Non-Destructive Detection of Asymptomatic Ganoderma boninense Infection of Oil Palm Seedlings Using NIR-Hyperspectral Data and Support Vector Machine
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Spectral Reflectance Data
2.2. Polymerase Chain Reaction (PCR) Test
2.3. Classification Model
2.3.1. Single-Based NIR Reflectance
2.3.2. Vegetation Indices
2.4. Assessment of Model Performance
2.4.1. Confusion Matrix
- True Positive (TP): Infected seedling correctly identified as infected.
- False Positive (FP): Healthy seedling incorrectly identified as infected.
- True Negative (TN): Healthy seedling correctly identified as healthy.
- False Negative (FN): Infected seedling incorrectly identified as healthy.
2.4.2. Receiver Operating Characteristic (ROC) and Area under the ROC Curve (AUC)
3. Results
3.1. Classification Model
3.1.1. Dataset 1: Single-Based NIR Reflectance
3.1.2. Dataset 2: Vegetation Index (VI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hushiarian, R.; Yusof, N.A.; Dutse, S.W. Detection and control of Ganoderma boninense: Strategies and perspectives. SpringerPlus 2013, 2, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govender, N.T.; Mahmood, M.; Seman, I.A.; Wong, M.Y. The phenylpropanoid pathway and lignin in defense against Ganoderma boninense colonized root tissues in oil palm (Elaeis guineensis Jacq.). Front. Plant Sci. 2017, 8, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakib, M.R.M.; Borhan, A.H.; Jawahir, A.N. The relationship between SPAD chlorophyll and disease severity index in Ganoderma-infected oil palm seedlings. J. Bangladesh Agric. Univ. 2019, 17, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Wulandari, Y.R.E.; Felicia, F.; Arifin, A.R.; Suwanto, A. EgMLP1 gene expression in oil palm Ramet infected with Ganoderma boninense. Int. J. Oil Palm 2018, 1, 71–78. [Google Scholar]
- Naher, L.; Intan, S.; Mokhtar, B.; Sidek, N. Trichoderma harzianum T32 growth and antagonistic performance against Ganoderma boninense on different culture media. In Proceedings of the 3rd International Conference on Biological, Chemical & Environmental Science (BCES-2015), Kuala Lumpur, Malaysia, 21–22 September 2015. [Google Scholar]
- Turnbull, N.; de Franqueville, H.; Breton, F.; Jeyen, S.; Syahoutra, I.; Cochard, B.; Durand-Gassellin, T. Breeding methodology to select oil palm planting material partially resistant to Ganoderma boninense. In Proceedings of the 5th Quadrennial International Oil Palm Conference, Kuta Selatan, Indonesia, 17–19 June 2014. [Google Scholar]
- Idris, A.S. Basal Stem Rot in Malaysia-Biology, economic importance, epidemiology, detection and control. In Proceedings of the International Workshop on Awareness, Detection and Control of Oil Palm Devastating Diseases, Kuala Lumpur, Malaysia, 1 January 2009. [Google Scholar]
- Breton, F.; Miranti, R.; Lubis, Z.; Hayun, Z.; Setiawati, U.; Flori, A.; De Franqueville, H. Implementation of an early artificial inoculation test to screen oil palm progenies for their level of resistance and hypothesis on natural infection: Ganoderma disease of the oil palm. In Proceedings of the 16th International Oil Palm Conference and Expopalma Challenges in Sustainable Oil Palm Development, Cartagena de Indias, Columbia, 22–25 September 2009. [Google Scholar]
