Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania
Abstract
:1. Introduction
2. Experimental Description
2.1. Temperature Measurements
2.2. Air Velocity Measurements
2.3. Measurements of Climatic Parameters
3. Results and Discussions
3.1. Temperatures Prediction
3.2. Airflow Prediction
3.3. Energy Efficiency
- -
- Pre-heating efficiency, η, and
- -
- Dynamic insulation efficiency, ε.
- Texh—temperature of the air exhaust (exiting from the façade), °C.
- Ti—air temperature inside the room, °C.
- Te—exterior air temperature, °C.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corgnati, S.P.; Perino, M.; Serra, V. Experimental assessment of the performance of an active transparent façade during actual operating conditions. Sol. Energy 2007, 81, 993–1013. [Google Scholar] [CrossRef]
- Saelens, D.; Roels, S.; Hens, H. Strategies to improve the energy performance of multiple-skin facades. Build. Environ. 2008, 43, 638–650. [Google Scholar] [CrossRef]
- Zanghirella, F. Numerical and Experimental Analysis of Active Transparent Façade. Ph.D. Thesis, Polytechnic University of Turin, Turin, Italy, 2008. [Google Scholar]
- Fuliotto, R.; Cambuli, F.; Mandas, N.; Bacchin, N.; Manara, G.; Chen, Q. Experimental and numerical analysis of heat transfer and airflow on an interactive building facade. Energy Build. 2010, 42, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, M. Experimental and Computational Evaluation of Thermal Performance and Overheating in Double Skin Facades. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Serra, V.; Zanghirella, F.; Perino, M. Experimental evaluation of a climate façade: Energy efficiency and thermal comfort performance. Energy Build. 2010, 42, 50–62. [Google Scholar] [CrossRef]
- Perino, M. State-of-the-Art Review: Vol. 2A. Responsive Building Elements: NNEX 44: Integrating Environmentally Responsive Elements in Buildings; Aalborg University: Aalborg, Denmark, 2008. [Google Scholar]
- Safer, N. Multi-Scale Modelling of Double Skin Façades Equipped with Solar Protections. Ph.D. Thesis, National Institute for Applied Sciences, Lyon, France, 2006. [Google Scholar]
- Gavan, V.; Woloszyn, M.; Kuznik, F.; Roux, J.-J. Experimental study of a mechanically ventilated double-skin façade with venetian sun-shading device: A full-scale investigation in controlled environment. Sol. Energy 2010, 84, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Anđelković, A.; Cvjetkovic, T.; Djakovic, D.; Stojanovic, I. The development of simple calculation model for energy performance of double skin façades. Therm. Sci. 2012, 16, 251–267. [Google Scholar] [CrossRef]
- Ignjatovic, M.; Blagojevic, B.; Stojanovic, B.; Stojiljković, M. Influence of glazing types and ventilation principles in double skin façades on delivered heating and cooling energy during heating season in an office building. Therm. Sci. 2012, 16, 461–469. [Google Scholar] [CrossRef]
