Recent Advances of Integrative Bio-Omics Technologies to Improve Type 1 Diabetes (T1D) Care
Abstract
:1. Introduction
2. Prevention
3. Pathogenesis and Biomarkers
4. Diagnostic Methods
5. Treatment of Diabetes
6. Device and Personal Health Records
7. Complications of T1D
8. Environment & T1D
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, R.G.; McGurnaghan, S.J.; Onengut-Gumuscu, S.; Chen, W.M.; Colhoun, H.M.; Rich, S.S.; Orchard, T.J.; Costacou, T. Insulin Resistance-Associated Genetic Variants in Type 1 Diabetes. J. Diabetes Its Complicat. 2021, 35, 107842. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009, 32, S5–S10.
- Nagel, K.E.; Dearth-Wesley, T.; Herman, A.N.; Smith, H.G.; Whitaker, R.C. Diabetes Distress and Glycaemic Control in Young Adults with Type 1 Diabetes: Associations by Use of Insulin Pumps and Continuous Glucose Monitors. Diabet. Med. 2021, 38, e14660. [Google Scholar] [CrossRef] [PubMed]
- Hanas, R.; Lindgren, F.; Lindblad, B. A 2-Yr National Population Study of Pediatric Ketoacidosis in Sweden: Predisposing Conditions and Insulin Pump Use. Pediatric Diabetes 2009, 10, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Karges, B.; Schwandt, A.; Heidtmann, B.; Kordonouri, O.; Binder, E.; Schierloh, U.; Boettcher, C.; Kapellen, T.; Rosenbauer, J.; Holl, R.W. Association of Insulin Pump Therapy vs Insulin Injection Therapy with Severe Hypoglycemia, Ketoacidosis, and Glycemic Control among Children, Adolescents, and Young Adults with Type 1 Diabetes. JAMA-J. Am. Med Assoc. 2017, 318, 1358–1366. [Google Scholar] [CrossRef]
- Kristensen, L.J.; Birkebaek, N.H.; Mose, A.H.; Jensen, M.B.; Thastum, M. Multi-Informant Path Models of the Influence of Psychosocial and Treatment-Related Variables on Adherence and Metabolic Control in Adolescents with Type 1 Diabetes Mellitus. PLoS ONE 2018, 13, e0204176. [Google Scholar] [CrossRef]
- Gan, W.Z.; Ramachandran, V.; Lim, C.S.Y.; Koh, R.Y. Omics-Based Biomarkers in the Diagnosis of Diabetes. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 1–21. [Google Scholar] [CrossRef]
- Balzano-Nogueira, L.; Ramirez, R.; Zamkovaya, T.; Dailey, J.; Ardissone, A.N.; Chamala, S.; Serrano-Quílez, J.; Rubio, T.; Haller, M.J.; Concannon, P.; et al. Integrative Analyses of TEDDY Omics Data Reveal Lipid Metabolism Abnormalities, Increased Intracellular ROS and Heightened Inflammation Prior to Autoimmunity for Type 1 Diabetes. Genome Biol. 2021, 22, 39. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Yang, J.; Erlund, I.; Lernmark, Å.; Hagopian, W.; Rewers, M.; She, J.X.; Toppari, J.; Ziegler, A.G.; et al. Plasma Metabolome and Circulating Vitamins Stratified Onset Age of an Initial Islet Autoantibody and Progression to Type 1 Diabetes: The TEDDY Study. Diabetes 2021, 70, 282–292. [Google Scholar] [CrossRef]
- Laimighofer, M.; Lickert, R.; Fuerst, R.; Theis, F.J.; Winkler, C.; Bonifacio, E.; Ziegler, A.G.; Krumsiek, J. Common Patterns of Gene Regulation Associated with Cesarean Section and the Development of Islet Autoimmunity–Indications of Immune Cell Activation. Sci. Rep. 2019, 9, 6250. [Google Scholar] [CrossRef]