- Parker, I.M.; Gilbert, G.S. When there is no escape: The effects of natural enemies on native, invasive, and non-invasive plants. Ecology 2007, 88, 1210–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, G.F. Effect of pests and diseases on oil palm yield. In Palm Oil; Lai, O.M., Tan, C.P., Akoh, C.C., Eds.; AOCS Press: Champaign, IL, USA, 2012; pp. 163–210. [Google Scholar]
- Ariffin, D.; Seman, I.A. A selective medium for the isolation of Ganoderma from diseased tissues. In Proceedings of the PORIM International Palm Oil Conference. Progress, Prospects Challenges Towards the 21st Century, Kuala Lumpur, Malaysia, 9–14 September 1993. [Google Scholar]
- Idris, A.S.; Rafidah, R. Enzyme linked immunosorbent assay-polyclonal antibody (ELISA-PAb). MPOB Inf. Ser. 2008, 430, 1–4. [Google Scholar]
- Kandan, A.; Bhaskaran, R.; Samiyappan, R. Ganoderma: A basal stem rot disease of coconut palm in south Asia and Asia pacific regions. Phytopathol. Plant Prot. 2010, 43, 1445–1449. [Google Scholar] [CrossRef]
- Madihah, A.Z.; Idris, A.S.; Rafidah, A.R. Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease. Afr. J. Biotechnol. 2014, 13, 3455–3463. [Google Scholar] [CrossRef] [Green Version]
- Markom, M.A.; Shakaff, A.M.; Adom, A.H.; Ahmad, M.N.; Hidayat, W.; Abdullah, A.H.; Fikri, N.A. Intelligent electronic nose system for basal stem rot disease detection. Comput. Electron. Agric. 2009, 66, 140–146. [Google Scholar] [CrossRef]
- Kresnawaty, I.; Mulyatni, A.S.; Eris, D.D.; Prakoso, H.T.; Triyana, K.; Widiastuti, H. Electronic nose for early detection of basal stem rot caused by Ganoderma in oil palm. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012029. [Google Scholar]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I. Spectral features selection and classification of oil palm leaves infected by Basal stem rot (BSR) disease using dielectric spectroscopy. Comput. Electron. Agric. 2018, 144, 297–309. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I.; Izzuddin, M.A. Development of classification models for basal stem rot (BSR) disease in oil palm using dielectric spectroscopy. Ind. Crop. Prod. 2018, 124, 99–107. [Google Scholar] [CrossRef]
- Mazliham, M.S.; Pierre, L.; Idris, A.S. Towards automatic recognition and grading of Ganoderma infection pattern using fuzzy systems. Eng. Comput. Technol. 2008, 19, 1–6. [Google Scholar]
- Arango, M.; Martínez, G.; Torres, G. Advances in the interpretation of tomographic images as an early detection method of oil palm affected by basal stem rot in Colombia. Plant Dis. 2016, 100, 1559–1563. [Google Scholar] [CrossRef] [Green Version]
- Bejo, S.; Abdol-Lajis, G.; Abd-Aziz, S.; Abu-Seman, I.; Ahamed, T. Detecting Basal Stem Rot (BSR) disease at oil palm tree using thermal imaging technique. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Mohd Johari, S.N.A.; Khairunniza-Bejo, S.; Abdol Lajis, G.; Jeffery Daim, L.D.; Neoh, B.K.; Yap, Y.C.; Ithnin, N. Detecting BSR-Infected Oil Palm Seedling using Thermal Imaging Technique. Basrah J. Agric. Sci. 2021, 34, 73–80. [Google Scholar] [CrossRef]
- Khairunniza-Bejo, S.; Yusoff, Y.; Yusoff, N.S.N.; Seman, I.A.; Anuar, M.I. Identification of healthy and BSR-infected oil palm trees using color indices. Int. J. Agric. Biosyst. Eng. 2015, 9, 785–788. [Google Scholar]
- Santoso, H.; Gunawan, T.; Jatmiko, R.H.; Darmosarkoro, W.; Minasny, B. Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precis. Agric. 2011, 12, 233–248. [Google Scholar] [CrossRef]
