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Abstract: Type 1 diabetes (T1D) is a complex autoimmune disease that currently cannot be cured, only
managed. Optimal treatment the of T1D symptoms, requires a multidisciplinary care team, including
endocrinologists, educators, primary care providers, health care specialists, genetic counselors, and
data scientists. This review summarizes how an integrative approach to T1D drives innovation and
quality improvements in health care. Specifically, we highlight how “-omics” technologies facilitate
the understanding of different aspects of the disease, including prevention, pathogenesis, diagnostics,
and treatment. Furthermore, we explore how biological data can be combined with personal and
electronic health records to tailor medical interventions to the individual’s biology and lifestyle. We
conclude that truly personalized medicine will not be limited to one data source but will emerge
from the integration of multiple sources and disciplines that together will support individuals with
T1D in their everyday life.
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1. Introduction

Type 1 diabetes (T1D) is a complex T-cell mediated autoimmune disease defined by
the destruction of insulin-secreting pancreatic beta cells [1,2]. Untreated T1D produces
profound hyperglycemia, warranting a lifetime therapy of exogenous insulin administra-
tion [3,4]. Clinical advancements include a broad range of therapeutic options, including
different forms of insulin administration methods (i.e., insulin pump, multiple daily in-
jections (MDI), sensor-augmented pumping, and advanced hybrid closed loop pump
systems) [3–5]. The success of such targeted treatment options is dependent on a detailed
understanding of the patient’s physiology, genetics, and environment [1,6]. This holistic
exploration of individuals’ “-omics” has the potential to identify novel biomarkers that play
a role in the establishment of T1D and to inform the design of new therapeutic drugs [7].
Molecular analyses can provide deeper insights into T1D disease processes, although asso-
ciations among genetic mutations, biomarkers, environmental exposures, and disease states
are still underexamined [7]. This review examines current “-omics” literature related to T1D
with a focus on prevention, pathogenesis, genetic markers, diagnostic methods, treatment,
device and personal health records, complications, and the role of the environment.

2. Prevention

It is important to understand the pathogenesis of T1D to prevent complications.
This includes the characterization of genetic risk factors, physiologic alterations, and
environmental triggers [8]. For example, multiple loci on chromosomes 8 and 12, show a
strong risk associated with age, in individuals with T1D. Indeed, while single associations
have been made between specific genes, biomarkers and environmental exposures, the
interplay of these different variables has yet to be explored [7]. Furthermore, information
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on associations among different disease states is currently limited. By using aggregated
“-omics” data, relationships between different genetic predispositions and environmental
influences on T1D can not only be explored but may help to identify at-risk individuals
requiring early intervention.

An example of a successful approach, that uncovered the interplay between individual
genetic and environment, is The Environmental Determinants of Diabetes in the Young
(TEDDY) study, for which researchers measured a wide variety of environmental triggers
in children who were at high genetic risk for T1D [8]. There is an ongoing opportunity to
explore connections between seemingly disconnected environmental variables, by using
the resulting database of exposures and metabolic profiles. Investigators linked a metabolic
signature and subsequent alteration in specific physiologic processes (i.e., upregulation of
energy-producing pathways, downregulation of lipogenic processes) that preceded [8,9]. In
the TEDDY study, researchers were able to establish a timeline from when these physiolog-
ical processes occur to complete disease onset, preceding the development of T1D-related
autoimmunity by up to 12 months [9].

Further commonalities can be found in the pathogenesis of T1D between different
disease states. For example, investigators identified that the pentose phosphate pathway
and pyrimidine metabolism were altered in children with islet autoimmunity born by
Cesarean section [10]. The profile of these transcriptomic differences showed similarities
with gene expression alterations during the activation of CD4+ T lymphocytes and other
immune system factors like those found in islet autoimmunity in individuals with T1D [11].
The investigators concluded that the transcriptomic differences found within an individual
delivered by Cesarean section may lead to the potential development of islet autoimmunity
and T1D [10].

Aggregation of available “-omics” data and investigation of possible associations
may allow profiles of at-risk individuals to be constructed [12]. The inclusion of other
environmental factors and disease processes can create a more comprehensive assessment
of T1D pathogenesis [13]. Recent studies uncovered correlations between immune insults,
such as virus infection (i.e., enterovirus), with the onset of immune mechanisms imitating
beta-cell antigens, and therefore, demonstrated a molecular mechanism underpinning the
development of T1D as a consequence of exogenous exposure [14]. Psychological factors,
such as physiological responses to generalized stress, are known to affect T1D disease
onset and management [15–17]. It has been demonstrated that negative influences in the
individual’s environment, such as the presence of family conflict, compromise metabolic
control, and therefore increase the risk for T1D-related complications [18]. Importantly,
resolving the stressful family conflict does not prevent or delay disease onset, but can
improve treatment effectiveness and prevent long-term complications, thereby lowering
direct medical costs [19,20].

3. Pathogenesis and Biomarkers

Modern technologies and advancements in medicine have progressed past the “one
size fits all” approach in therapeutic options. One important tool in this context is the
molecular analysis of gene variants to identify genes involved in the pathogenesis of
T1D [7,21–23]. The products of these genes often referred to as biomarkers, may pro-
vide information related to better disease treatment and management. Especially studies
that included micro-RNA expression analysis have aided in the understanding of the
pathogenesis of T1D.

New-onset T1D has been associated with the overexpression of the gene Forkhead
Box O3 (FOXO3) and a low expression of a pancreas-specific microRNA, called miR-
375 [24,25]. FOXO3 is a transcription factor involved in the development and differentiation
of regulatory T-cells. High expression levels of FOXO3, along with the ongoing islet
autoimmune destruction, in new-onset T1D individuals may explain the exhaustion and
dysfunction seen in their regulatory T-cell populations [26–28]. miR-375 has been shown
to target insulin-induced gene 2 (INSIG2), which regulates insulin secretion and beta-cell
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mass [25]. The gene expression levels of miR375 and FOXO3 could serve as biomarkers
for T1D and should be further explored to possibly prevent the progression of new-onset
diagnosis of the disease.

Additionally, other genes and microRNAs have been identified as showing signs of
differential expression in the development of T1D. Syreeni et al. identified two chromo-
somal regions associated with T1D diagnosis age, which are found in the chromosomal
location Chr17q12 and near the gene P.H.D. finger protein 20 like 1 (phf20l1) on chromosome
8 [12]. In individuals with T1D miR-148a and miR-181a are found to be elevated in the
blood, and miR-21 and miR-155 are elevated in urine [29]. These genes and microRNAs
may prove to be useful biomarkers for the prediction of T1D development and warrant
further investigation.

