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Featured Application: Major improvements in yield and disease resistance have come from plant
selection and breeding. The proposed method provides a better management due to its capability
to detect the asymptomatic G. boninense infection. It can improve the sustainability of palm oil
production which thus protects the environment and communities in palm oil-producing regions.

Abstract: Breeding programs to develop planting materials resistant to G. boninense involve a manual
census to monitor the progress of the disease development associated with various treatments. It is
prone to error due to a lack of experience and subjective judgements. This study focuses on the early
detection of G. boninense infection in the oil palm seedlings using near infra-red (NIR)-hyperspectral
data and a support vector machine (SVM). The study aims to use a small number of wavelengths by
using 5, 4, 3, 2, and 1 band reflectance as datasets. These results were then compared with the results
of detection obtained from the vegetation indices developed using spectral reflectance taken from the
same hyperspectral sensor. Results indicated a kernel with a simple linear separation between two
classes would be more suitable for G. boninense detection compared to the others, both for single-band
reflectance and vegetation index datasets. A linear SVM which was developed using a single-band
reflectance at 934 nm was identified as the best model of detection since it was not only economical,
but also demonstrated a high score of accuracy (94.8%), sensitivity (97.6%), specificity (92.5%), and
area under the receiver operating characteristic curve (AUC) (0.95).

Keywords: Ganoderma boninense; hyperspectral data; near infrared; support vector machine;
vegetation index; non-destructive detection; asymptomatic infection

1. Introduction

Ganoderma boninense (G. boninense) which causes basal stem rot disease (BSR) has been
identified by as the primary pathogen impacting the oil palm tree (Elaeis guineensis) and
ultimately killing it [1]. The BSR disease destroys oil palm trees that could cost certain
countries dearly in Southeast Asia, especially Malaysia and Indonesia. The symptoms of
BSR are difficult to recognize at the early stages since there are no significant characteristics
that can be visually detected by the naked eye [2–4]. The earliest visual symptom of
G. boninense infection in oil palm seedlings can be seen by the presence of fruiting bodies
at the bole, followed by partial yellowing of the leaves or mottling of the basal fronds
and necrosis when more than 50% of the stem base has been internally destroyed [5].
The impact of diseases in plants can be reduced through proper management of cultural
practices, agronomy, and phytosanitary standards. However, it should be implemented
with the use of planting materials (seedlings) which are resistant to G. boninense [6]. Yield
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improvements due to better management and more disease resistant varieties not only can
prevent the spread of BSR disease in the plantation and subsequent economic losses [6,7],
but also can reduce the pressure for plantation area expansion, which is thus can make
a sustainable palm oil production. A comprehensive study to determine the level of
resistance or susceptibility of the seedlings to disease is an important aspect to be looked
at before any development of a successful breeding program and for the sustainability of
this crop, particularly in Southeast Asia [8]. Distinguishing the different levels of plant
susceptibility and resistance to the disease is of utmost importance hence, it is crucial to
conduct an artificial inoculation of the pathogen at the nursery level to create an early
screening test [8]. In common nursery practice, a manual census is used to monitor the
progress of the disease development associated with various treatments [9,10] and is done
by humans. Human inspection relies heavily on the visible symptoms of the disease.
This method is prone to error due to a lack of experience, subjective judgements, and
asymptomatic cases.