- Ahmadi, P.; Muharam, F.M.; Ahmad, K.; Mansor, S.; Abu Seman, I. Early detection of Ganoderma basal stem rot of oil palms using artificial neural network spectral analysis. Plant Dis. 2017, 101, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Azmi, A.N.N.; Bejo, S.K.; Jahari, M.; Muharam, F.M.; Yule, I.; Husin, N.A. Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sens. 2020, 12, 3920. [Google Scholar] [CrossRef]
- Izzuddin, M.A.; Idris, A.S.; Wahid, O.; Nishfariza, M.N.; Shafri, H.Z.M. Field Spectroscopy for Detection of Ganoderma Disease in Oil Palm; MPOB Information Series No.532; MPOB: Bandar Baru Bangi, Malaysia, 2013. [Google Scholar]
- Lelong, C.C.; Roger, J.M.; Brégand, S.; Dubertret, F.; Lanore, M.; Sitorus, N.A.; Caliman, J.P. Evaluation of oil-palm fungal disease infestation with canopy hyperspectral reflectance data. Sensors 2010, 10, 734–747. [Google Scholar] [CrossRef]
- Liaghat, S.; Mansor, S.; Ehsani, R.; Shafri, H.Z.M.; Meon, S.; Sankaran, S. Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Comput. Electron. Agric. 2014, 101, 48–54. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Anuar, M.I.; Seman, I.A.; Noor, N.M. Spectral discrimination of healthy and Ganoderma-infected oil palms from hyperspectral data. Int. J. Remote Sens. 2011, 32, 7111–7129. [Google Scholar] [CrossRef]
- Khairunniza-Bejo, S.; Vong, C.N. Detection of basal stem rot (BSR) infected oil palm tree using laser scanning data. Agric. Agric. Sci. Procedia 2014, 2, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Husin, N.A.; Khairunniza–Bejo, S.; Abdullah, A.F.; Kassim, M.S.M.; Ahmad, D. Study of the oil palm crown characteristics associated with Basal Stem Rot (BSR) disease using stratification method of point cloud data. Comput. Electron. Agric. 2020, 178, 105810. [Google Scholar] [CrossRef]
- Husin, N.A.; Khairunniza-Bejo, S.; Abdullah, A.F.; Kassim, M.S.; Ahmad, D.; Azmi, A.N. Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of Basal Stem Rot (BSR) disease. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Husin, N.A.; Khairunniza-Bejo, S.; Abdullah, A.F.; Kassim, M.S.; Ahmad, D.; Aziz, M.H. Classification of Basal Stem Rot disease in oil palm plantations using terrestrial laser scanning data and machine learning. Agronomy 2020, 10, 1624. [Google Scholar] [CrossRef]
- Nur, A.H.; Khairunniza-Bejo, S.; Abdullah, A.F.; Kassim, M.S.; Ahmad, D. Multi-temporal analysis of terrestrial laser scanning data to detect basal stem rot in oil palm trees. Precis. Agric. 2021, 1–26. [Google Scholar] [CrossRef]
- Maryam, K.; Khairunniza-Bejo, S.; Biswajeet, P. Geospatial technologies for detection and monitoring of Ganoderma basal stem rot infection in oil palm plantations: A review on sensors and techniques. Geocarto Int. 2018, 33, 260–276. [Google Scholar]
- Mohd Hilmi Tan, M.I.S.; Jamlos, M.F.; Omar, A.F.; Dzaharudin, F.; Chalermwisutkul, S.; Akkaraekthalin, P. Ganoderma boninense disease detection by near-infrared spectroscopy classification: A review. Sensors 2021, 21, 3052. [Google Scholar] [CrossRef]
- Azmi, A.N.N.; Bejo, S.K.; Jahari, M.; Muharam, F.M.; Yule, I. Differences between healthy and Ganoderma boninense infected oil palm seedlings using spectral reflectance of young leaf data. Basrah J. Agric. Sci. 2021, 34, 171–179. [Google Scholar] [CrossRef]