Metabolomic data offers new insights into T1D-related autoimmunity by assessing the
role of gene regulation and dietary exposure in the development of T1D. Gene expression-
associated dysregulation of vitamins in circulation were assessed in the TEDDY study,
yielding results indicative of lower plasma Vitamin C and D levels at infancy in HLA-
DR3/DR4 children [9]. In a study by Kraus et al., in vitro treatment with 1,25(O.H.)2D3
reduced proinflammatory cytokines, including interleukin 6 (IL-6), chemokine 2 (CCL-2),
interleukin 23 A (IL-23A), and interleukin 15 (IL-15). Furthermore, the treatment also
increased levels of anti-inflammatory cytokines (such as interleukin 10 (IL-10)) and affected
the programmed death-ligand 1 gene (PD-L1) in individuals with T1D [30,31]. Animal
studies demonstrated that upregulation of PD-L1 expression can be preventive against T1D
progression as it leads to the persistence of neo-islet supporting insulin production [32].
By assessing gene regulation as well as nutrient intake, metabolomic data provide the
most practical information in creating risk profiles for the development of autoimmune
diseases, such as T1D. In fact, researchers have successfully used metabolomic data to iden-
tify biomarkers predicting the genetic susceptibility to diet-induced beta-cell failure [31].
Specifically, in individuals with the rare genetic syndrome called Mutant INS-gene–induced
Diabetes of Youth (MIDY), a mutation in the proinsulin-R(B22)E and Q causes misfolding of
the proinsulin protein in the endoplasmic reticulum. This triggers rapid insulin deficiencies
and results in glucose intolerance upon exposure to a high-fat diet [33–35]. Interestingly,
molecular studies in animal models propose that evolution is maintaining islet cell hetero-
geneity and that mutations affecting protein-folding might serve as important predictors
for diabetes outcomes, especially hypoglycemia [33].

Lastly, “-omics” data can also be used to find shared biomarkers and modes of patho-
genesis between T1D and other T-cell mediated diseases. Using transcriptome and inter-
actome analyses, Safari-Alighiarloo et al. identified several cytokines, such as interleukin
23-A (IL-23A), interleukin 32 (IL-32), interleukin 34 (IL-34), and interleukin 37 (IL-37), that
are differentially expressed in T1D and multiple sclerosis (MS) [36,37]. Gene ontology
analysis is commonly used to generate protein-protein interaction networks and identify
common pharmacologic targets that can facilitate therapeutic innovations (i.e., through
drug repurposing) [38,39]. Over the years, researchers identified numerous shared biologi-
cal processes affected in individuals with T1D and MS. Those include pathways associated
with the proteasome, spliceosome, immune responses, apoptosis, cellular communica-
tion/signaling transduction mechanism, interaction with the environment, and activity of
intercellular mediators [36]. The molecular comparison of the molecular processes underly-
ing T-cell mediated diseases offers a framework to identify potential therapeutic targets
for either disease, lowering the overall development costs and timelines. Bioinformatic
tools, such as the integrated Complex Traits Networks 2 (iCTNet2) provide the foundation
for the comparison of comprehensive diseases-specific “-omics” databases, also called
“diseasomes”, and support drug repurposing strategies [40,41].

4. Diagnostic Methods

Traditional diagnostic methods for T1D disregard differences in physiology and
may possibly lead to delayed diagnoses. The current diagnostic methodology commonly
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includes the fasting blood glucose test, oral glucose tolerance test, random blood-glucose
test, glycated hemoglobin test (HbA1c).

Endocrine clinics might also request to test C-peptide antibodies, insulin antibodies
(IAA), insulin-associated-2antibodis (IA-2A), zing-transporter 8 (ZnT8Ab), islet cell cyto-
plasmic autoantibodies (ICA), and Glutamic Acid Decarboxylase Autoantibodies (GADA
or Anti-GAD). There are two main issues associated with the current methodology of
diagnosis. First, diagnosis is often delayed until symptoms develop, which is already
too late in the disease to preserve beta-cell function using pharmacologic treatment, such
as [42]. Second, the tests insufficiently take into account physiological differences across
gender and race. Stratified population studies demonstrated that the use of genomic infor-
mation and other biomarkers may augment traditional methods for a more comprehensive,
accurate, and more rapid diagnosis [26,43]. The identification of specific biomarkers for
certain demographic groups may aid diagnosis methods for T1D, including age, gender,
and race. A study on 711 children, newly diagnosed with T1D, highlighted how the islet
autoantibody type is strongly associated with demographics [44]. Additionally, Gan et al.
assessed the quantity of specific biomarkers related to each demographic group through
proteomic analysis [7]. The most common traditional biomarkers are islet autoantibod-
ies including IA-2A, GAD, ZnT8Ab autoantibodies [45]. The later-age onset of T1D is
related to characteristic levels of GADA, thyroid peroxidase (TPOA), and gastric parietal
cell antibodies (PCA) in the individual. Females with T1D often have autoantibodies for
GAD, TPO, PC, and transglutaminase (TGA). GADA are found more commonly in African
Americans while TGA are more frequently found in Native Americans with T1D [42].
These gender and race-associated differences should be leveraged to improve diagnostic
methods for T1D. Gan et al. also analyzed metabolomic data of T1D individuals for po-
tentially characteristic expression profiles [7]. Advanced glycation end-products (AGE)
were found to be deposited in the skin of individuals with T1D [46]. AGE can be measured
using skin autofluorescence, which might serve as a non-invasive method to diagnose
T1D [47]. Lastly, autoimmune diseases are often associated with other immune alterations,
such as hypothyroidism and/or celiac disease. Therefore, “-omics” technology can offer
an opportunity to identify commonalities in genetic variability that can be targeted with
specialized therapeutics [48]. Further investigation is necessary to better define endotypes
and identify novel biomarkers that can be used by care providers to improve detection
methods for T1D.

5. Treatment of Diabetes

Novel biomarkers and metabolic profiles can be leveraged to identify drug targets
for the development of therapeutics, both for the treatment of T1D or more generally, the
prevention of autoimmune disorders. In Shepherd et al., investigators identified a gene
mutation that causes individuals to be misdiagnosed as having T1D [49]. These individuals
carry a mutated allele of the gene hepatocyte nuclear factor-1 alpha (HNF1α), resulting in
a monogenic form of diabetes, MODY3, which does not cause insulin dependency as
found in most individuals with T1D. Differently than in regular T1D, sulphonylureas
are more efficacious for MODY3 individuals when compared to insulin therapy and are
the potentially better treatment option with a broader therapeutic window for this sub-
population [50]. This shows that accruing genomic information can alter the therapeutic
outlook, even in diseases with a similar presentation, and can be used to create unique
therapeutic approaches that will ultimately result in better outcomes for individuals [23].