- Matour, S.; Garcia-Hansen, V.; Omrani, S.; Hassanli, S.; Drogemuller, R. Wind-driven ventilation of Double Skin Façades with vertical openings: Effects of opening configurations. Build. Environ. 2021, 196, 107804. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, X.; Chew, M.Y.L.; Zhang, L.; Tu, J.; Shi, L. Predicting airflow in naturally ventilated double-skin facades: Theoretical analysis and modelling. Renew. Energy 2021, 179, 1940–1954. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, X.; Setunge, S.; Tu, J.; Liu, J.; Shi, L. Naturally ventilated double-skin façade with adjustable louvers. Sol. Energy 2021, 225, 33–43. [Google Scholar] [CrossRef]
- Torres, M.; Alavedra, P.; Guzman, A.; Cuerva, E.; Planas, C.; Clemente, R.; Escalona, V. Double Skin Facades—Cavity and exterior openings dimensions for saving energy on Mediterranean climate. Build. Simul. 2007, 1–3, 198–205. [Google Scholar]
- Azarbayjani, M. Climatic based consideration of double skin facade system: Natural ventilation performance of a case study with double skin facade in mediterranean climate. In Proceedings of the Building Simulation 2013 13th International Conference of the International Building Performance Simulation Association, Chambery, France, 25–28 August 2013; pp. 512–519. [Google Scholar]
- Hamza, N.; Cook, M.; Cropper, P. Comparative analysis of natural ventilation performance in non-unifrom double skin facades in temperate climates. In Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011; pp. 2401–2406. [Google Scholar]
- Stec, W.; Van Paassen, A. Symbiosis of the double skin façade with the HVAC system. Energy Build. 2005, 37, 461–469. [Google Scholar] [CrossRef]
- Pomponi, F.; Piroozfar, P.; Southall, R.; Ashton, P.; Farr, E.R. Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2016, 54, 1525–1536. [Google Scholar] [CrossRef] [Green Version]
- Dama, A.; Angeli, D.; Larsen, O.K. Naturally ventilated double-skin façade in modeling and experiments. Energy Build. 2017, 144, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Aksamija, A. Context Based Design of Double Skin Facades: Climatic Considerations during the Design Process. Perkins+Will Res. J. 2009, 1, 54–69. [Google Scholar]
- Jankovic, A.; Goia, F. Impact of double skin facade constructional features on heat transfer and fluid dynamic behaviour. Build. Environ. 2021, 196, 107796. [Google Scholar] [CrossRef]
- Hien, W.N.; Liping, W.; Chandra, A.N.; Pandey, A.R.; Xiaolin, W. Effects of double glazed facade on energy consumption, thermal comfort and condensation for a typical office building in Singapore. Energy Build. 2005, 37, 563–572. [Google Scholar] [CrossRef]
- Wong, P.; Prasad, D.; Behnia, M. A new type of double-skin façade configuration for the hot and humid climate. Energy Build. 2008, 40, 1941–1945. [Google Scholar] [CrossRef]