- Wiratmoko, D.; Prasetyo, A.E.; Jatmiko, R.H.; Yusuf, M.A.; Rahutomo, S. Identification of Ganoderma boninense infection levels on oil palm using vegetation index. Int. J. Oil Palm 2018, 1, 110–120. [Google Scholar]
- Shafri, H.Z.M.; Anuar, M.I. Hyperspectral signal analysis for detecting disease infection in oil palms. In Proceedings of the International Conference on Computer and Electrical Engineering 2008, Phuket, Thailand, 20–22 December 2008; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Izzuddin, M.A.; Seman Idris, A.; Nisfariza, M.N.; Nordiana, A.A.; Shafri, H.Z.M.; Ezzati, B. The development of spectral indices for early detection of Ganoderma disease in oil palm seedlings. Int. J. Remote Sens. 2017, 38, 6505–6527. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Hamdan, N.; Izzuddin, M.A. Detection of stressed oil palms from an airborne sensor using optimized spectral indices. Int. J. Remote Sens. 2012, 33, 4293–4311. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine learning in agriculture: A comprehensive updated review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Pannu, H.S.; Malhi, A.K. Plant disease recognition using fractional-order Zernike moments and SVM classifier. Neural Comput. Appl. 2019, 31, 8749–8768. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Anuar, M.I.; Saripan, M.I. Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data. J. Appl. Remote Sens. 2009, 3, 033556. [Google Scholar]
- Tawfik, O.; Shafri, H.M.; Mohammed, A.A. Disease detection from field spectrometer data. IIUM Eng. J. 2013, 14, 133–143. [Google Scholar] [CrossRef]
- Santoso, H.; Tani, H.; Wang, X.; Prasetyo, A.E.; Sonobe, R. Classifying the severity of basal stem rot disease in oil palm plantations using WorldView-3 imagery and machine learning algorithms. Int. J. Remote Sens. 2019, 40, 7624–7646. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Adom, A.H.; Shakaff, A.Y.M.; Ahmad, M.N.; Zakaria, A.; Saad, F.S.A.; Isa, C.M.N.C.; Masnan, M.J.; Kamarudin, L.M. Hand-held electronic nose sensor selection system for basal stamp rot (BSR) disease detection. In Proceedings of the 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 8–10 February 2012; IEEE: New York, NY, USA, 2012; pp. 737–742. [Google Scholar]
- Hashim, I.C.; Shariff, A.R.M.; Bejo, S.K.; Muharam, F.M.; Ahmad, K. Machine learning approach using sar data for the classification of oil palm trees that are non-infected and infected with the Basal Stem Rot disease. Agronomy 2021, 11, 532. [Google Scholar] [CrossRef]
- Liaghat, S.; Ehsani, R.; Mansor, S.; Shafri, H.Z.; Meon, S.; Sankaran, S.; Azam, S.H. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. Int. J. Remote Sens. 2014, 35, 3427–3439. [Google Scholar] [CrossRef]
- Nababan, M.; Laia, Y.; Sitanggang, D.; Sihombing, O.; Indra, E.; Siregar, S.; Purba, W.; Mancur, R. The diagnose of oil palm disease using naive bayes method based on expert system technology. J. Phys. Conf. Ser. 2018, 1007, 012015. [Google Scholar] [CrossRef]
- Santoso, H.; Tani, H.; Wang, X. Random Forest classification model of basal stem rot disease caused by Ganoderma boninense in oil palm plantations. Int. J. Remote Sens. 2017, 38, 4683–4699. [Google Scholar] [CrossRef]
- MathWorks. Available online: https://www.mathworks.com/help/stats/choose-a-classifier.html (accessed on 30 September 2020).