- Boldison, J.; Long, A.E.; Aitken, R.J.; Wilson, I.V.; Megson, C.; Hanna, S.J.; Wong, F.S.; Gillespie, K.M. Activated but Functionally Impaired Memory Tregs Are Expanded in Slow Progressors to Type 1 Diabetes. Diabetologia 2021, 1–13. [Google Scholar] [CrossRef]
- Syreeni, A.; Sandholm, N.; Sidore, C.; Cucca, F.; Haukka, J.; Harjutsalo, V.; Groop, P.H. Genome-Wide Search for Genes Affecting the Age at Diagnosis of Type 1 Diabetes. J. Intern. Med. 2020, 289, 662–674. [Google Scholar] [CrossRef]
- Passero, K.; Setia-Verma, S.; McAllister, K.; Manrai, A.; Patel, C.; Hall, M. What about the Environment? Leveraging Multi-Omic Datasets to Characterize the Environment’s Role in Human Health. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 2021, 26, 309. [Google Scholar] [PubMed]
- Lloyd, R.E.; Tamhankar, M.; Lernmark, Å. Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? Annu. Rev. Med. 2021, 73. [Google Scholar] [CrossRef] [PubMed]
- Stanek, K.R.; Noser, A.E.; Patton, S.R.; Clements, M.A.; Youngkin, E.M.; Majidi, S. Stressful Life Events, Parental Psychosocial Factors, and Glycemic Management in School-Aged Children during the 1 Year Follow-up of New-Onset Type 1 Diabetes. Pediatric Diabetes 2020, 21, 673–680. [Google Scholar] [CrossRef]
- Monzon, A.D.; Marker, A.M.; Noser, A.E.; Clements, M.A.; Patton, S.R. Associations Between Objective Sleep Behaviors and Blood Glucose Variability in Young Children With Type 1 Diabetes. Ann. Behav. Med. 2020, 55, 144–154. [Google Scholar] [CrossRef] [PubMed]
- McConville, A.; Noser, A.E.; Nelson, E.L.; Clements, M.A.; Majidi, S.; Patton, S.R. Depression as a Predictor of Hypoglycemia Worry in Parents of Youth with Recent-Onset Type 1 Diabetes. Pediatric Diabetes 2020, 21, 909–916. [Google Scholar] [CrossRef]
- Case, H.; Williams, D.D.; Majidi, S.; Ferro, D.; Clements, M.A.; Patton, S.R. Longitudinal Associations between Family Conflict, Parent Engagement, and Metabolic Control in Children with Recent-Onset Type 1 Diabetes. BMJ Open Diabetes Res. Care 2021, 9, e002461. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.J.; Marsolo, K.A.; Froehle, C.M. Applications of Business Analytics in Healthcare. Bus. Horiz. 2014, 57, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Rewers, A.; Chase, H.P.; Mackenzie, T.; Walravens, P.; Roback, M.; Rewers, M.; Hamman, R.F.; Klingensmith, G. Predictors of Acute Complications in Children With Type 1 Diabetes. JAMA 2002, 287, 2511–2518. [Google Scholar] [CrossRef] [Green Version]
- Quick, C.; Anugu, P.; Musani, S.; Weiss, S.T.; Burchard, E.G.; White, M.J.; Keys, K.L.; Cucca, F.; Sidore, C.; Boehnke, M.; et al. Sequencing and Imputation in GWAS: Cost-effective Strategies to Increase Power and Genomic Coverage across Diverse Populations. Genet. Epidemiol. 2020, 44, 537–549. [Google Scholar] [CrossRef]
- Diao, J.A.; Kohane, I.S.; Manrai, A.K. Biomedical Informatics and Machine Learning for Clinical Genomics. Hum. Mol. Genet. 2018, 27, R29–R34. [Google Scholar] [CrossRef]
- Kamies, R.; Martinez-Jimenez, C.P. Advances of Single-Cell Genomics and Epigenomics in Human Disease: Where Are We Now? Mamm. Genome 2020, 31, 170–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurawek, M.; Fichna, M.; Fichna, P.; Czainska, M.; Rozwadowska, N. Upregulation of FOXO3 in New-Onset Type 1 Diabetes Mellitus. J. Immunol. Res. 2020, 2020, 4–7. [Google Scholar] [CrossRef]