- Hamza, N. Double versus single skin facades in hot arid areas. Energy Build. 2008, 40, 240–248. [Google Scholar] [CrossRef]
- Qahtan, a.m. Thermal performance of a double-skin façade exposed to direct solar radiation in the tropical climate of Malaysia: A case study. Case Stud. Therm. Eng. 2019, 14, 100419. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Yezioro, A. Mechanically ventilated double-skin facade in a hot and humid climate: Summer monitoring in an office tower in Tel Aviv. Arch. Sci. Rev. 2018, 61, 171–188. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M. Energy and carbon analysis of double skin façades in the hot and dry climate. J. Clean. Prod. 2018, 197, 85–96. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Çetintaş, F.; Yılmaz, Z. Double skin façade’s effects on heat losses of office buildings in Istanbul. Energy Build. 2005, 37, 691–697. [Google Scholar] [CrossRef]
- Năstase, G.; Şerban, A.; Dragomir, G.; Bolocan, S.; Brezeanu, A.I. Box window double skin façade. Steady state heat transfer model proposal for energetic audits. Energy Build. 2016, 112, 12–20. [Google Scholar] [CrossRef]
- Kuznik, F.; Catalina, T.; Gauzere, L.; Woloszyn, M.; Roux, J.-J. Numerical modelling of combined heat transfers in a double skin façade–Full-scale laboratory experiment validation. Appl. Therm. Eng. 2011, 31, 3043–3054. [Google Scholar] [CrossRef] [Green Version]
- Ascione, F.; Bianco, N.; Iovane, T.; Mastellone, M.; Mauro, G.M. The evolution of building energy retrofit via double-skin and responsive façades: A review. Sol. Energy 2021, 224, 703–717. [Google Scholar] [CrossRef]
- Hou, K.; Li, S.; Wang, H. Simulation and experimental verification of energy saving effect of passive preheating natural ventilation double skin façade. Energy Explor. Exploit. 2021, 39, 464–487. [Google Scholar] [CrossRef]
- Larsen, S.F.; Rengifo, L.; Filippín, C. Double skin glazed façades in sunny Mediterranean climates. Energy Build. 2015, 102, 18–31. [Google Scholar] [CrossRef]
- Guardo, A.; Coussirat, M.; Valero, C.; Egusquiza, E.; Alavedra, P. CFD assessment of the performance of lateral ventilation in Double Glazed Façades in Mediterranean climates. Energy Build. 2011, 43, 2539–2547. [Google Scholar] [CrossRef]
- Hassanli, S.; Hu, G.; Kwok, K.; Fletcher, D.F. Utilizing cavity flow within double skin façade for wind energy harvesting in buildings. J. Wind. Eng. Ind. Aerodyn. 2017, 167, 114–127. [Google Scholar] [CrossRef]
- Chereches, M. The Thermo-Hygro-Energetic Behavior of the Ventilated Facades, Applicable to Public Buildings, in the Climatic Conditions in Romania. Prenormative Research; Contract No. 493/2011; NIRD URBAN–INCERC: Iasi, Romania, 2011. [Google Scholar]
- Saelens, D. Energy performance assessment of singlestorey multiple-skin facades. Ph.D Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2002. [Google Scholar]