- Yang, S.; Berdine, G. The receiver operating characteristic (ROC) curve. Southwest Respir. Crit. Care Chron. 2017, 5, 34. [Google Scholar] [CrossRef]
- Pimentel-Gomes, F. Curso de Estatística Experimental, 15th ed.; FEALQ: Piracicaba, Brazil, 2009. [Google Scholar]
- Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plumer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Wu, D.; Feng, L.; Zhang, C.; He, Y. Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Trans. ASABE 2008, 51, 1133–1139. [Google Scholar] [CrossRef]
- Chen, B.; Wang, K.; Li, S.; Wang, J.; Bai, J.; Xiao, C.; Lai, J. Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level. In Computer and Computing Technologies in Agriculture; Li, D., Ed.; Spinger: Boston, MA, USA, 2008; Volume II, pp. 1169–1180. [Google Scholar]
- Delalieux, S.; van Aardt, J.; Keulemans, W.; Schrevens, E.; Coppin, P. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. Eur. J. Agron. 2007, 27, 130–143. [Google Scholar] [CrossRef]
- Pearson, T.C.; Wicklow, D.T. Detection of corn kernels infected by fungi. Trans. ASABE 2006, 49, 1235–1245. [Google Scholar] [CrossRef] [Green Version]
- Arnnyitte, A.; Jedol, D.; Coswald, S.S.; Phin, C.; Chin, L. Some interpretations on FTIR results for the detection of Ganoderma boninense in oil palm tissue. Adv. Environ. Biol. 2014, 8, 30–32. [Google Scholar]
- Abdullah, A.H.; Shakaff, A.Y.M.; Adom, A.H.; Ahmad, M.N.; Zakaria, A.; Ghani, S.A.; Samsudin, N.M.; Saad, F.S.A.; Kamarudin, L.M.; Hamid, N.H.; et al. P2.1.7 Exploring MIP sensor of Basal Stem Rot (BSR) disease in palm oil plantation. In Proceedings of the Proceedings IMCS 2012, Nuremberg, Germany, 20–23 May 2012. [Google Scholar]
- A Guide to Near-Infrared Spectroscopic Analysis of Industrial Manufacturing Processes; British Grassland Society: Herisau, Switzerland, 2002.
- Bloem, E.; Gerighausen, H.; Chen, X.; Schnug, E. The potential of spectral measurements for identifying glyphosate application to agricultural fields. Agronomy 2020, 10, 1409. [Google Scholar] [CrossRef]
- Usha, K.; Singh, B. Potential applications of remote sensing in horticulture—A review. Sci. Hortic. 2013, 153, 71–83. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Shi, J.Y.; Zou, X.B.; Zhao, J.W.; Mao, H.P.; Wang, K.L.; Chen, Z.W. NIR spectral non-invasive measurement of cucumber leaf chlorophyll content NDT near-infrared spectroscopy. J. Agric. Mach. 2011, 42, 178–182. [Google Scholar]
- Huang, H.; Wang, W.; Peng, Y.K.; Wu, J.H.; Gao, X.D.; Wang, X.; Zhang, J. Measurement of chlorophyll content in wheat leaves using hyperspectral scanning. Spectrosc. Spectr. Anal. 2010, 30, 1811–1814. [Google Scholar]
- Yang, H.Q.; Yao, J.S.; He, Y. SPAD prediction of leaf based on reflection spectroscopy. Spectrosc. Spectr. Anal. 2009, 29, 1607–1610. [Google Scholar]
