Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry and Simulations
- Mechanical stress in the multilayer structure. The implications of these simulations concerned possible local second-order non-linearities of such devices. For this study, a superficial charge was applied at layer interfaces, according to the number of layers. The Young’s modulus, Poisson coefficient, and density were fixed to values from the relevant literature [54]. The results are given in the next paragraphs.
2.2. Experimental Setup
3. Results
3.1. Modeling
3.1.1. Optical Modeling
3.1.2. Finite Element Modeling for Stress Characterization
3.2. Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Riedel, M.F.; Binosi, D.; Thew, R.; Calarco, T. The European quantum technologies flagship programme. Quantum Sci. Technol. 2017, 2, 030501. [Google Scholar] [CrossRef]
- The Future Is Quantum. Available online: https://www.qt.eu/ (accessed on 15 October 2020).
- Dumke, R.; Lu, Z.; Close, J.; Robins, N.; Weis, A.; Mukherjee, M.; Birk, G.; Hufnagel, C.; Amico, L.; Boshier, M.G.; et al. Roadmap on quantum optical systems. J. Opt. 2016, 18, 093001. [Google Scholar] [CrossRef] [Green Version]
- Korzh, B.; Ci Wen Lim, C.; Houlmann, R.; Gisin, N.; Jun Li, M.; Nolan, D.; Sanguinetti, B.; Thew, R.; Zbinden, H. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 2015, 9, 163–168. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gil, B.; Basov, D.N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552–567. [Google Scholar] [CrossRef]
- Hoffman, A.; Gmachl, C. Extending opportunities. Nat. Photonics 2012, 6, 407. [Google Scholar] [CrossRef]
- Borri, S.; Siciliani de Cumis, M.; Viciani, S.; D’Amato, F.; De Natale, P. Unveiling quantum-limited operation of interband cascade lasers. APL Photonics 2020, 5, 36101. [Google Scholar] [CrossRef] [Green Version]
- Consolino, L.; Cappelli, F.; Siciliani de Cumis, M.; De Natale, P. QCL-based frequency metrology from the mid-infrared to the THz range: A review. Nanophotonics 2018, 8, 181–204. [Google Scholar] [CrossRef]
- Galli, I.; Bartalini, S.; Ballerini, R.; Barucci, M.; Cancio, P.; De Pas, M.; Giusfredi, G.; Mazzotti, D.; Akikusa, N.; De Natale, P. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 2016, 3, 385–388. [Google Scholar] [CrossRef]
- Hao, Q.; Zhu, G.; Yang, S.; Yang, K.; Duan, T.; Xie, X.; Huang, K.; Zeng, H. Mid-infrared transmitter and receiver modules for free-space optical communication. App. Opt. 2017, 56, 2260–2264. [Google Scholar] [CrossRef]
- Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.; Yang, R.Q.; Liu, H.C. Free space optical communication utilizing mid-infrared interband cascade laser. In Free-Space Laser Communication Technologies XXII; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7587, pp. 1–10. [Google Scholar] [CrossRef]
- Hansen, M.G.; Magoulakis, E.; Chen, Q.-F.; Ernsting, I.; Schiller, S. Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1 × 10−13-level frequency instability. Opt. Lett. 2015, 40, 2289–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coluccelli, N.; Gambetta, A.; Cassinerio, M.; Laporta, P.; Galzerano, G. Mid-IR Solid-State Lasers for Spectroscopy and Metrology Applications. In Proceedings of the 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, 12–16 May 2013. [Google Scholar]