Furthermore, as mentioned above, metagenomic studies and the technological ad-
vances in computational sciences, provide modern medicine with the opportunity to
identify new drugs for the treatment of T1D and the repurposing of FDA-cleared com-
pounds. In the Zhang et al. study, 992 proteins from previous proteomic and metabolomic
studies were identified as potential drug targets [48]. These targets were cross-referenced
with drug libraries to identify nine drugs with the potential to treat T1D [29,51]. In re-
purposing existing medications, the investigators also explored how these targets were
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similar to others found in diseases such as Alzheimer’s Disease, further emphasizing
the value of large-scale “-omics” data [37,52]. The ability to find associations between
seemingly independent factors provides a more comprehensive understanding of disease
states and allows for innovative approaches to therapeutics. Recent evidence points to
shared etiological features between T1D and type 2 diabetes (T2D). Although, the two
diseases have a very different clinical presentation and pathophysiology, Genome-Wide
Association Studies (GWAS) have uncovered common loci, including the transcription factor
7-like 2 loci (TCF7L2). T1D and T2D disproportionally affect adults and youth, respectively,
with T2D being more common in adults. However, it has been identified that ~15% of
common genes between T1D and T2D encode for proteins targeted by FDA-approved
drugs [53,54]. Some of those drugs cause diabetes or diabetes-like symptoms themselves,
including hypoglycemia (i.e., streptozotocin, pembrolizumab, nivolumab, and doxoru-
bicin). However, numerous compounds have been successfully used for the treatment
of either form of diabetes and could be repurposed for the treatment of the other form.
For example, disulfiram, pirfenidone, and tretinoin have recently been successfully used
to normalize glycemic dysregulation and treat complications in individuals with T1D
and T2D. Another large-scale study performed on 61,427 participants with T1D, used
fine-mapping, trans-ancestral and genomic analysis to identify novel potential drug tar-
gets. Robertson and coworkers, highlighted at least 50 candidate target genes, however
only 12 are currently investigated in clinical trials for autoimmune diseases (including
IL-6R) [55]. To prioritize the most promising therapeutics, researchers use a combination of
methods to predict the interaction between drugs and their targets in the context of biologi-
cal and disease system-level networks. Molecular docking analysis highlighted another
group of FDA-approved compounds for their potential use as T1D therapeutics, including
melatonin, resveratrol, eugenol, lapatinib, geldanamycin, and azathioprine. The analysis
selected the drugs due to their activity against products of genes, differentially expressed
in beta-cells of individuals with T1D, including Estrogen Receptor 1 (ESRI), erb-b2 receptor
tyrosine kinase 2 (ERBB2), Heat Shock Protein 90 Alpha Family Class B Member 1(HSP90AB1)
and Rac Family Small GTPase 1 (RAC1). These genes have been shown to be involved in the
deterioration of beta-cell functionality, impairment in glucose uptake, and protein folding,
and therefore were proposed as clinical targets based on validation in animal models [56].

6. Device and Personal Health Records

Pharmacological treatment of T1D is necessary but is not the only therapeutic strategy
used in clinics to empower individuals in managing their blood glucose variation and
prevent associated complications [57]. Wearable therapeutic devices are common in the
treatment of T1D and from continuous glucose monitors (CGM) to insulin pumps, broad
data is available to analyze and establish patterns in the control and management of
T1D. Investigators can evaluate behavioral factors to assess how variations in personal
management affect glycemic outcomes. Advanced Hybrid Closed Loop (AHCL) systems
have been shown to be effective for HbA1c reduction [3–5]. These devices allow individuals
to learn about their personal differences, which can be further analyzed for improved
disease control. In the Morton et al. study, investigators explored associations between
meal size, insulin dose, glycemic variability, and sleep disturbances [58]. They found
that smaller meals and smaller insulin dosages were associated with decreased glycemic
variability and better outcomes. They also found that there was no association between
interrupted sleep and glycemic outcomes. The authors conclude that even if using an
insulin pump or CGM is not the individual’s treatment of choice, the insight gained from
analyzing device data can still be applied to other methods of management. Furthermore,
analysis of device data can be used to predict adverse glycemic events and can prevent
poor outcomes [59].

Daily fluctuations in blood glucose levels differ among individuals with T1D. Longitu-
dinal blood glucose control can be assessed by HbA1c measurements every 3–4 months or
via calculating the CGM Time in Range (70–180 mg/dL). Personal health records involving
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diet, exercise, insulin compliance as well as other factors, can also be used to study whether
to what degree individual behavior affects glycemic control [60]. Furthermore, levels of
endogenous residual insulin production, as measured by stimulated c-peptide must be con-
sidered by care provides, since it is a contributing factor to glycemic control in new-onset
individuals with T1D [61]. In fact, Rickels et al. reported that beta-cell responsiveness to
hyperglycemia and alpha-cell responsiveness to hypoglycemia are observed only at high
levels of residual c-peptide that likely contribute to glycemic control [62]. Clements et al.
revealed that a glucometer-connected mobile app may increase an individual’s engagement
with other aspects of care, such as self-monitoring of blood glucose (SMBG) frequency.
While data from personal health records can help outline trends and predict future adverse
events for the individual, how to transition to algorithm creation and machine learning is
still unclear. The quality of data used should be reliable and representative of the target
population to ensure validity [63–66]. More research needs to be done to ascertain how and
to what degree mobile devices can improve glycemic control in individuals with T1D [67].

7. Complications of T1D

Pharmacological treatment and engagement in self-monitoring improve diabetes
outcomes, but currently does not account for genetic predisposition to develop long-term
complications. “-Omics” studies, such as metabolomics and gene expression studies, may
offer effective approaches to augment conventional treatment strategies and reduce the
impact such complications.

Diabetic neuropathy and peripheral artery disease (PAD) are common complications of
poor glucose control. Identifying genes related to an increased risk for these complications
may provide a therapeutic target pathway. Aghanoori et al. identified genes related
to diabetic neuropathy and offered an approach to restore nerve function [68]. Insulin-
like Growth Factor (IGF-1) activates AMP-activated protein kinase (AMPK) to augment
mitochondrial function and rebalance the neuronal metabolism of sensory neurons in
individuals with T1D. Dorsal root ganglia of rats with streptozotocin-induced T1D were
treated with IGF-1, which provided protection from neuropathy in the animal model
and offers a promising approach to therapeutic options for individuals with diabetic
neuropathy. Peripheral artery disease (PAD) is another common long-term complication of
T1D, typically developing over a period of years due to repeated T1D-induced hypoxia in
circulation. It is caused by occlusion of blood vessels and individuals with T1D are at higher
risk to experience poor outcomes due to PAD. Peravali et al. analyzed the genome-wide
mRNA transcriptome in a mouse model and found that hypoglycemia alters ischemia-
induced gene expression [69]. The identified 443 differentially expressed genes are involved
in the cell cycle, DNA replication, metabolic pathways, focal adhesion, regulation of actin
cytoskeleton, and nucleotide excision repair in mice. Furthermore, a GWAS study provided
evidence for the mechanism underpinning the complication in humans and identified two
genomic regions strongly associated with PAD (rs116405693 and coiled-coil serine-rich protein
1 (CCSER1)) confirming the genetic association between the long-term complication and
T1D [70].