- Liang, P.-S.; Slaughter, D.C.; Ortega-Beltran, A.; Michailides, T.J. Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy. Biosyst. Eng. 2015, 137, 64–72. [Google Scholar] [CrossRef]
Classifier | Kernal Type | Model Flexibility |
---|---|---|
Support Vector Machine | Linear SVM |
|
Quadratic SVM |
| |
Cubic SVM |
| |
Fine Gaussian SVM |
| |
Medium Gaussian SVM |
| |
Coarse Gaussian SVM |
|
AUC Range | Classification |
---|---|
0.9 < AUC < 1.0 | Excellent |
0.8 < AUC < 0.9 | Good |
0.7 < AUC < 0.8 | Poor |
0.6 < AUC < 0.7 | Not good |
Number of Wavelengths | 5 (926 nm, 930 nm, 934 nm, 938 nm, and 942 nm) | 4 (930 nm, 934 nm, 938 nm, and 942 nm) | 3 (930 nm, 934 nm, and 938 nm) | 2 (934 nm and 938 nm) | 1 (934 nm) | Average | |
---|---|---|---|---|---|---|---|
Kernel Type | |||||||
Linear | 94.50% | 94.50% | 94.80% | 94.50% | 94.80% | 94.62% | |
Quadratic | 94.40% | 82.00% | 85.60% | 80.30% | 85.80% | 85.62% | |
Cubic | 67.30% | 45.20% | 43.30% | 33.30% | 54.60% | 48.74% | |
Fine Gaussian | 94.20% | 94.70% | 94.70% | 94.70% | 94.70% | 94.60% | |
Medium Gaussian | 94.20% | 94.50% | 94.50% | 94.50% | 95.10% | 94.56% | |
Coarse Gaussian | 94.20% | 94.50% | 94.50% | 95.00% | 95.00% | 94.64% |
Number of Wavelengths | 5 (926 nm, 930 nm, 934 nm, 938 nm, and 942 nm) | 4 (930 nm, 934 nm, 938 nm, and 942 nm) | 3 (930 nm, 934 nm, and 938 nm) | 2 (934 nm and 938 nm) | 1 (934 nm) | Average | |
---|---|---|---|---|---|---|---|
Kernel Type | |||||||
Linear | 91.80% | 91.80% | 92.50% | 91.80% | 97.60% | 93.10% | |
Quadratic | 90.70% | 91.80% | 77.40% | 92.80% | 91.90% | 88.92% | |
Cubic | 77.10% | 37.30% | 32.60% | 31.20% | 48.10% | 45.26% | |
Fine Gaussian | 91.00% | 92.10% | 92.10% | 92.10% | 96.70% | 92.80% | |
Medium Gaussian | 91.00% | 90.30% | 90.30% | 91.00% | 97.80% | 92.08% | |
Coarse Gaussian | 90.70% | 90.30% | 90.30% | 91.40% | 97.80% | 92.10% |
Number of Wavelengths | 5 (926 nm, 930 nm, 934 nm, 938 nm, and 942 nm) | 4 (930 nm, 934 nm, 938 nm, and 942 nm) | 3 (930 nm, 934 nm, and 938 nm) | 2 (934 nm and 938 nm) | 1 (934 nm) | Average | |
---|---|---|---|---|---|---|---|
Kernel Type | |||||||
Linear | 97.00% | 97.00% | 97.00% | 97.00% | 92.50% | 96.10% | |
Quadratic | 97.00% | 74.00% | 92.00% | 71.00% | 77.80% | 82.36% | |
Cubic | 60.00% | 51.00% | 52.00% | 35.00% | 63.10% | 52.22% | |
Fine Gaussian | 97.00% | 97.00% | 97.00% | 97.00% | 92.10% | 96.02% | |
Medium Gaussian | 97.00% | 98.00% | 98.00% | 97.00% | 91.80% | 96.36% | |
Coarse Gaussian | 97.00% | 98.00% | 98.00% | 98.00% | 91.40% | 96.48% |
Number of Wavelengths | 5 (926 nm, 930 nm, 934 nm, 938 nm, and 942 nm) | 4 (930 nm, 934 nm, 938 nm, and 942 nm) | 3 (930 nm, 934 nm, and 938 nm) | 2 (934 nm and 938 nm) | 1 (934 nm) | Average | |
---|---|---|---|---|---|---|---|
Kernel Type | |||||||
Linear | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | |
Quadratic | 0.95 | 0.92 | 0.89 | 0.92 | 0.89 | 0.91 | |