- Martens, G.A.; Stangé, G.; Piemonti, L.; Anckaert, J.; Ling, Z.; Pipeleers, D.G.; Gorus, F.K.; Mestdagh, P.; de Smet, D.; Vandesompele, J.; et al. The MicroRNA Landscape of Acute Beta Cell Destruction in Type 1 Diabetic Recipients of Intraportal Islet Grafts. Cells 2021, 10, 1693. [Google Scholar] [CrossRef]
- Ahmed, S.; Cerosaletti, K.; James, E.; Long, S.A.; Mannering, S.; Speake, C.; Nakayama, M.; Tree, T.; Roep, B.O.; Herold, K.C.; et al. Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes 2019, 68, 1366–1379. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.J.; Tatovic, D.; Thayer, T.C.; Dayan, C.M. Insights From Single Cell RNA Sequencing Into the Immunology of Type 1 Diabetes-Cell Phenotypes and Antigen Specificity. Front. Immunol. 2021, 12, 751701. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.J.; Powell, W.E.; Long, A.E.; Robinson, E.J.S.; Davies, J.; Megson, C.; Howell, A.; Jones, T.J.; Ladell, K.; Price, D.A.; et al. Slow Progressors to Type 1 Diabetes Lose Islet Autoantibodies over Time, Have Few Islet Antigen-Specific CD8+ T Cells and Exhibit a Distinct CD95hi B Cell Phenotype. Diabetologia 2020, 63, 1174–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wu, H.; Zhao, M.; Lu, Q. Identifying the Differentially Expressed MicroRNAs in Autoimmunity: A Systemic Review and Meta-Analysis. Autoimmunity 2020, 53, 122–136. [Google Scholar] [CrossRef]
- Kraus, A.U.; Penna-Martinez, M.; Shoghi, F.; Meyer, G.; Badenhoop, K. Monocytic Cytokines in Autoimmune Polyglandular Syndrome Type 2 Are Modulated by Vitamin D and HLA-DQ. Front. Immunol. 2020, 11, 583709. [Google Scholar] [CrossRef]
- Colli, M.L.; Hill, J.L.E.; Marroquí, L.; Chaffey, J.; dos Santos, R.S.; Leete, P.; Coomans de Brachène, A.; Paula, F.M.M.; op de Beeck, A.; Castela, A.; et al. PDL1 Is Expressed in the Islets of People with Type 1 Diabetes and Is Up-Regulated by Interferons-α and-γ via IRF1 Induction. EBioMedicine 2018, 36, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Lee, J.; Kim, M.S.; Liu, V.; Moulik, M.; Li, H.; Yi, Q.; Xie, A.; Chen, W.; Yang, L.; et al. PD-L1-Driven Tolerance Protects Neurogenin3-Induced Islet Neogenesis to Reverse Established Type 1 Diabetes in NOD Mice. Diabetes 2015, 64, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Arunagiri, A.; Haataja, L.; Torres, M.; Larkin, D.; Kappler, J.; Jin, N.; Arvan, P. Predisposition to Proinsulin Misfolding as a Genetic Risk to Diet-Induced Diabetes. Diabetes 2021, 70, 2580–2594. [Google Scholar] [CrossRef]
- Sun, J.; Cui, J.; He, Q.; Chen, Z.; Arvan, P.; Liu, M. Proinsulin Misfolding and Endoplasmic Reticulum Stress during the Development and Progression of Diabetes. Mol. Asp. Med. 2015, 42, 105–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Hodish, I.; Haataja, L.; Lara-Lemus, R.; Rajpal, G.; Wright, J.; Arvan, P. Proinsulin Misfolding and Diabetes: Mutant INS Gene-Induced Diabetes of Youth. Trends Endocrinol. Metab. TEM 2010, 21, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Safari-Alighiarloo, N.; Taghizadeh, M.; Mohammad Tabatabaei, S.; Namaki, S.; Rezaei-Tavirani, M. Identification of Common Key Genes and Pathways between Type 1 Diabetes and Multiple Sclerosis Using Transcriptome and Interactome Analysis. Endocrine 2020, 68, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-J.; Cheng, J.