- Hudişteanu, S.; Poenari, C.F.; Balint, B.I.; Cherecheş, M.; Cherecheş, N.C. Energy saving analysis inside a double skin façade. Math. Model. Civ. Eng. J. 2013, 1, 78–83. [Google Scholar]
- Popovici, C.G.; Cirlan, V.V.; Mateescu, T.D.; Chereches, N.C.; Hudisteanu, S.V. Influence of various angles of the venetian blind on the efficiency of a double skin facade. Energy Procedia 2016, 85, 416–424. [Google Scholar] [CrossRef] [Green Version]
Component | Properties |
---|---|
Exterior glazing | single pane (8 mm), clear float glass, central glass U-value = 5.6 W/(m2·K), transmission τ = 82%, absorption α = 11%, solar reflection ρ = 7%. |
Exterior frame | aluminum frame with thermal barrier, U-value = 3.1 W/(m2·K) |
Interior glazing | double thermo-insulated pane glazing (4-16-4 mm), clear float glass, low-E coating, central glass U-value = 1.92 W/(m2·K) |
Interior frame | PVC frame with thermal barrier, U-value = 1.42 W/(m2·K) |
Day | Outside Temperature (°C) | Average Wind Speed (km/h) | Maximum Solar Radiation (W/m2) | Dominant Wind Direction | ||
---|---|---|---|---|---|---|
Mean | Low | High | ||||
1 | - | - | 33.7 | 2.3 | - | NNE |
2 | 30.3 | 22.7 | 37.1 | 0.6 | 583 | NNE |
3 | 30.9 | 23.4 | 39.2 | 1.1 | 552 | NE |
4 | 27.7 | 22.2 | 33.9 | 1.9 | 544 | N |
5 | 26.0 | 20.4 | 31.8 | 1.9 | 372 | N |
6 | 24.4 | 20.1 | 34.6 | 1.3 | 618 | N |
7 | 24.8 | 17.9 | 31.8 | 1.9 | 569 | N |
Day | Outside Temperature (°C) | Average Wind Speed (km/h) | Maximum Solar Radiation (W/m2) | Dominant Wind Direction | ||
---|---|---|---|---|---|---|
Mean | Low | High | ||||
1 | 28.7 | 22.1 | 35.1 | 2.3 | 557 | N |
2 | 29.3 | 21.6 | 38.5 | 2.6 | 624 | N |
3 | 22.5 | 18.6 | 26.3 | 4.2 | 601 | N |
4 | 20.9 | 16.5 | 27.7 | 2.3 | 619 | N |
5 | 20.2 | 15.6 | 25.7 | 1.3 | 700 | N |
6 | 24.6 | 15.0 | 32.3 | 1.1 | 595 | N |
7 | 27.9 | 19.2 | 34.8 | 1.3 | 625 | N |
Day | Outside Temperature (°C) | Average Wind Speed (km/h) | Maximum Solar Radiation (W/m2) | Dominant Wind Direction | ||
---|---|---|---|---|---|---|
Mean | Low | High | ||||
1 | 27.2 | 20.2 | 36.8 | 2.1 | 534 | N |
2 | 21.1 | 16.8 | 27.0 | 4.2 | 633 | N |
3 | 22.8 | 17.4 | 29.1 | 6.0 | 629 | N |
4 | 25.3 | 18.6 | 31.2 | 4.0 | 547 | N |
5 | 28.2 | 20.0 | 35.4 | 3.2 | 546 | N |
6 | 29.6 | 20.9 | 36.4 | 1.6 | 552 | N |
7 | 28.4 | 20.3 | 35.8 | 1.4 | 580 | N |
Day | Outside Temperature (°C) | Average Wind Speed (km/h) | Maximum Solar Radiation (W/m2) | Dominant Wind Direction | ||
---|---|---|---|---|---|---|
Mean | Low | High | ||||
1 | 3.1 | 2.0 | 4.4 | 1.4 | 25 | N |
2 | 3.1 | 1.9 | 4.5 | 1.8 | 26 | SSE |
3 | 5.6 | 3.7 | 8.4 | 0.6 | 69 | N |
4 | 5.2 | 3.3 | 6.9 | 1.8 | 54 | SSE |
5 | 4.7 | 3.2 | 6.4 | 0.6 | 29 | SE |
6 | 6.7 | 2.4 | 14.1 | 3.1 | 144 | N |
7 | 12.2 | 8.2 | 16.2 | 1.0 | 107 | N |
SET 1 07th–13th July | SET 2 14th–20th July | SET 3 21th–27th July | |
---|---|---|---|
Tcav max (°C) | 47.4 (3rd day, 01:00 p.m.) | 47.7 (2nd day, 01:00 p.m.) | 44.8 (6th day, 01:00 p.m.) |