8. Environment & T1D

Dennis et al. define the term “exposome” as the totality of environmental exposures
throughout a lifetime. These include endogenous and exogenous factors that interact with
the human body and biological processes [71]. Researchers classify exposures into three
categories: internal exposures, arising from endogenous pathways; external exposures such
as infections, diet, and substance use; and general external exposures that broadly include
the geography and climate a person lives in, socioeconomic status, and the psychosocial
environment [13]. Although the environment of a given individual is dynamic, studies
using metabolomic data have shown associations with environmental factors such as the
gut microbiome [72]. Additionally, Passero et al. found that environmental risk scores
for oxidative stress were associated with cardiovascular phenotypes [71]. Whether this



Appl. Sci. 2021, 11, 11602 7 of 11

environmentally-induced oxidative stress correlates with endogenous oxidative stress in
the metabolic process of blood glucose regulation in pre-diabetic individuals is unclear as
of yet [8,73]. Environmental exposure to pollutants has been associated with a higher risk
of developing oxidative stress-related pathogenesis including diabetes mellitus, cardio-
vascular diseases, and neurodegeneration. For example, more than 200 million persons
worldwide are exposed to arsenic, which has been demonstrated to induce oxidative stress.
This can lead to the death and dysfunction of beta-cells, thus weakening blood glucose
control and increased insulin resistance in affected individuals [72]. Findings such as the
above mentioned, demonstrate that biological processes should be considered as open
systems exhibiting a complex interplay with their associated environment. Consequently,
we need to consider the concept of etiological and systematic wholes in designing clinical
studies of complex diseases [74].

9. Discussion

While the ideas presented in this review shed light on innovative methods to improve
T1D care, the research to evaluate the importance of specific tests is still ongoing. For
instance, studies that calculate the positive and negative likelihood ratio among the various
biomarkers present in individuals with T1D must be performed to assess the usefulness of
specific biomarkers in predicting T1D. With regards to the prevention of T1D, what if the
decision to correct the pentose phosphate pathway and pyrimidine synthesis in C-section
delivered babies creates far worse medical outcomes than T1D? An idiopathic disruption
of metabolism could rather be considered harmful rather than helpful in such a case. In
terms of the interconnectedness of the environment and T1D, the difficulty in attaining
an accurate record of exposures remains high. The duration and intensity of exposure are
difficult to quantify without continuous monitoring. But the question remains if continuous
monitoring of all relevant exposures is realistic across an individual’s lifetime.

This review highlights “-omics”-derived variables involved in the pathogenesis and
prognosis of T1D. A comprehensive list of all factors related to the development of T1D
would be beneficial for future physicians to provide optimal care for individuals. For
example, a database containing all risk factors that contribute to the development of
T1D correlated with age, risk assessment, and likelihood ratios would provide valuable
information for physicians to proactively care for pre-T1D and T1D individuals. Such a
data resource should include an interleukin panel describing presence-absence patterns
and whether any mutations previously associated with increased risks were found in the
individual’s genome. The TCF7L2 gene and other relevant loci might provide insights into
novel drug targets. Integration of “-omics” data in the individual’s records could allow
for the creation of novel algorithms aiding diagnosis, treatment, and management of T1D.
However, it is important to keep in mind that algorithm-based tools are only as useful as
the data used to construct them. The reliability and prevalence of the associations with T1D
disease state must also be strong enough for an algorithm to be beneficial in this context.

Using the concepts in this review to generate accurate T1D data could contribute
to the production of a diagnostic checklist for use in pediatric care aimed to prevent the
development and/or progression of T1D. Detecting potential adverse events with accurate
data paired with personal health record monitoring could offer a reliable use of predictive
data. In fact, recent initiatives, such as the Rising T1De Alliance, have demonstrated that
this information can be used to predict diabetes outcomes (i.e., glycemic control), analyze
behavior (i.e., device disengagement), and provide rapid and precise treatment options
in the form of personalized intervention that successfully decreases the risk for diabetes
complications (i.e., remote patient monitoring) [75].

10. Conclusions

T1D is a chronic condition that requires continuous clinical oversight and individual
management. Diagnosis is often made after the destruction of 70–80% of beta-cells [76]. A
gap in understanding the onset precursors and origin of diabetes limits providers from
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making earlier diagnoses. This review of “-omics” technologies offer an informed exami-
nation of the genetic and environmental precursors to diabetes onset, establishment, and
management. Furthermore, we highlight the role of the environment in the treatment
of the disease as well as the untapped potential of using comprehensive data to build
predictive algorithms to forecast negative outcomes and intervene proactively to support
the individual with customized care. Importantly, we do not intend this review to be a
comprehensive discussion of all the topics addressed therein, but instead, aim to stimulate
discourse around exploring the use of integrative technologies to improve diabetes out-
comes. Additionally, we chose to keep this review generalist in nature, as we seek to inspire
the scientific community at large, independently of their background, to consider more of
the various informative aspects of T1D while designing research studies or medical trials.

We believe that future technological advancements in cloud computing and the col-
laboration across worldwide online registries will eventually allow for integrative medical
science to provide individuals with T1D true real-time personalized care.

Author Contributions: N.K., M.R. and D.F. developed the narrative and wrote the manuscript.
D.D.W. contributed to the writing and participated in the revision process. R.J.M. aided in interpreting
the clinical literature and provided support to the theoretical workflow. D.F. devised the project,
proofed the outline, and oversaw the overall direction and planning. All authors have read and
agreed to the published version of the manuscript.

Funding: The present study was funded by the Leona B. and Harry M. Helmsley Charitable Trust
foundation [G-2017PG-T1D019 and 2008-04043].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Shelby Carrothers (Children’s Mercy Hospital,
Kansas City) for assisting with the writing of the first draft, Kevin Ferro (Stower’s Institute for
Medical Research, Kansas City) for the critical review of the final manuscript and Mark Clements
(Children’s Mercy Hospital, Kanas City) for his support and interest. We are grateful to all reviewers
and editors for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miller, R.G.; McGurnaghan, S.J.; Onengut-Gumuscu, S.; Chen, W.M.; Colhoun, H.M.; Rich, S.S.; Orchard, T.J.; Costacou, T. Insulin

Resistance-Associated Genetic Variants in Type 1 Diabetes. J. Diabetes Its Complicat. 2021, 35, 107842. [CrossRef] [PubMed]
2. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009, 32, S5–S10.
3. Nagel, K.E.; Dearth-Wesley, T.; Herman, A.N.; Smith, H.G.; Whitaker, R.C. Diabetes Distress and Glycaemic Control in Young

Adults with Type 1 Diabetes: Associations by Use of Insulin Pumps and Continuous Glucose Monitors. Diabet. Med. 2021,
38, e14660. [CrossRef] [PubMed]

4. Hanas, R.; Lindgren, F.; Lindblad, B. A 2-Yr National Population Study of Pediatric Ketoacidosis in Sweden: Predisposing
Conditions and Insulin Pump Use. Pediatric Diabetes 2009, 10, 33–37. [CrossRef] [PubMed]