For early detection of G. boninense, laboratory-based methods [11–14] are considered
reliable. However, the procedures entail stem collection, which may result in plant dam-
age and eventual destruction. Other proposed methods used include an electronic nose
(e-nose) [15,16], electrical impedance [17,18], tomography [19,20], thermal imaging [21,22],
multispectral imaging [23,24], spectroscopy or hyperspectral data [25–30], and a terrestrial
laser scanner (TLS) [31–35]. A comprehensive review of sensors used to detect BSR by [36]
has found that each technique has different scores in terms of accuracies and limitations.
Based on an in-depth review of the NIR spectroscopy sensor [37], it can be concluded
that G. boninense can be detected precisely and sensitively using the near infrared (NIR)
spectrum. Furthermore, spectroscopy techniques are found to be more reliable in reactions
with organic tissues than chemical and imaging techniques. However, the spectroscopy ap-
proach is based on point measurements. It does not incorporate the information of spatial
distribution of the measured sample. Contrastingly, hyperspectral sensors collect informa-
tion as a set of images. It has three-dimensional blocks of data comprising two spatial and
one wavelength dimension. Therefore, it can provide both spatial and spectral information
simultaneously from a measured sample. According to [38], the NIR-hyperspectral data
can clearly differentiate healthy seedlings from the seedlings infected by G. boninense, even
when there is no appearance of physical symptoms. The infected seedlings demonstrate
lower reflectance in the NIR range (750–950 nm) compared to healthy seedlings as a re-
sult of xylem destruction, which thus causes a reduction of chlorophyll pigments and a
water deficiency. Based on the research work done by [26], the use of SVM with 18 and
35 NIR-hyperspectral wavelengths could provide 100% accuracy of G. boninense detection
when the spectral reflectance was extracted from frond number 1 of the seedlings. The
percentage accuracy was slightly reduced to 94% when fronds number 1 and 2 were used.
However, this method has the advantage of less operational time at the pre-processing
stage and a reduction in the number of wavelengths to 9.

A vegetation index (VI) is generated by combining reflectance from multiple spectral
wavelengths into a single value using mathematical equations and transformations. Based
on the work done by [39], the highest average value of accuracy for detecting G. boninense
infection of oil palm trees was found by using a simple ratio (SR) at 86.5%. The method
could detect mild infection at 85.2% accuracy. Meanwhile, the normalized difference
vegetation index (NDVI) performed very well in detecting palms with severe infection
at 95.1% accuracy. For oil palm seedlings, SR developed using 610.5 nm and 738 nm was
identified as the best band combination to discriminate mildly, moderately, and severely
infected seedlings with a separability of 0.6441 calculated using the average silhouette
width (ASW) [40]. Meanwhile, according to [41], the best index for BSR detection was
developed using the band ratio of 477.5 nm and 495.5 nm. It obtained a high ASW value
(0.9554) and the highest correlation with the chlorophyll in leaves (R2 = 0.835). Researchers
in [42] used the same bands in [40] to construct three newly formulated optimized indices
for an airborne imaging spectrometer for applications (AISA) namely SR, NDVIa, and
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transformed vegetation index a (TVIa). The analysis showed that SR and NDVIa obtained
86% overall accuracy, and TVIa got 84% overall accuracy, which was slightly higher than
the overall accuracy obtained by [40].

Machine learning (ML) has been applied in various fields in agriculture including
yield prediction, disease detection, weed detection, crop recognition, crop quality, water
management, soil management, animal welfare, and livestock production [43]. It can
be used to facilitate strategic plantation management by providing early information
concerning plant health and it is proven to improve the accuracy of the classification for
the severity level of disease infection from 80% [33] to 85% [34]. Various types of machine
learning (ML) techniques have been used to detect G. boninense infection both in the
nursery and in plantation fields including support vector machine (SVM) [17,22,38,44–47],
artificial neural network (ANN) [17,25,48,49], k-nearest neighbour (kNN) [18,29,50], naïve
Bayes (NB) [18,29,34,50,51], maximum likelihood [30], random forest [49,52], and quadratic
discriminant analysis (QDA) [17]. Different types of datasets have been used—such as pixel
value, odor, electrical impedance, laser scanning data, spectral reflectance, and synthetic
aperture radar (SAR) data—with various levels of score found up to 100% accuracy. The
difference in accuracy score was not only due to different types of datasets and situations,
but also due to the different classifiers having different characteristics, where different
types of classifiers are sensitive to various parameter optimization [34].

Based on the literature, it can be concluded that the oil palm seedlings infected
with G. boninense can be detected precisely and sensitively using the NIR spectrum of
spectroscopy. With the use of the ML technique, hyperspectral data could provide 100%
accuracy of detection [26]. However, this approach has limitations in that it uses many
wavelengths which are not economical for hardware implementation in the future. Vegeta-
tion indices require a lesser number of wavelengths and have also shown promising results
of detection. Various types of ML models have been used widely to detect G. boninense
infection using different types of datasets and they have obtained various levels of accuracy.
Furthermore, ML has been proven to improve the percentage accuracy of detection. There-
fore, this study was carried out to detect the oil palm seedlings infected by G. boninense
using a minimum number of wavelengths taken from NIR-hyperspectral data. The results
were then compared with the results of detection obtained from the vegetation indices
developed using spectral reflectance data taken from the same hyperspectral sensor.