Cubic | 0.75 | 0.30 | 0.33 | 0.22 | 0.52 | 0.42 | |
Fine Gaussian | 0.95 | 0.96 | 0.96 | 0.96 | 0.94 | 0.95 | |
Medium Gaussian | 0.96 | 0.95 | 0.95 | 0.96 | 0.96 | 0.96 | |
Coarse Gaussian | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
Scheme 94 | Accuracy | Sensitivity | Specificity | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean, x (%) | Standard Deviation, s | CV (%) | Mean, x (%) | Standard Deviation, s | CV (%) | Mean, x (%) | Standard Deviation, s | CV (%) | |
Linear | 94.62 | 0.16 | 0.17 | 93.10 | 2.53 | 2.72 | 96.10 | 2.01 | 2.09 |
Quadratic | 85.62 | 5.44 | 6.36 | 88.92 | 6.48 | 7.29 | 82.36 | 11.48 | 13.94 |
Cubic | 48.74 | 12.83 | 26.34 | 45.26 | 18.99 | 41.97 | 52.22 | 10.92 | 20.91 |
Fine Gaussian | 94.60 | 0.22 | 0.24 | 92.80 | 2.23 | 2.40 | 96.02 | 2.19 | 2.28 |
Medium Gaussian | 94.56 | 0.33 | 0.35 | 92.08 | 3.22 | 3.49 | 96.36 | 2.60 | 2.70 |
Coarse Gaussian | 94.64 | 0.35 | 0.37 | 92.10 | 3.21 | 3.49 | 96.48 | 2.87 | 2.98 |
Model Type | Accuracy (%) | Sensitivity (%) | Specificity (%) | Area Under Curve (AUC) | ||||
---|---|---|---|---|---|---|---|---|
SR | NDVI | SR | NDVI | SR | NDVI | SR | NDVI | |
Linear SVM | 57.3 | 57.3 | 88.9 | 77.2 | 16.5 | 31.5 | 0.59 | 0.58 |
Quadratic SVM | 48.8 | 52.4 | 48.9 | 51.9 | 48.7 | 53.0 | 0.49 | 0.51 |
Cubic SVM | 47.6 | 47.3 | 33.6 | 35.3 | 65.6 | 62.7 | 0.48 | 0.50 |
Fine Gaussian SVM | 53.5 | 54.6 | 81.7 | 82.2 | 17.2 | 19.0 | 0.53 | 0.54 |
Medium Gaussian SVM | 56.5 | 56.7 | 93.1 | 95.3 | 9.3 | 6.8 | 0.54 | 0.56 |
Coarse Gaussian SVM | 57.0 | 56.5 | 97.8 | 99.4 | 4.3 | 1.1 | 0.55 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairunniza-Bejo, S.; Shahibullah, M.S.; Azmi, A.N.N.; Jahari, M. Non-Destructive Detection of Asymptomatic Ganoderma boninense Infection of Oil Palm Seedlings Using NIR-Hyperspectral Data and Support Vector Machine. Appl. Sci. 2021, 11, 10878. https://doi.org/10.3390/app112210878
Khairunniza-Bejo S, Shahibullah MS, Azmi ANN, Jahari M. Non-Destructive Detection of Asymptomatic Ganoderma boninense Infection of Oil Palm Seedlings Using NIR-Hyperspectral Data and Support Vector Machine. Applied Sciences. 2021; 11(22):10878. https://doi.org/10.3390/app112210878
Chicago/Turabian StyleKhairunniza-Bejo, Siti, Muhamad Syahir Shahibullah, Aiman Nabilah Noor Azmi, and Mahirah Jahari. 2021. "Non-Destructive Detection of Asymptomatic Ganoderma boninense Infection of Oil Palm Seedlings Using NIR-Hyperspectral Data and Support Vector Machine" Applied Sciences 11, no. 22: 10878. https://doi.org/10.3390/app112210878
APA StyleKhairunniza-Bejo, S., Shahibullah, M. S., Azmi, A. N. N., & Jahari, M. (2021). Non-Destructive Detection of Asymptomatic Ganoderma boninense Infection of Oil Palm Seedlings Using NIR-Hyperspectral Data and Support Vector Machine. Applied Sciences, 11(22), 10878. https://doi.org/10.3390/app112210878