5. Karges, B.; Schwandt, A.; Heidtmann, B.; Kordonouri, O.; Binder, E.; Schierloh, U.; Boettcher, C.; Kapellen, T.; Rosenbauer, J.; Holl,
R.W. Association of Insulin Pump Therapy vs Insulin Injection Therapy with Severe Hypoglycemia, Ketoacidosis, and Glycemic
Control among Children, Adolescents, and Young Adults with Type 1 Diabetes. JAMA-J. Am. Med Assoc. 2017, 318, 1358–1366.
[CrossRef]

6. Kristensen, L.J.; Birkebaek, N.H.; Mose, A.H.; Jensen, M.B.; Thastum, M. Multi-Informant Path Models of the Influence of
Psychosocial and Treatment-Related Variables on Adherence and Metabolic Control in Adolescents with Type 1 Diabetes Mellitus.
PLoS ONE 2018, 13, e0204176. [CrossRef]

7. Gan, W.Z.; Ramachandran, V.; Lim, C.S.Y.; Koh, R.Y. Omics-Based Biomarkers in the Diagnosis of Diabetes. J. Basic Clin. Physiol.
Pharmacol. 2020, 31, 1–21. [CrossRef]

8. Balzano-Nogueira, L.; Ramirez, R.; Zamkovaya, T.; Dailey, J.; Ardissone, A.N.; Chamala, S.; Serrano-Quílez, J.; Rubio, T.; Haller,
M.J.; Concannon, P.; et al. Integrative Analyses of TEDDY Omics Data Reveal Lipid Metabolism Abnormalities, Increased
Intracellular ROS and Heightened Inflammation Prior to Autoimmunity for Type 1 Diabetes. Genome Biol. 2021, 22, 39. [CrossRef]

http://doi.org/10.1016/j.jdiacomp.2020.107842
http://www.ncbi.nlm.nih.gov/pubmed/33468396
http://doi.org/10.1111/dme.14660
http://www.ncbi.nlm.nih.gov/pubmed/34309061
http://doi.org/10.1111/j.1399-5448.2008.00441.x
http://www.ncbi.nlm.nih.gov/pubmed/18761647
http://doi.org/10.1001/jama.2017.13994
http://doi.org/10.1371/journal.pone.0204176
http://doi.org/10.1515/jbcpp-2019-0120
http://doi.org/10.1186/s13059-021-02262-w


Appl. Sci. 2021, 11, 11602 9 of 11

9. Li, Q.; Liu, X.; Yang, J.; Erlund, I.; Lernmark, Å.; Hagopian, W.; Rewers, M.; She, J.X.; Toppari, J.; Ziegler, A.G.; et al. Plasma
Metabolome and Circulating Vitamins Stratified Onset Age of an Initial Islet Autoantibody and Progression to Type 1 Diabetes:
The TEDDY Study. Diabetes 2021, 70, 282–292. [CrossRef]

10. Laimighofer, M.; Lickert, R.; Fuerst, R.; Theis, F.J.; Winkler, C.; Bonifacio, E.; Ziegler, A.G.; Krumsiek, J. Common Patterns of
Gene Regulation Associated with Cesarean Section and the Development of Islet Autoimmunity–Indications of Immune Cell
Activation. Sci. Rep. 2019, 9, 6250. [CrossRef]

11. Boldison, J.; Long, A.E.; Aitken, R.J.; Wilson, I.V.; Megson, C.; Hanna, S.J.; Wong, F.S.; Gillespie, K.M. Activated but Functionally
Impaired Memory Tregs Are Expanded in Slow Progressors to Type 1 Diabetes. Diabetologia 2021, 1–13. [CrossRef]

12. Syreeni, A.; Sandholm, N.; Sidore, C.; Cucca, F.; Haukka, J.; Harjutsalo, V.; Groop, P.H. Genome-Wide Search for Genes Affecting
the Age at Diagnosis of Type 1 Diabetes. J. Intern. Med. 2020, 289, 662–674. [CrossRef]

13. Passero, K.; Setia-Verma, S.; McAllister, K.; Manrai, A.; Patel, C.; Hall, M. What about the Environment? Leveraging Multi-Omic
Datasets to Characterize the Environment’s Role in Human Health. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 2021, 26, 309.
[PubMed]

14. Lloyd, R.E.; Tamhankar, M.; Lernmark, Å. Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? Annu. Rev.
Med. 2021, 73. [CrossRef] [PubMed]

15. Stanek, K.R.; Noser, A.E.; Patton, S.R.; Clements, M.A.; Youngkin, E.M.; Majidi, S. Stressful Life Events, Parental Psychosocial
Factors, and Glycemic Management in School-Aged Children during the 1 Year Follow-up of New-Onset Type 1 Diabetes.
Pediatric Diabetes 2020, 21, 673–680. [CrossRef]

16. Monzon, A.D.; Marker, A.M.; Noser, A.E.; Clements, M.A.; Patton, S.R. Associations Between Objective Sleep Behaviors and
Blood Glucose Variability in Young Children With Type 1 Diabetes. Ann. Behav. Med. 2020, 55, 144–154. [CrossRef] [PubMed]

17. McConville, A.; Noser, A.E.; Nelson, E.L.; Clements, M.A.; Majidi, S.; Patton, S.R. Depression as a Predictor of Hypoglycemia
Worry in Parents of Youth with Recent-Onset Type 1 Diabetes. Pediatric Diabetes 2020, 21, 909–916. [CrossRef]

18. Case, H.; Williams, D.D.; Majidi, S.; Ferro, D.; Clements, M.A.; Patton, S.R. Longitudinal Associations between Family Conflict,
Parent Engagement, and Metabolic Control in Children with Recent-Onset Type 1 Diabetes. BMJ Open Diabetes Res. Care 2021,
9, e002461. [CrossRef] [PubMed]

19. Ward, M.J.; Marsolo, K.A.; Froehle, C.M. Applications of Business Analytics in Healthcare. Bus. Horiz. 2014, 57, 571–582.
[CrossRef]

20. Rewers, A.; Chase, H.P.; Mackenzie, T.; Walravens, P.; Roback, M.; Rewers, M.; Hamman, R.F.; Klingensmith, G. Predictors of
Acute Complications in Children With Type 1 Diabetes. JAMA 2002, 287, 2511–2518. [CrossRef]

21. Quick, C.; Anugu, P.; Musani, S.; Weiss, S.T.; Burchard, E.G.; White, M.J.; Keys, K.L.; Cucca, F.; Sidore, C.; Boehnke, M.; et al.
Sequencing and Imputation in GWAS: Cost-effective Strategies to Increase Power and Genomic Coverage across Diverse
Populations. Genet. Epidemiol. 2020, 44, 537–549. [CrossRef]

22. Diao, J.A.; Kohane, I.S.; Manrai, A.K. Biomedical Informatics and Machine Learning for Clinical Genomics. Hum. Mol. Genet.
2018, 27, R29–R34. [CrossRef]

23. Kamies, R.; Martinez-Jimenez, C.P. Advances of Single-Cell Genomics and Epigenomics in Human Disease: Where Are We Now?
Mamm. Genome 2020, 31, 170–180. [CrossRef] [PubMed]