-L.; Lee, S.-A.; Wang, T.-Y.; Jang, J.-Y.; Chen, K.-C. Elucidate Multidimensionality of Type 1 Diabetes Mellitus Heterogeneity by Multifaceted Information. Sci. Rep. 2021, 11, 20965. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranzini, S.E.; Wang, L.; Himmelstein, D.S.; Santaniello, A.; Parvin, M. ICTNet2: Integrating Heterogeneous Biological Interactions to Understand Complex Traits. F1000Research 2015, 4, 485. [Google Scholar] [CrossRef]
- Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.L. The Human Disease Network. Proc. Natl. Acad. Sci. USA 2007, 104, 8685–8690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vudattu, N.K.; Herold, K.C. Treatment of New Onset Type 1 Diabetes with Teplizumab: Successes and Pitfalls in Development. Expert Opin. Biol. Ther. 2014, 14, 377–385. [Google Scholar] [CrossRef]
- Paul, S.; Ruiz-Manriquez, L.M.; Ledesma-Pacheco, S.J.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Morales-Rodríguez, J.I.; de Donato, M.; Srivastava, A. Roles of MicroRNAs in Chronic Pediatric Diseases and Their Use as Potential Biomarkers: A Review. Arch. Biochem. Biophys. 2021, 699, 108763. [Google Scholar] [CrossRef] [PubMed]
- Nieto, J.; Castillo, B.; Astudillo, M.; Tosur, M.; Balasubramanyam, A.; Pietropaolo, M.; Redondo, M.J. Islet Autoantibody Types Mark Differential Clinical Characteristics at Diagnosis of Pediatric Type 1 Diabetes. Pediatric Diabetes 2021, 22, 882–888. [Google Scholar] [CrossRef]
- Long, A.E.; George, G.; Williams, C.L. Persistence of Islet Autoantibodies after Diagnosis in Type 1 Diabetes. Diabet. Med. A J. Br. Diabet. Assoc. 2021, 38, e14712. [Google Scholar] [CrossRef] [PubMed]
- Dozio, E.; Massaccesi, L.; Romanelli, M.M.C. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J. Clin. Med. 2021, 10, 4792. [Google Scholar] [CrossRef]
- Bent, B.; Cho, P.J.; Henriquez, M.; Wittmann, A.; Thacker, C.; Feinglos, M.; Crowley, M.J.; Dunn, J.P. Engineering Digital Biomarkers of Interstitial Glucose from Noninvasive Smartwatches. npj Digit. Med. 2021, 4, 89. [Google Scholar] [CrossRef]
- Márquez, A.; Martín, J. Genetic Overlap between Type 1 Diabetes and Other Autoimmune Diseases. Semin. Immunopathol. 2021. [Google Scholar] [CrossRef]
- Shepard, J.G.; Airee, A.; Dake, A.W.; McFarland, M.S.; Vora, A. Limitations of A1c Interpretation. South. Med. J. 2015, 108, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.V.; Bernardo, T.; Martins, S.; Sequeira, A. Monogenic Diabetes: A New Pathogenic Variant of HNF1A Gene. BMJ Case Rep. 2021, 14. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, H.; Xi, Z.; Rogaeva, E. Drug Repositioning for Diabetes Based on “omics” Data Mining. PLoS ONE 2015, 10, e0126082. [Google Scholar] [CrossRef]