- Tidemand-Lichtenberg, P.; Rodrigo, P.J.; Pedersen, C. Mid-Infrared Imaging using Up-conversion—Principles and Applications, in High-Brightness Sources and Light-driven Interactions. Osa Tech. Dig. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ravaro, M.; Locatelli, M.; Pugliese, E.; Di Leo, I.; Siciliani de Cumis, M.; D’Amato, F.; Poggi, P.; Consolino, L.; Meucci, R.; Ferraro, P.; et al. Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser. Opt. Lett. 2014, 39, 4843–4846. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, D.; Dai, D. Multimode silicon photonics. Nanophotonics 2018, 8, 227–247. [Google Scholar] [CrossRef]
- Zou, Y.; Chakravarty, S.; Chung, C.-J.; Xu, X.; Chen, R.T. Mid-infrared silicon photonic waveguides and devices. Photonics Res. 2018, 6, 254–276. [Google Scholar] [CrossRef]
- Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L. Nonlinear silicon photonics. J. Opt. 2017, 19, 093002. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.C.; Wada, K.; Agarwal, A.; Hu, J. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics 2018, 7, 393–420. [Google Scholar] [CrossRef]
- Jalali, B. Nonlinear optics in the mid-infrared. Nat. Photonics 2010, 4, 506–508. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Bonneau, D.; O’Brien, J.L.; Thompson, M.G. Silicon Quantum Photonics. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Ann. Rev. Anal. Chem. 2016, 9, 45–68. [Google Scholar] [CrossRef]
- Soler Penades, J.; Ortega-Moñux, A.; Nedeljkovic, M.; Wangüemert-Pérez, J.G.; Halir, R.; Khokhar, A.Z.; Alonso-Ramos, C.; Qu, Z.; Molina-Fernández, I.; Cheben, P.; et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt. Express 2016, 24, 22908–22916. [Google Scholar] [CrossRef] [PubMed]
- Sieger, M.; Mizaikoff, B. Optimizing the design of GaAs/AlGaAs thin-film waveguides for integrated mid-infrared sensors. Photonics Res. 2016, 4, 106–110. [Google Scholar] [CrossRef]
- Hu, T.; Dong, B.; Luo, X.; Liow, T.-Y.; Song, J.; Lee, C.; Lo, G.-Q. Silicon photonic platforms for mid-infrared applications. Photonics Res. 2017, 5, 417. [Google Scholar] [CrossRef] [Green Version]
- Motamedi, A.R.; Nejadmalayeri, A.H.; Khilo, A.; Kärtner, F.X.; Ippen, E.P. Ultrafast nonlinear optical studies of silicon nanowaveguides. Opt. Express 2012, 20, 4085–4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Pfeiffer, M.H.P.; Volet, N.; Zervas, M.; Peters, J.D.; Manganelli, C.L.; Stanton, E.J.; Li, Y.; Kippenberg, T.J.; Bower, J.E. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 2017, 42, 803–806. [Google Scholar] [CrossRef]
- Logan, D.F.; Giguere, M.; Villeneuve, A.; Helmy, A.S. Widely tunable mid-infrared generation via frequency conversion in semiconductor waveguides. Opt. Lett. 2013, 38, 4457–4460. [Google Scholar] [CrossRef]
- Fujimura, M.; Okabe, H.; Beniya, K.; Suhara, T. Waveguide Quasi-Phase-Matched Sum-Frequency Generation Device Pumped by InGaAs Laser Diode for Single-Photon Detection in Communication Wavelength Band. Jpn. J. Appl. Phys. 2007, 46, 868. [Google Scholar] [CrossRef]
- Bisadi, Z.; Mancinelli, M.; Manna, S.; Tondini, S.; Bernard, M.; Samusenko, A.; Ghulinyan, M.; Fontana, G.; Bettotti, P.; Ramiro-Manzano, F.; et al. Silicon nanocrystals for nonlinear optics and secure communications. Phys. Stat. Sol. A 2015, 212, 2659–2671. [Google Scholar] [CrossRef]