24. Zurawek, M.; Fichna, M.; Fichna, P.; Czainska, M.; Rozwadowska, N. Upregulation of FOXO3 in New-Onset Type 1 Diabetes
Mellitus. J. Immunol. Res. 2020, 2020, 4–7. [CrossRef]

25. Martens, G.A.; Stangé, G.; Piemonti, L.; Anckaert, J.; Ling, Z.; Pipeleers, D.G.; Gorus, F.K.; Mestdagh, P.; de Smet, D.; Vandesom-
pele, J.; et al. The MicroRNA Landscape of Acute Beta Cell Destruction in Type 1 Diabetic Recipients of Intraportal Islet Grafts.
Cells 2021, 10, 1693. [CrossRef]

26. Ahmed, S.; Cerosaletti, K.; James, E.; Long, S.A.; Mannering, S.; Speake, C.; Nakayama, M.; Tree, T.; Roep, B.O.; Herold, K.C.; et al.
Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes 2019, 68, 1366–1379. [CrossRef]
[PubMed]

27. Hanna, S.J.; Tatovic, D.; Thayer, T.C.; Dayan, C.M. Insights From Single Cell RNA Sequencing Into the Immunology of Type 1
Diabetes-Cell Phenotypes and Antigen Specificity. Front. Immunol. 2021, 12, 751701. [CrossRef] [PubMed]

28. Hanna, S.J.; Powell, W.E.; Long, A.E.; Robinson, E.J.S.; Davies, J.; Megson, C.; Howell, A.; Jones, T.J.; Ladell, K.; Price, D.A.; et al.
Slow Progressors to Type 1 Diabetes Lose Islet Autoantibodies over Time, Have Few Islet Antigen-Specific CD8+ T Cells and
Exhibit a Distinct CD95hi B Cell Phenotype. Diabetologia 2020, 63, 1174–1185. [CrossRef] [PubMed]

29. Zhang, L.; Wu, H.; Zhao, M.; Lu, Q. Identifying the Differentially Expressed MicroRNAs in Autoimmunity: A Systemic Review
and Meta-Analysis. Autoimmunity 2020, 53, 122–136. [CrossRef]

30. Kraus, A.U.; Penna-Martinez, M.; Shoghi, F.; Meyer, G.; Badenhoop, K. Monocytic Cytokines in Autoimmune Polyglandular
Syndrome Type 2 Are Modulated by Vitamin D and HLA-DQ. Front. Immunol. 2020, 11, 583709. [CrossRef]

31. Colli, M.L.; Hill, J.L.E.; Marroquí, L.; Chaffey, J.; dos Santos, R.S.; Leete, P.; Coomans de Brachène, A.; Paula, F.M.M.; op de Beeck,
A.; Castela, A.; et al. PDL1 Is Expressed in the Islets of People with Type 1 Diabetes and Is Up-Regulated by Interferons-α and-γ
via IRF1 Induction. EBioMedicine 2018, 36, 367–375. [CrossRef] [PubMed]

32. Li, R.; Lee, J.; Kim, M.S.; Liu, V.; Moulik, M.; Li, H.; Yi, Q.; Xie, A.; Chen, W.; Yang, L.; et al. PD-L1-Driven Tolerance Protects
Neurogenin3-Induced Islet Neogenesis to Reverse Established Type 1 Diabetes in NOD Mice. Diabetes 2015, 64, 529–540.
[CrossRef]

http://doi.org/10.2337/db20-0696
http://doi.org/10.1038/s41598-019-42750-5
http://doi.org/10.1007/s00125-021-05595-0
http://doi.org/10.1111/joim.13187
http://www.ncbi.nlm.nih.gov/pubmed/34409132
http://doi.org/10.1146/annurev-med-042320-015952
http://www.ncbi.nlm.nih.gov/pubmed/34794324
http://doi.org/10.1111/pedi.13012
http://doi.org/10.1093/abm/kaaa040
http://www.ncbi.nlm.nih.gov/pubmed/32542309
http://doi.org/10.1111/pedi.13039
http://doi.org/10.1136/bmjdrc-2021-002461
http://www.ncbi.nlm.nih.gov/pubmed/34645616
http://doi.org/10.1016/j.bushor.2014.06.003
http://doi.org/10.1001/jama.287.19.2511
http://doi.org/10.1002/gepi.22326
http://doi.org/10.1093/hmg/ddy088
http://doi.org/10.1007/s00335-020-09834-4
http://www.ncbi.nlm.nih.gov/pubmed/32270277
http://doi.org/10.1155/2020/9484015
http://doi.org/10.3390/cells10071693
http://doi.org/10.2337/db19-0119
http://www.ncbi.nlm.nih.gov/pubmed/31221801
http://doi.org/10.3389/fimmu.2021.751701
http://www.ncbi.nlm.nih.gov/pubmed/34659258
http://doi.org/10.1007/s00125-020-05114-7
http://www.ncbi.nlm.nih.gov/pubmed/32157332
http://doi.org/10.1080/08916934.2019.1710135
http://doi.org/10.3389/fimmu.2020.583709
http://doi.org/10.1016/j.ebiom.2018.09.040
http://www.ncbi.nlm.nih.gov/pubmed/30269996
http://doi.org/10.2337/db13-1737


Appl. Sci. 2021, 11, 11602 10 of 11

33. Alam, M.; Arunagiri, A.; Haataja, L.; Torres, M.; Larkin, D.; Kappler, J.; Jin, N.; Arvan, P. Predisposition to Proinsulin Misfolding
as a Genetic Risk to Diet-Induced Diabetes. Diabetes 2021, 70, 2580–2594. [CrossRef]

34. Sun, J.; Cui, J.; He, Q.; Chen, Z.; Arvan, P.; Liu, M. Proinsulin Misfolding and Endoplasmic Reticulum Stress during the
Development and Progression of Diabetes. Mol. Asp. Med. 2015, 42, 105–118. [CrossRef] [PubMed]

35. Liu, M.; Hodish, I.; Haataja, L.; Lara-Lemus, R.; Rajpal, G.; Wright, J.; Arvan, P. Proinsulin Misfolding and Diabetes: Mutant INS
Gene-Induced Diabetes of Youth. Trends Endocrinol. Metab. TEM 2010, 21, 652–659. [CrossRef]

36. Safari-Alighiarloo, N.; Taghizadeh, M.; Mohammad Tabatabaei, S.; Namaki, S.; Rezaei-Tavirani, M. Identification of Common Key
Genes and Pathways between Type 1 Diabetes and Multiple Sclerosis Using Transcriptome and Interactome Analysis. Endocrine
2020, 68, 81–92. [CrossRef] [PubMed]

37. Chen, S.-J.; Cheng, J.-L.; Lee, S.-A.; Wang, T.-Y.; Jang, J.-Y.; Chen, K.-C. Elucidate Multidimensionality of Type 1 Diabetes Mellitus
Heterogeneity by Multifaceted Information. Sci. Rep. 2021, 11, 20965. [CrossRef]

38. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al.
Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [CrossRef] [PubMed]

39. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [CrossRef]
[PubMed]

40. Baranzini, S.E.; Wang, L.; Himmelstein, D.S.; Santaniello, A.; Parvin, M. ICTNet2: Integrating Heterogeneous Biological
Interactions to Understand Complex Traits. F1000Research 2015, 4, 485. [CrossRef]

41. Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.L. The Human Disease Network. Proc. Natl. Acad. Sci. USA
2007, 104, 8685–8690. [CrossRef] [PubMed]

42. Vudattu, N.K.; Herold, K.C. Treatment of New Onset Type 1 Diabetes with Teplizumab: Successes and Pitfalls in Development.
Expert Opin. Biol. Ther. 2014, 14, 377–385. [CrossRef]

43. Paul, S.; Ruiz-Manriquez, L.M.; Ledesma-Pacheco, S.J.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Morales-Rodríguez, J.I.;
de Donato, M.; Srivastava, A. Roles of MicroRNAs in Chronic Pediatric Diseases and Their Use as Potential Biomarkers: A
Review. Arch. Biochem. Biophys. 2021, 699, 108763. [CrossRef] [PubMed]

44. Nieto, J.; Castillo, B.; Astudillo, M.; Tosur, M.; Balasubramanyam, A.; Pietropaolo, M.; Redondo, M.J. Islet Autoantibody Types
Mark Differential Clinical Characteristics at Diagnosis of Pediatric Type 1 Diabetes. Pediatric Diabetes 2021, 22, 882–888. [CrossRef]

45. Long, A.E.; George, G.; Williams, C.L. Persistence of Islet Autoantibodies after Diagnosis in Type 1 Diabetes. Diabet. Med. A J. Br.
Diabet. Assoc. 2021, 38, e14712. [CrossRef] [PubMed]

46. Dozio, E.; Massaccesi, L.; Romanelli, M.M.C. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced
Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J. Clin. Med.
2021, 10, 4792. [CrossRef]

47. Bent, B.; Cho, P.J.; Henriquez, M.; Wittmann, A.; Thacker, C.; Feinglos, M.; Crowley, M.J.; Dunn, J.P. Engineering Digital
Biomarkers of Interstitial Glucose from Noninvasive Smartwatches. npj Digit. Med. 2021, 4, 89. [CrossRef]

48. Márquez, A.; Martín, J. Genetic Overlap between Type 1 Diabetes and Other Autoimmune Diseases. Semin. Immunopathol. 2021.
[CrossRef]

49. Shepard, J.G.; Airee, A.; Dake, A.W.; McFarland, M.S.; Vora, A. Limitations of A1c Interpretation. South. Med. J. 2015, 108, 724–729.
[CrossRef]

50. Oliveira, R.V.; Bernardo, T.; Martins, S.; Sequeira, A. Monogenic Diabetes: A New Pathogenic Variant of HNF1A Gene. BMJ Case
Rep. 2021, 14. [CrossRef]

51. Zhang, M.; Luo, H.; Xi, Z.; Rogaeva, E. Drug Repositioning for Diabetes Based on “omics” Data Mining. PLoS ONE 2015,
10, e0126082. [CrossRef]

52. Bhattamisra, S.K.; Shin, L.Y.; Saad, H.I.B.M.; Rao, V.; Candasamy, M.; Pandey, M.; Choudhury, H. Interlink Between Insulin
Resistance and Neurodegeneration with an Update on Current Therapeutic Approaches. CNS Neurol. Disord. Drug Targets 2020,
19, 174–183. [CrossRef] [PubMed]

53. Nyaga, D.M.; Vickers, M.H.; Jefferies, C.; Fadason, T.; O’Sullivan, J.M. Untangling the Genetic Link between Type 1 and Type 2
Diabetes Using Functional Genomics. Sci. Rep. 2021, 11, 13871. [CrossRef]

54. Nyaga, D.M.; Vickers, M.H.; Jefferies, C.; Perry, J.K.; O’sullivan, J.M. The Genetic Architecture of Type 1 Diabetes Mellitus. Mol.
Cell. Endocrinol. 2018, 477, 70–80. [CrossRef] [PubMed]

55. Robertson, C.C.; Rich, S.S. Genetics of Type 1 Diabetes. Curr. Opin. Genet. Dev. 2018, 50, 7–16. [CrossRef]
56. Soofi, A.; Taghizadeh, M.; Tabatabaei, S.M.; Rezaei Tavirani, M.; Shakib, H.; Namaki, S.; Safari Alighiarloo, N. Centrality Analysis

of Protein-Protein Interaction Networks and Molecular Docking Prioritize Potential Drug-Targets in Type 1 Diabetes. Iran. J.
Pharm. Res. IJPR 2020, 19, 121–134. [CrossRef]

57. Perkins, B.A.; Sherr, J.L.; Mathieu, C. Type 1 Diabetes Glycemic Management: Insulin Therapy, Glucose Monitoring, and
Automation. Science 2021, 373, 522–527. [CrossRef] [PubMed]

58. Morton, S.; Li, R.; Dibbo, S.; Prioleau, T. Data-Driven Insights on Behavioral Factors That Affect Diabetes Management. Proc.
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2020, 5557–5562. [CrossRef]

59. Yoo, J.H.; Kim, J.H. Time in Range from Continuous Glucose Monitoring: A Novel Metric for Glycemic Control. Diabetes Metab. J.
2020, 44, 828–839. [CrossRef]

http://doi.org/10.2337/db21-0422
http://doi.org/10.1016/j.mam.2015.01.001
http://www.ncbi.nlm.nih.gov/pubmed/25579745
http://doi.org/10.1016/j.tem.2010.07.001
http://doi.org/10.1007/s12020-019-02181-8
http://www.ncbi.nlm.nih.gov/pubmed/31912409
http://doi.org/10.1038/s41598-021-00388-2
http://doi.org/10.1038/nrd.2018.168
http://www.ncbi.nlm.nih.gov/pubmed/30310233
http://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://doi.org/10.12688/F1000RESEARCH.6836.2
http://doi.org/10.1073/pnas.0701361104
http://www.ncbi.nlm.nih.gov/pubmed/17502601
http://doi.org/10.1517/14712598.2014.881797
http://doi.org/10.1016/j.abb.2021.108763
http://www.ncbi.nlm.nih.gov/pubmed/33460581
http://doi.org/10.1111/pedi.13238
http://doi.org/10.1111/dme.14712
http://www.ncbi.nlm.nih.gov/pubmed/34614253
http://doi.org/10.3390/jcm10204792
http://doi.org/10.1038/s41746-021-00465-w
http://doi.org/10.1007/S00281-021-00885-6
http://doi.org/10.14423/SMJ.0000000000000381
http://doi.org/10.1136/bcr-2019-231837
http://doi.org/10.1371/journal.pone.0126082
http://doi.org/10.2174/1871527319666200518102130
http://www.ncbi.nlm.nih.gov/pubmed/32418534
http://doi.org/10.1038/s41598-021-93346-x
http://doi.org/10.1016/j.mce.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29913182
http://doi.org/10.1016/j.gde.2018.01.006
http://doi.org/10.22037/ijpr.2020.113342.14242
http://doi.org/10.1126/science.abg4502
http://www.ncbi.nlm.nih.gov/pubmed/34326234
http://doi.org/10.1109/EMBC44109.2020.9176414
http://doi.org/10.4093/dmj.2020.0257