- Bhattamisra, S.K.; Shin, L.Y.; Saad, H.I.B.M.; Rao, V.; Candasamy, M.; Pandey, M.; Choudhury, H. Interlink Between Insulin Resistance and Neurodegeneration with an Update on Current Therapeutic Approaches. CNS Neurol. Disord. Drug Targets 2020, 19, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Nyaga, D.M.; Vickers, M.H.; Jefferies, C.; Fadason, T.; O’Sullivan, J.M. Untangling the Genetic Link between Type 1 and Type 2 Diabetes Using Functional Genomics. Sci. Rep. 2021, 11, 13871. [Google Scholar] [CrossRef]
- Nyaga, D.M.; Vickers, M.H.; Jefferies, C.; Perry, J.K.; O’sullivan, J.M. The Genetic Architecture of Type 1 Diabetes Mellitus. Mol. Cell. Endocrinol. 2018, 477, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.C.; Rich, S.S. Genetics of Type 1 Diabetes. Curr. Opin. Genet. Dev. 2018, 50, 7–16. [Google Scholar] [CrossRef]
- Soofi, A.; Taghizadeh, M.; Tabatabaei, S.M.; Rezaei Tavirani, M.; Shakib, H.; Namaki, S.; Safari Alighiarloo, N. Centrality Analysis of Protein-Protein Interaction Networks and Molecular Docking Prioritize Potential Drug-Targets in Type 1 Diabetes. Iran. J. Pharm. Res. IJPR 2020, 19, 121–134. [Google Scholar] [CrossRef]
- Perkins, B.A.; Sherr, J.L.; Mathieu, C. Type 1 Diabetes Glycemic Management: Insulin Therapy, Glucose Monitoring, and Automation. Science 2021, 373, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Morton, S.; Li, R.; Dibbo, S.; Prioleau, T. Data-Driven Insights on Behavioral Factors That Affect Diabetes Management. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2020, 5557–5562. [Google Scholar] [CrossRef]
- Yoo, J.H.; Kim, J.H. Time in Range from Continuous Glucose Monitoring: A Novel Metric for Glycemic Control. Diabetes Metab. J. 2020, 44, 828–839. [Google Scholar] [CrossRef]
- Davis, S.; MacKay, L. Moving Beyond the Rhetoric of Shared Decision-Making: Designing Personal Health Record Technology With Young Adults With Type 1 Diabetes. Can. J. Diabetes 2020, 44, 434–441. [Google Scholar] [CrossRef]
- Amed, S.; Nuernberger, K.; McCrea, P.; Reimer, K.; Krueger, H.; Aydede, S.K.; Ayers, D.; Collet, J.-P. Adherence to Clinical Practice Guidelines in the Management of Children, Youth, and Young Adults with Type 1 Diabetes—A Prospective Population Cohort Study. J. Pediatrics 2013, 163, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Rickels, M.R.; Evans-Molina, C.; Bahnson, H.T.; Ylescupidez, A.; Nadeau, K.J.; Hao, W.; Clements, M.A.; Sherr, J.L.; Pratley, R.E.; Hannon, T.S.; et al. High Residual C-Peptide Likely Contributes to Glycemic Control in Type 1 Diabetes. J. Clin. Investig. 2020, 130, 1850–1862. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.; Zheng, R.; Ma, C.; Fan, H.; Xu, L. An Architecture for Healthcare Big Datamanagement and Analysis. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Shanghai, China, 5–7 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 10038 LNCS, pp. 154–160. [Google Scholar]
- Manrai, A.K.; Patel, C.J.; Ioannidis, J.P.A. In the Era of Precision Medicine and Big Data, Who Is Normal? JAMA 2018, 319, 1981. [Google Scholar] [CrossRef] [PubMed]
- Belle, A.; Thiagarajan, R.; Soroushmehr, S.M.R.; Navidi, F.; Beard, D.A.; Najarian, K. Big Data Analytics in Healthcare. BioMed Res. Int. 2015, 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, P.S. Implications of Big Data Analytics on Population Health Management. Big Data 2013, 1, 152–159. [Google Scholar] [CrossRef]
