**The dependence of (

**a**) the peak value of cycle-averaged intensity on f-number and (

**b**) the coordinate x at which the peak is reached, at a fixed peak power ${P}_{0}=1$ W and wavelength $\lambda =1$ μm (see the explanation in the text).

**Figure 7.**Evolution of the peak amplitude ${a}_{0}$ at focus as a function of the standard deviation of the initial phase ($\sigma \left(\varphi \right)$ in radian, solid line) and standard deviation of ${a}_{0}$ over 20 runs (dashed lines). Inlets exhibit examples of the normalized transverse intensity profile obtained at focus for two different values of $\sigma \left(\varphi \right)$. Transverse directions are normalized to $\lambda $.

**Figure 8.**Example of focal spot calculated from realistic profile: (

**a**) typical transverse intensity profile (a. u.) and (

**b**) wavefront (in radians) without correction of extra aberrations during beam transport from the end of the laser to the experiment and (

**c**) normalized focal intensity obtained applying our method with a f-number $f=3$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Panova, E.; Volokitin, V.; Efimenko, E.; Ferri, J.; Blackburn, T.; Marklund, M.; Muschet, A.; De Andres Gonzalez, A.; Fischer, P.; Veisz, L.; Meyerov, I.; Gonoskov, A. Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space. *Appl. Sci.* **2021**, *11*, 956.
https://doi.org/10.3390/app11030956

**AMA Style**

Panova E, Volokitin V, Efimenko E, Ferri J, Blackburn T, Marklund M, Muschet A, De Andres Gonzalez A, Fischer P, Veisz L, Meyerov I, Gonoskov A. Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space. *Applied Sciences*. 2021; 11(3):956.
https://doi.org/10.3390/app11030956

**Chicago/Turabian Style**

Panova, Elena, Valentin Volokitin, Evgeny Efimenko, Julien Ferri, Thomas Blackburn, Mattias Marklund, Alexander Muschet, Aitor De Andres Gonzalez, Peter Fischer, Laszlo Veisz, Iosif Meyerov, and Arkady Gonoskov. 2021. "Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space" *Applied Sciences* 11, no. 3: 956.
https://doi.org/10.3390/app11030956