Appl. Sci. 2021, 11, 11602 11 of 11

60. Davis, S.; MacKay, L. Moving Beyond the Rhetoric of Shared Decision-Making: Designing Personal Health Record Technology
With Young Adults With Type 1 Diabetes. Can. J. Diabetes 2020, 44, 434–441. [CrossRef]

61. Amed, S.; Nuernberger, K.; McCrea, P.; Reimer, K.; Krueger, H.; Aydede, S.K.; Ayers, D.; Collet, J.-P. Adherence to Clinical Practice
Guidelines in the Management of Children, Youth, and Young Adults with Type 1 Diabetes—A Prospective Population Cohort
Study. J. Pediatrics 2013, 163, 543–548. [CrossRef] [PubMed]

62. Rickels, M.R.; Evans-Molina, C.; Bahnson, H.T.; Ylescupidez, A.; Nadeau, K.J.; Hao, W.; Clements, M.A.; Sherr, J.L.; Pratley, R.E.;
Hannon, T.S.; et al. High Residual C-Peptide Likely Contributes to Glycemic Control in Type 1 Diabetes. J. Clin. Investig. 2020,
130, 1850–1862. [CrossRef] [PubMed]

63. Gui, H.; Zheng, R.; Ma, C.; Fan, H.; Xu, L. An Architecture for Healthcare Big Datamanagement and Analysis. In Proceedings
of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Shanghai, China, 5–7 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 10038 LNCS,
pp. 154–160.

64. Manrai, A.K.; Patel, C.J.; Ioannidis, J.P.A. In the Era of Precision Medicine and Big Data, Who Is Normal? JAMA 2018, 319, 1981.
[CrossRef] [PubMed]

65. Belle, A.; Thiagarajan, R.; Soroushmehr, S.M.R.; Navidi, F.; Beard, D.A.; Najarian, K. Big Data Analytics in Healthcare. BioMed Res.
Int. 2015, 2015, 3. [CrossRef] [PubMed]

66. Bradley, P.S. Implications of Big Data Analytics on Population Health Management. Big Data 2013, 1, 152–159. [CrossRef]
67. Clements, M.A.; Staggs, V.S. A Mobile App for Synchronizing Glucometer Data: Impact on Adherence and Glycemic Control

among Youths with Type 1 Diabetes in Routine Care. J. Diabetes Sci. Technol. 2017, 11, 461–467. [CrossRef]
68. Aghanoori, M.R.; Smith, D.R.; Shariati-Ievari, S.; Ajisebutu, A.; Nguyen, A.; Desmond, F.; Jesus, C.H.A.; Zhou, X.; Calcutt, N.A.;

Aliani, M.; et al. Insulin-like Growth Factor-1 Activates AMPK to Augment Mitochondrial Function and Correct Neuronal
Metabolism in Sensory Neurons in Type 1 Diabetes. Mol. Metab. 2019, 20, 149–165. [CrossRef]

69. Peravali, R.; Gunnels, L.; Alleboina, S.; Gerling, I.C.; Dokun, A.O. Type 1 Diabetes Alters Ischemia-Induced Gene Expression. J.
Clin. Transl. Endocrinol. 2019, 15, 19–24. [CrossRef]

70. van Zuydam, N.R.; Stiby, A.; Abdalla, M.; Austin, E.; Dahlström, E.H.; McLachlan, S.; Vlachopoulou, E.; Ahlqvist, E.; di Liao, C.;
Sandholm, N.; et al. Genome-Wide Association Study of Peripheral Artery Disease. Circ. Genom. Precis. Med. 2021, 14. [CrossRef]

71. Dennis, K.K.; Auerbach, S.S.; Balshaw, D.M.; Cui, Y.; Fallin, M.D.; Smith, M.T.; Spira, A.; Sumner, S.; Miller, G.W. The Importance
of the Biological Impact of Exposure to the Concept of the Exposome. Environ. Health Perspect. 2016, 124, 1504–1510. [CrossRef]
[PubMed]

72. Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental Arsenic
Exposure and Its Contribution to Human Diseases, Toxicity Mechanism and Management. Environ. Pollut. 2021, 289, 117940.
[CrossRef] [PubMed]

73. D’Autréaux, B.; Toledano, M.B. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS Homeostasis.
Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [CrossRef] [PubMed]

74. Catania, F.; Krohs, U.; Chittò, M.; Ferro, D.; Ferro, K.; Lepennetier, G.; Görtz, H.D.; Schreiber, R.S.; Kurtz, J.; Gadau, J. The
Hologenome Concept: We Need to Incorporate Function. Theory Biosci. 2017, 136, 89–98. [CrossRef]

75. Abstracts for the T1D Exchange QI Collaborative (T1Dx-QI) Learning Session 2021. November 8–9, 2021. J. Diabetes 2021, 13, 3–17.
[CrossRef] [PubMed]

76. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes
Care 2021, 44, S15–S33. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jcjd.2020.03.009
http://doi.org/10.1016/j.jpeds.2013.01.070
http://www.ncbi.nlm.nih.gov/pubmed/23523280
http://doi.org/10.1172/JCI134057
http://www.ncbi.nlm.nih.gov/pubmed/31895699
http://doi.org/10.1001/jama.2018.2009
http://www.ncbi.nlm.nih.gov/pubmed/29710130
http://doi.org/10.1155/2015/370194
http://www.ncbi.nlm.nih.gov/pubmed/26229957
http://doi.org/10.1089/big.2013.0019
http://doi.org/10.1177/1932296817691302
http://doi.org/10.1016/j.molmet.2018.11.008
http://doi.org/10.1016/j.jcte.2018.11.003
http://doi.org/10.1161/CIRCGEN.119.002862
http://doi.org/10.1289/EHP140
http://www.ncbi.nlm.nih.gov/pubmed/27258438
http://doi.org/10.1016/j.envpol.2021.117940
http://www.ncbi.nlm.nih.gov/pubmed/34426183
http://doi.org/10.1038/nrm2256
http://www.ncbi.nlm.nih.gov/pubmed/17848967
http://doi.org/10.1007/s12064-016-0240-z
http://doi.org/10.1111/1753-0407.13227
http://www.ncbi.nlm.nih.gov/pubmed/34729916
http://doi.org/10.2337/dc21-S002
http://www.ncbi.nlm.nih.gov/pubmed/33298413

	Introduction 
	Prevention 
	Pathogenesis and Biomarkers 
	Diagnostic Methods 
	Treatment of Diabetes 
	Device and Personal Health Records 
	Complications of T1D 
	Environment & T1D 
	Discussion 
	Conclusions 
	References