- Clements, M.A.; Staggs, V.S. A Mobile App for Synchronizing Glucometer Data: Impact on Adherence and Glycemic Control among Youths with Type 1 Diabetes in Routine Care. J. Diabetes Sci. Technol. 2017, 11, 461–467. [Google Scholar] [CrossRef]
- Aghanoori, M.R.; Smith, D.R.; Shariati-Ievari, S.; Ajisebutu, A.; Nguyen, A.; Desmond, F.; Jesus, C.H.A.; Zhou, X.; Calcutt, N.A.; Aliani, M.; et al. Insulin-like Growth Factor-1 Activates AMPK to Augment Mitochondrial Function and Correct Neuronal Metabolism in Sensory Neurons in Type 1 Diabetes. Mol. Metab. 2019, 20, 149–165. [Google Scholar] [CrossRef]
- Peravali, R.; Gunnels, L.; Alleboina, S.; Gerling, I.C.; Dokun, A.O. Type 1 Diabetes Alters Ischemia-Induced Gene Expression. J. Clin. Transl. Endocrinol. 2019, 15, 19–24. [Google Scholar] [CrossRef]
- van Zuydam, N.R.; Stiby, A.; Abdalla, M.; Austin, E.; Dahlström, E.H.; McLachlan, S.; Vlachopoulou, E.; Ahlqvist, E.; di Liao, C.; Sandholm, N.; et al. Genome-Wide Association Study of Peripheral Artery Disease. Circ. Genom. Precis. Med. 2021, 14. [Google Scholar] [CrossRef]
- Dennis, K.K.; Auerbach, S.S.; Balshaw, D.M.; Cui, Y.; Fallin, M.D.; Smith, M.T.; Spira, A.; Sumner, S.; Miller, G.W. The Importance of the Biological Impact of Exposure to the Concept of the Exposome. Environ. Health Perspect. 2016, 124, 1504–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental Arsenic Exposure and Its Contribution to Human Diseases, Toxicity Mechanism and Management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef] [PubMed]
- D’Autréaux, B.; Toledano, M.B. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Catania, F.; Krohs, U.; Chittò, M.; Ferro, D.; Ferro, K.; Lepennetier, G.; Görtz, H.D.; Schreiber, R.S.; Kurtz, J.; Gadau, J. The Hologenome Concept: We Need to Incorporate Function. Theory Biosci. 2017, 136, 89–98. [Google Scholar] [CrossRef]
- Abstracts for the T1D Exchange QI Collaborative (T1Dx-QI) Learning Session 2021. November 8–9, 2021. J. Diabetes 2021, 13, 3–17. [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwal, N.; Rodrigues, M.; Williams, D.D.; McDonough, R.J.; Ferro, D. Recent Advances of Integrative Bio-Omics Technologies to Improve Type 1 Diabetes (T1D) Care. Appl. Sci. 2021, 11, 11602. https://doi.org/10.3390/app112411602
Karwal N, Rodrigues M, Williams DD, McDonough RJ, Ferro D. Recent Advances of Integrative Bio-Omics Technologies to Improve Type 1 Diabetes (T1D) Care. Applied Sciences. 2021; 11(24):11602. https://doi.org/10.3390/app112411602
Chicago/Turabian StyleKarwal, Nisha, Megan Rodrigues, David D. Williams, Ryan J. McDonough, and Diana Ferro. 2021. "Recent Advances of Integrative Bio-Omics Technologies to Improve Type 1 Diabetes (T1D) Care" Applied Sciences 11, no. 24: 11602. https://doi.org/10.3390/app112411602
APA StyleKarwal, N., Rodrigues, M., Williams, D. D., McDonough, R. J., & Ferro, D. (2021). Recent Advances of Integrative Bio-Omics Technologies to Improve Type 1 Diabetes (T1D) Care. Applied Sciences, 11(24), 11602. https://doi.org/10.3390/app112411602