2. Materials and Methods
2.1. Spectral Reflectance Data

This study used secondary data obtained from [26]. Spectral signatures from the
leaflets of frond number 1 and 2 (F12) were extracted of from the commercial hybrid tenera
(dura × pisifera) seedlings at 5 months after transplanting. The fronds were seen clearly in
the aerial view images since both were located at the top position among other fronds. Both
fronds could be identified by the inclination of the fronds as F1 is the youngest expanded
frond; hence, it is less inclined than F2. In total, 913 points were extracted to represent
spectral signature of the leaflets with 399 points from healthy seedlings and 514 points
from the infected seedlings. A step-by-step process of image acquisition using a FireflEYE
S185 (Cubert GmbH, Ulm, Germany) hyperspectral camera and data pre-processing were
explained in [26].

2.2. Polymerase Chain Reaction (PCR) Test

The infected seedlings were confirmed using a polymerase chain reaction (PCR) test.
Polymerase chain reaction (PCR) is a well-established molecular technique to detect and
identify pathogen by amplifying the specific or targeted parts of a DNA sequence. The part
needed for the test was the roots because the G. boninense infection starts at the roots of oil
palm. DNA was extracted from the root of inoculated oil palm seedlings where 2 g of the
infected root was grounded to a fine powder with liquid nitrogen and then transferred into
a 1.5 mL centrifuge tube. In the tube, 800 µL of extraction buffer, 80 µL 2% sodium dodecyl
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sulfate (SDS), and 20 µL β-mercaptoethanol were added and subsequently vortexed. The
tube was incubated for 30 min at 65 ◦C. After that, 300 µL of phenol and chloroform
were added. The tube was vortexed again for 1 min, then centrifuged at 11,000 rpm for
10 min. The supernatant was then transferred into a new centrifuge tube, and phenol
and chloroform were added again. An equal volume of ice-cold propanol was added into
the supernatant and incubated at −20 ◦C for overnight. Later, the tube was centrifuged
at 11,000 rpm for 10 min. The supernatant was removed, and 70% ethanol was used to
wash DNA pellet. The pellet was dried in laminar flow for 10 min and dissolved in sterile
distilled water then incubated at 65 ◦C to ensure complete dissolution of the pellet. The
DNA was kept at −20 ◦C for long term storage. Pure culture of G. boninense was extracted
and used as a positive control, whereas the distilled water was used as a negative control.
Specific primer of G. boninense designed by Utomo and Niepold (2000) Gan1: 5′-TTG ACT
GGG TTG TAG CTG-3′ and Gan2: 5′-GCG TTA CAT CGC AAT ACA-3′was used. The PCR
thermal cycler protocol was performed with four steps. The first step was denaturation for
5 min at 95 ◦C. The second step was 35 cycles of denaturation for 1 min at 95 ◦C, annealing
for 1 min at 56 ◦C and elongation for 2 min at 72 ◦C. The third step was an extension for
10 min at 72 ◦C. The last step was storage at 4 ◦C. Gel electrophoresis was conducted using
standard protocol to detect the specific band produced. Finally, PCR products were sent to
the private lab for gene sequencing analysis for verification of the specific band produced.
The sequences were aligned and edited using bio-edit software. The consensus sequences
were then blasted in the GenBank to confirm the sequences identity to G. boninense.

Figure 1 shows an example of an infected seedling and the associated PCR result. As
shown in Figure 1a, the infected seedling did not show any visible symptoms related to
G. boninense infection such as fungal mass or foliar symptoms such as yellowing of leaves
despite testing positive with the G. boninense pathogen. The positive result indicated that
G. boninense pathogen had penetrated and infected the tested roots. The specific band size
was approximately 160 to 170 bp (Figure 1b) that were obtained from the roots, which
authenticated the presence of G. boninense infection. Further confirmation was conducted
using gene sequencing analysis between the specific bands and G. boninense (taken from
the GenBank dataset). The result showed 99.5–100% similarity index.
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Figure 1. Sample of an infected seedling. (a) Condition of an infected seedling without symptoms 
i.e., no fruiting bodies and yellowing of older leaves. However, the disease is confirmed by the (b) 
PCR amplification using specific primer of G. boninense. 