- Tondini, S.; Castellan, C.; Mancinelli, M.; Kopp, C.; Pavesi, L. Methods for Low Crosstalk and Wavelength Tunability in Arrayed-Waveguide Grating for On-Silicon Optical Network. J. Lightwave Technol. 2017, 35, 5134–5141. [Google Scholar] [CrossRef]
- Manna, S.; Ramiro-Manzano, F.; Ghulinyan, M.; Mancinelli, M.; Turri, F.; Pucker, G.; Pavesi, L. Multi-mode interference revealed by two photon absorption in silicon rich SiO2 waveguides. App. Phys. Lett. 2015, 106, 071109. [Google Scholar] [CrossRef]
- Manna, S.; Bernard, M.; Biasi, S.; Ramiro Manzano, F.; Mancinelli, M.; Ghulinyan, M.; Pucker, G.; Pavesi, L. Stimulated degenerate four-wave mixing in Si nanocrystal waveguides. J. Opt. 2016, 18, 075801. [Google Scholar] [CrossRef]
- Signorini, S.; Mancinelli, M.; Borghi, M.; Bernard, M.; Ghulinyan, M.; Pucker, G.; Pavesi, L. Intermodal four-wave mixing in silicon waveguides. Photonics Res. 2018, 6, 805–814. [Google Scholar] [CrossRef]
- Arahira, S.; Murai, H. Wavelength conversion of incoherent light by sum-frequency generation. Opt. Express 2014, 22, 12945–12961. [Google Scholar] [CrossRef] [PubMed]
- Pecora, E.F.; Capretti, A.; Miano, G.; Dal Negro, L. Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films. Appl. Phys. Lett. 2013, 102, 141114. [Google Scholar] [CrossRef] [Green Version]
- Khurgin, J.B.; Stievater, T.H.; Pruessner, M.W.; Rabinovich, W.S. On the origin of the second-order nonlinearity in strained Si–SiN structures. J. Opt. Soc. Am. B 2015, 32, 2494–2499. [Google Scholar] [CrossRef] [Green Version]
- Avrutsky, I.; Soref, R. Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Opt. Express 2011, 19, 21707–21716. [Google Scholar] [CrossRef]
- Daldosso, N.; Melchiorri, M.; Riboli, F.; Girardini, M.; Pucker, G.; Crivellari, M.; Bellutti, P.; Lui, A.; Pavesi, L. Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line. J. Lightwave Technol. 2004, 22, 1734. [Google Scholar] [CrossRef]
- Levy, J.S.; Foster, M.A.; Gaeta, A.L.; Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 2011, 19, 11415–11421. [Google Scholar] [CrossRef] [Green Version]
- Ning, T.; Piertarinen, H.; Hyvärinen, O.; Simonen, J.; Genty, G.; Kauranen, M. Strong second-harmonic generation in silicon nitride films. Appl. Phys. Lett. 2012, 100, 161902. [Google Scholar] [CrossRef]
- Gorin, A.; Jaouad, A.; Grondin, E.; Aimez, V.; Charette, P. Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties. Opt. Express 2008, 16, 13509–13516. [Google Scholar] [CrossRef] [Green Version]
- Stefan, L.; Bernard, M.; Guider, R.; Pucker, G.; Pavesi, L.; Ghulinyan, M. Ultra-high-Q thin-silicon nitride strip-loaded ring resonators. Opt. Lett. 2015, 40, 3316–3319. [Google Scholar] [CrossRef] [PubMed]
- Schriever, C.; Bianco, F.; Cazzanelli, M.; Ghulinyan, M.; Eisenschmidt, C.; de Boor, J.; Schmid, A.; Heitmann, J.; Pavesi, L.; Schilling, J. Second-Order Optical Nonlinearity in Silicon Waveguides: Inhomogeneous Stress and Interfaces. Adv. Opt. Mater. 2015, 3, 129–136. [Google Scholar] [CrossRef]
- Cazzanelli, M.; Bianco, F.; Borga, E.; Pucker, G.; Ghulinyan, M.; Degoli, E.; Luppi, E.; Veniard, V.; Ossicini, S.; Modotto, D.; et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater. 2012, 11, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.C.; Tao, S.H.; Xu, Y.L.; Sun, X.W.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt. Express 2008, 16, 20809–20816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchiorri, M.; Daldosso, N.; Sbrana, F.; Pavesi, L.; Pucker, G.; Kompocholis, C.; Bellutti, P.; Lui, A. Propagation losses of silicon nitride waveguides in the near-infrared range. Appl. Phys. Lett. 2005, 86, 121111. [Google Scholar] [CrossRef]