Te (°C) | 37.6 (3rd day, 01:00 p.m.) | 36.8 (2nd day, 01:00 p.m.) | 34.9 (6th day, 01:00 p.m.) |
It (W/m2) | 533 (3rd day, 01:00 p.m.) | 540 (2nd day, 01:00 p.m.) | 545 (6th day, 01:00 p.m.) |
Tcav min (°C) | 21.3 (6th day, 5:00 a.m.) | 16.8 (6th day, 06:00 a.m.) | 18.5 (3rd day, 06:00 a.m.) |
DT10:00a.m.–14:00p.m. (°C) | 10–13 | 11–12 | 7–10 |
Tcav average (°C) | 31.8 | 29.0 | 29.1 |
Te average (°C) | 27.5 | 24.9 | 26.1 |
vwind average (km/h) | 1.6 (N-NE) | 2.2 (N) | 3.2 (N-SSE) |
%RHaverage | 47% | 48.3% | 47.8% |
Day Hour | Measuring Point | Air Velocity, v | vmed | Qv | Vwind | Te | Tcav | ||
---|---|---|---|---|---|---|---|---|---|
(m/s) | (m/s) | (m3/h) | (m/s) | (°C) | (°C) | ||||
12 July 10:00 | Inlet | 0.41 | 0.6 | 0.52 | 0.51 | 367 | 0.4 | 29.2 | 39.3 |
h = 1.4 m | 0.23 | 0.21 | 0.18 | 0.21 | - | ||||
Outlet | 0.62 | 0.68 | 0.72 | 0.67 | 482 | ||||
12 July 15:00 | Inlet | 0.36 | 0.51 | 0.54 | 0.47 | 338 | 2.7 | 26.9 | 37.9 |
h = 1.4 m | 0.23 | 0.22 | 0.2 | 0.22 | - | ||||
Outlet | 0.6 | 0.52 | 0.68 | 0.60 | 432 | ||||
12 July 17:00 | Inlet | 0.43 | 0.56 | 0.47 | 0.49 | 353 | 0.9 | 22.1 | 25.5 |
h = 1.4 m | 0.2 | 0.21 | 0.18 | 0.20 | - | ||||
Outlet | 0.74 | 0.65 | 0.72 | 0.70 | 504 | ||||
13 July 12:00 | Inlet | 0.59 | 0.52 | 0.64 | 0.58 | 418 | 1.3 | 27.4 | 40.9 |
h = 1.4 m | 0.23 | 0.21 | 0.18 | 0.21 | - | ||||
Outlet | 0.4 | 0.56 | 0.61 | 0.52 | 374 |
Day Hour | Measuring Point | Air Velocity, v | vmed | Qv | Vwind | Te | Tcav | ||
---|---|---|---|---|---|---|---|---|---|
(m/s) | (m/s) | (m3/h) | (m/s) | (°C) | (°C) | ||||
16 July 13:00 | Inlet | 0.68 | 0.79 | 0.72 | 0.73 | 526 | 1.8 | 25.7 | 32.3 |
h = 1.4 m | 0.39 | 0.42 | 0.46 | 0.42 | - | ||||
Outlet | 0.69 | 0.69 | 0.71 | 0.70 | 504 | ||||
17 July 13:00 | Inlet | 0.57 | 0.63 | 0.68 | 0.63 | 454 | 0.9 | 24.6 | 39.3 |
h = 1.4 m | 0.31 | 0.35 | 0.21 | 0.29 | - | ||||
Outlet | 0.42 | 0.58 | 0.53 | 0.51 | 367 | ||||
18 July 10:00 | Inlet | 0.66 | 0.64 | 0.68 | 0.66 | 475 | 0.4 | 23.4 | 38.4 |
h = 1.4 m | 0.23 | 0.25 | 0.27 | 0.25 | - | ||||
Outlet | 0.45 | 0.49 | 0.4 | 0.45 | 324 | ||||
19 July 16:00 | Inlet | 0.57 | 0.58 | 0.61 | 0.59 | 425 | 0.4 | 31.7 | 34.7 |
h = 1.4 m | 0.31 | 0.35 | 0.42 | 0.36 | - | ||||
Outlet | 0.52 | 0.49 | 0.56 | 0.52 | 374 |
Day Hour | Measuring Point | Air Velocity, v | vmed | Qv | Vwind | Te | Tcav | ||
---|---|---|---|---|---|---|---|---|---|
(m/s) | (m/s) | (m3/h) | (m/s) | (°C) | (°C) | ||||
23 July 10:00 | Inlet | 0.61 | 0.58 | 0.61 | 0.60 | 432 | 2.2 | 19.8 | 22.4 |
h = 1.4 m | 0.22 | 0.29 | 0.24 | 0.25 | - | ||||
Outlet | 0.26 | 0.28 | 0.31 | 0.28 | 2268 | ||||
23 July 15:00 | Inlet | 0.71 | 0.74 | 0.68 | 0.71 | 511 | 3.1 | 27.7 | 34.7 |
h = 1.4 m | 0.31 | 0.28 | 0.35 | 0.31 | - | ||||
Outlet | 0.37 | 0.36 | 0.28 | 0.34 | 1652 | ||||
24 July 12:00 | Inlet | 0.64 | 0.56 | 0.68 | 0.63 | 454 | 2.2 | 28 | 38.9 |