2.3. Classification Model 

Figure 1. Sample of an infected seedling. (a) Condition of an infected seedling without symptoms i.e.,
no fruiting bodies and yellowing of older leaves. However, the disease is confirmed by the (b) PCR
amplification using specific primer of G. boninense.

2.3. Classification Model

In this study, the SVM classifier of the machine learning toolbox in MATLAB (2019b,
The MathWorks Inc., Natick, MA, USA) with six different types of kernels as summarized
in Table 1 were used. Each of the kernels had its model flexibility. The optimal kernel
size was search automatically by the software. The classification models were developed
separately using two different types of datasets as listed below.
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Table 1. List of classifiers with its corresponding type and model flexibility [53].

Classifier Kernal Type Model Flexibility

Support Vector
Machine

Linear SVM
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2.3.1. Single-Based NIR Reflectance

The nine significant wavelengths identified in [26]—i.e., 914 nm, 922 nm, 926 nm,
930 nm, 934 nm, 938 nm, 942 nm, 946 nm, and 950 nm—were reduced to 5, 4, 3, 2, and
1 by determining the highest 5, 4, 3, 2, and 1 maximum mean difference of the spectral
reflectance between healthy and infected seedlings. It is calculated as in Equation (1).

Maximum Mean Di f f erence =
XHn − XUn

N
(1)

where XHn is the average reflectance at wavelength n for a healthy seedling, XUn is the
average reflectance at wavelength n for an infected seedling, and N is the total number of
samples at wavelength n.

2.3.2. Vegetation Indices

Two vegetation indices were used namely, SR and NDVI, calculated as in Equations (2)
and (3).

Simple Ratio, SR =
NIR
Red

(2)

NDVI =
NIR− Red
NIR + Red

(3)

These indices were constructed using wavelengths with the highest mean reflectance
difference between healthy and infected seedlings taken from the red and NIR regions.

Each of the datasets was divided into two groups which were 70% for training and
30% for testing. SVM algorithms with different kernel types available in MATLAB machine
learning toolbox (2019b, The MathWorks Inc., Natick, MA, USA) as tabulated in Table 1



Appl. Sci. 2021, 11, 10878 6 of 16

were used to develop the models. A five-fold cross-validation technique was applied to
test the output of the established model, where the cross-validation method selected five
disjoined sets to partition the data. While only one set was used for the validation of the
model, the other four sets were used for training. This process was repeated five times, and
the resulting confusion matrix was obtained by using the arithmetic means of the results
arising from each of the iterations.

2.4. Assessment of Model Performance
2.4.1. Confusion Matrix

A confusion matrix is a table that shows how well a classification model performs
on a set of test data for which the true values are known. In this research, the following
definitions have been set:

• True Positive (TP): Infected seedling correctly identified as infected.
• False Positive (FP): Healthy seedling incorrectly identified as infected.
• True Negative (TN): Healthy seedling correctly identified as healthy.
• False Negative (FN): Infected seedling incorrectly identified as healthy.

The performance of each classification model in this research was described by ana-
lyzing its value of accuracy, sensitivity, and specificity extracted from the confusion matrix.
Accuracy measures how correct a model identifies and excludes a given condition. The
accuracy is the proportion of correct predictions (both TP and TN) among the total number
of cases examined and calculated as in Equation (4)

Accuracy (ACC) =
TP + TN

Total Number o f Population
(4)

Sensitivity (also called the true positive rate (TPR)) evaluates how good the test is at
detecting infected seedlings. It is the probability that an actual positive will test positive
and calculated as in Equation (5)

TPR =
TP

TP + FN
(5)

Specificity (also called the true negative rate (TNR)) estimates how likely healthy
seedlings can be correctly ruled out. It is calculated as the number of correct negative
predictions divided by the total number of negatives as in Equation (6)

TNR =
TN

TN + FP
(6)

2.4.2. Receiver Operating Characteristic (ROC) and Area under the ROC Curve (AUC)

A ROC curve is a graph showing the performance of a classification model at all
classification thresholds. This curve plots two parameters which are true positive rate
(TPR) and false positive rate (FPR), where FPR = 1—specificity. The AUC measures the
entire two-dimensional area underneath the entire ROC curve from (0, 0) to (1, 1). A model
whose predictions are 100% correct has an AUC of 1.0, but one whose predictions are
100% wrong has an AUC value of 0.0. When the AUC is less than or equal to 0.5, then the
classifier will not be able to distinguish between positive or negative class values. Table 2
shows a detail scale of AUC performance provided by [54].