- Wang, L.; Xie, W.; van Thourhout, D.; Zhang, Y.; Yu, H.; Wang, S. Nonlinear silicon nitride waveguides based on a PECVD deposition platform. Opt. Express 2018, 26, 9645–9654. [Google Scholar] [CrossRef] [Green Version]
- Daldosso, N.; Melchiorri, M.; Riboli, F.; Sbrana, F.; Pavesi, L.; Pucker, G.; Kompocholis, C.; Crivellari, M.; Bellutti, P.; Lui, A. Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Mater. Sci. Semicond. Proc. 2004, 7, 453–458. [Google Scholar] [CrossRef]
- Soman, A.; Antony, A. Broad range refractive index engineering of SixNy and SiOxNy thin films and exploring their potential applications in crystalline silicon solar cells. Mat. Chem. Phys. 2017, 197, 181–191. [Google Scholar] [CrossRef]
- Viciani, S.; Siciliani de Cumis, M.; Borri, S.; Patimisco, P.; Sampaolo, A.; Scamarcio, G.; De Natale, P.; D’Amato, F.; Spagnolo, V. A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 μm. Appl. Phys. B 2015, 119, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Mancinelli, M.; Trenti, A.; Piccione, S.; Fontana, G.; Dam, J.S.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L. Mid-infrared coincidence measurements on twin photons at room temperature. Nat. Commun. 2017, 8, 15184. [Google Scholar] [CrossRef] [Green Version]
- Sawaguchi, A.; Toda, K.; Nilhara, K. Mechanical and Electrical Properties of Silicon Nitride-Silicon Xarbide Nanocomposites Material. J. Am. Ceram. Soc. 1991, 74, 1142–1144. [Google Scholar] [CrossRef]
- Luke, K.; Okawachi, Y.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lemarchand, F.; Lequime, M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 2012, 20, 15734–15751. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.D. Chapter2: Boundary-Value Problems in Electrostatic: I. In Classical Electrodynamics, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1999; pp. 57–94. [Google Scholar]
- Veronis, G.; Fan, S. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt. Express 2007, 15, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Green, D.J. Chapter 2: Elastic behavior. In An Introduction to the Mechanical Properties of Ceramics; Cambridge University Press: Cambridge, UK, 2004; pp. 13–69. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, I.L.; Siciliani de Cumis, M.; Mazzotti, D.; Galli, I.; Cancio Pastor, P.; De Natale, P. Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared. Appl. Sci. 2021, 11, 1227. https://doi.org/10.3390/app11031227
García IL, Siciliani de Cumis M, Mazzotti D, Galli I, Cancio Pastor P, De Natale P. Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared. Applied Sciences. 2021; 11(3):1227. https://doi.org/10.3390/app11031227
Chicago/Turabian StyleGarcía, Iñaki López, Mario Siciliani de Cumis, Davide Mazzotti, Iacopo Galli, Pablo Cancio Pastor, and Paolo De Natale. 2021. "Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared" Applied Sciences 11, no. 3: 1227. https://doi.org/10.3390/app11031227
APA StyleGarcía, I. L., Siciliani de Cumis, M., Mazzotti, D., Galli, I., Cancio Pastor, P., & De Natale, P. (2021). Silicon-Based Multilayer Waveguides for Integrated Photonic Devices from the Near to Mid Infrared. Applied Sciences, 11(3), 1227. https://doi.org/10.3390/app11031227