h = 1.4 m | 0.3 | 0.42 | 0.29 | 0.34 | - | ||||
Outlet | 0.4 | 0.32 | 0.34 | 0.35 | 2138 | ||||
25 July 16:00 | Inlet | 0.56 | 0.61 | 0.49 | 0.55 | 396 | 1.3 | 35.3 | 37.2 |
h = 1.4 m | 0.29 | 0.35 | 0.27 | 0.30 | - | ||||
Outlet | 0.31 | 0.35 | 0.29 | 0.32 | 1912 |
Day Hour | vmed | Te | Texh | It | Qr | Qs | Qi | Qinc | ε | |
---|---|---|---|---|---|---|---|---|---|---|
(m/s) | (°C) | (°C) | (W/m2) | (kg/s) | (W) | (W) | (W) | (W) | (%) | |
12 July 10:00 | 0.46 | 29.2 | 39.3 | 402 | 0.11 | 1096 | 878 | 123 | 2097 | 52.3 |
12 July 15:00 | 0.43 | 26.9 | 37.9 | 14 | 0.10 | 1108 | 31 | 109 | 1247 | 88.8 |
12 July 17:00 | 0.46 | 22.1 | 25.5 | 54 | 0.11 | 369 | 118 | −15 | 472 | 78.2 |
13 July 12:00 | 0.44 | 27.4 | 40.9 | 550 | 0.10 | 1380 | 1201 | 139 | 2720 | 50.7 |
Day Hour | vmed | Te | Texh | It | Qr | Qs | Qi | Qinc | ε | |
---|---|---|---|---|---|---|---|---|---|---|
(m/s) | (°C) | (°C) | (W/m2) | (kg/s) | (W) | (W) | (W) | (W) | (%) | |
16 July 13:00 | 0.62 | 25.7 | 32.3 | 610 | 0.14 | 953 | 1332 | 53 | 2338 | 40.8 |
17 July 13:00 | 0.48 | 24.6 | 39.3 | 160 | 0.11 | 1641 | 349 | 123 | 2113 | 77.7 |
18 July 10:00 | 0.45 | 23.4 | 38.4 | 442 | 0.11 | 1592 | 965 | 114 | 2671 | 59.6 |
19 July 16:00 | 0.49 | 31.7 | 34.7 | 425 | 0.11 | 344 | 928 | 77 | 1349 | 25.5 |
Day Hour | vmed | Te | Texh | It | Qr | Qs | Qi | Qinc | ε | |
---|---|---|---|---|---|---|---|---|---|---|
(m/s) | (°C) | (°C) | (W/m2) | (kg/s) | (W) | (W) | (W) | (W) | (%) | |
23 July 10:00 | 0.38 | 19.8 | 22.4 | 207 | 0.48 | 1261 | 452 | −46 | 1667 | 75.6 |
23 July 15:00 | 0.45 | 27.7 | 34.7 | 499 | 0.58 | 4087 | 1090 | 77 | 5254 | 77.8 |
24 July 12:00 | 0.44 | 28.0 | 38.9 | 527 | 0.56 | 6177 | 1151 | 119 | 7447 | 82.9 |
25 July 16:00 | 0.39 | 35.3 | 37.2 | 408 | 0.50 | 954 | 891 | 102 | 1947 | 49.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherecheș, M.L.; Cherecheș, N.C.; Ciobanu, A.A.; Hudișteanu, S.V.; Țurcanu, E.F.; Bradu, A.; Popovici, C.G. Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania. Appl. Sci. 2021, 11, 12139. https://doi.org/10.3390/app112412139
Cherecheș ML, Cherecheș NC, Ciobanu AA, Hudișteanu SV, Țurcanu EF, Bradu A, Popovici CG. Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania. Applied Sciences. 2021; 11(24):12139. https://doi.org/10.3390/app112412139
Chicago/Turabian StyleCherecheș, Monica Lilioara, Nelu Cristian Cherecheș, Adrian Alexandru Ciobanu, Sebastian Valeriu Hudișteanu, Emilian Florin Țurcanu, Aurelia Bradu, and Cătălin George Popovici. 2021. "Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania" Applied Sciences 11, no. 24: 12139. https://doi.org/10.3390/app112412139
APA StyleCherecheș, M. L., Cherecheș, N. C., Ciobanu, A. A., Hudișteanu, S. V., Țurcanu, E. F., Bradu, A., & Popovici, C. G. (2021). Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania. Applied Sciences, 11(24), 12139. https://doi.org/10.3390/app112412139