Table 2. Scale of classification by AUC [54].

AUC Range Classification

0.9 < AUC < 1.0 Excellent
0.8 < AUC < 0.9 Good
0.7 < AUC < 0.8 Poor
0.6 < AUC < 0.7 Not good
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3. Results
3.1. Classification Model
3.1.1. Dataset 1: Single-Based NIR Reflectance

As shown in Figure 2, bands at wavelength numbers 926 nm, 930 nm, 934 nm, 938 nm,
and 942 nm were identified as the five significant bands due to a high separation gap
between healthy and infected seedlings.
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Tables 3–6 tabulate the score performance for each of the SVM models developed
using different combinations of identified significant single-based NIR reflectance. In terms
of accuracy, as shown in Table 3, the performance of coarse Gaussian SVM had the highest
average accuracy score which was 94.64%. All SVM models still gave good accuracy scores
(above 80%) even when the number of wavelengths were reduced except for cubic SVM.
The second highest average accuracy was obtained from linear SVM with 94.62%, this was
then followed by fine Gaussian SVM with 94.60%, medium Gaussian SVM with 94.56%,
quadratic SVM with 85.62%, and lastly cubic SVM with 48.74%.

Table 3. Performance of each SVM model in terms of accuracy in each reduction of the number of wavelengths.

Kernel Type

Number of
Wavelengths 5

(926 nm, 930 nm,
934 nm, 938 nm,

and 942 nm)

4
(930 nm, 934 nm,

938 nm, and
942 nm)

3
(930 nm, 934 nm,

and 938 nm)

2
(934 nm

and 938 nm)

1
(934 nm) Average

Linear 94.50% 94.50% 94.80% 94.50% 94.80% 94.62%
Quadratic 94.40% 82.00% 85.60% 80.30% 85.80% 85.62%

Cubic 67.30% 45.20% 43.30% 33.30% 54.60% 48.74%
Fine Gaussian 94.20% 94.70% 94.70% 94.70% 94.70% 94.60%

Medium Gaussian 94.20% 94.50% 94.50% 94.50% 95.10% 94.56%
Coarse Gaussian 94.20% 94.50% 94.50% 95.00% 95.00% 94.64%
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Table 4. Performance of each SVM model for sensitivity in each reduction of the number of wavelengths.

Kernel Type

Number of
Wavelengths 5

(926 nm, 930 nm,
934 nm, 938 nm,

and 942 nm)

4
(930 nm, 934 nm,

938 nm, and
942 nm)

3
(930 nm, 934 nm,

and 938 nm)

2
(934 nm

and 938 nm)

1
(934 nm) Average

Linear 91.80% 91.80% 92.50% 91.80% 97.60% 93.10%
Quadratic 90.70% 91.80% 77.40% 92.80% 91.90% 88.92%

Cubic 77.10% 37.30% 32.60% 31.20% 48.10% 45.26%
Fine Gaussian 91.00% 92.10% 92.10% 92.10% 96.70% 92.80%

Medium Gaussian 91.00% 90.30% 90.30% 91.00% 97.80% 92.08%
Coarse Gaussian 90.70% 90.30% 90.30% 91.40% 97.80% 92.10%

Table 5. Performance of each SVM model for specificity in each reduction of the number of wavelengths.

Kernel Type

Number of
Wavelengths 5

(926 nm, 930 nm,
934 nm, 938 nm,

and 942 nm)

4
(930 nm, 934 nm,

938 nm, and
942 nm)

3
(930 nm, 934 nm,

and 938 nm)

2
(934 nm

and 938 nm)

1
(934 nm) Average

Linear 97.00% 97.00% 97.00% 97.00% 92.50% 96.10%
Quadratic 97.00% 74.00% 92.00% 71.00% 77.80% 82.36%

Cubic 60.00% 51.00% 52.00% 35.00% 63.10% 52.22%
Fine Gaussian 97.00% 97.00% 97.00% 97.00% 92.10% 96.02%

Medium Gaussian 97.00% 98.00% 98.00% 97.00% 91.80% 96.36%
Coarse Gaussian 97.00% 98.00% 98.00% 98.00% 91.40% 96.48%

Table 6. Performance of each SVM model for AUC in each reduction of the number of wavelengths.

Kernel Type

Number of
Wavelengths 5

(926 nm, 930 nm,
934 nm, 938 nm,

and 942 nm)

4
(930 nm, 934 nm,

938 nm, and
942 nm)

3
(930 nm, 934 nm,

and 938 nm)

2
(934 nm

and 938 nm)

1
(934 nm) Average

Linear 0.95 0.95 0.95 0.95 0.95 0.95
Quadratic 0.95 0.92 0.89 0.92 0.89 0.91

Cubic 0.75 0.30 0.33 0.22 0.52 0.42
Fine Gaussian 0.95 0.96 0.96 0.96 0.94 0.95

Medium Gaussian 0.96 0.95 0.95 0.96 0.96 0.96
Coarse Gaussian 0.95 0.95 0.95 0.95 0.95 0.95

For sensitivity, as tabulated in Table 4, the highest average score was achieved by linear
SVM (93.10%), followed by fine Gaussian SVM (92.80%), coarse Gaussian SVM (92.10%),
medium Gaussian SVM (92.08%), quadratic SVM (88.92%), and cubic SVM (45.26%). In
general, all SVM models had excellent sensitivity scores, indicating that there were few
false negative results, and thus fewer cases of disease were missed except for the cubic SVM
which had the lowest sensitivity score. It failed to identify disease in the infected seedlings.

As tabulated in Table 5, coarse Gaussian SVM had the highest average specificity
score with 96.48%, followed by medium Gaussian SVM (96.36%), linear SVM (96.10%), fine
Gaussian SVM (96.02%), quadratic SVM (82.36%), and cubic SVM (52.22%). Since Coarse
Gaussian SVM had the highest average of specificity score, it was identified as the best
model which could correctly identify oil palm seedlings without G. boninense infection. In
general, all SVM models were able to correctly identify oil palm seedlings without BSR
disease, except for cubic SVM.

The value of AUC indicates the performance of model separability for correctly
identified infected and healthy seedlings. Based on the results tabulated in Table 6, all SVM
models showed excellent performance with an average value of AUC from 0.91 to 0.96
except for cubic SVM (0.42). This meant that there was a high chance that most of the models
were able to distinguish between classes which were the positive and negative classes.
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Table 7 shows the mean, standard deviation, and coefficient of variance (CV) for
accuracy, sensitivity, and specificity of each SVM model calculated to identify dispersion of
the data. The mean of accuracy, sensitivity, and specificity of each model were calculated
by averaging these respective values from all the different datasets used. In general, all
the models showed good performance with most of them achieving more than 90% mean
accuracy, sensitivity, and specificity. In terms of consistency of the model performance,
according to [55], the CV was considered low if it was less than 10%, indicating that the
value was consistent. The performance is considered medium when it ranges between
10% and 20%, indicating reasonable consistency. Meanwhile, a CV with a percentage of
20% to 30% is considered high, implying a lack of consistency. Finally, if the percentage
of the CV is greater than 30%, it is considered extremely high, indicating a great lack of
consistency. As tabulated in Table 7, it is shown that, in terms of accuracy, linear SVM
had the lowest CV score with 0.17%, followed by fine Gaussian SVM (0.24%), medium
Gaussian SVM (0.35%), coarse Gaussian SVM (0.37%), quadratic SVM (6.36%), and the
highest CV was cubic SVM (26.34%). In respect of sensitivity, fine Gaussian SVM had the
lowest CV score which was 2.40%, followed by linear SVM (2.72%), medium and coarse
Gaussian SVM (3.49%), quadratic SVM (7.29%), and cubic SVM (41.97%). Regarding the CV
of specificity, the lowest percentage of CV was achieved by linear SVM (2.09%), followed by
fine Gaussian SVM (2.28), medium Gaussian SVM (2.70%), coarse Gaussian SVM (2.98%),
quadratic SVM (13.94%), and cubic SVM (20.91%). Since linear, fine Gaussian, medium
Gaussian, and coarse Gaussian have a low percentages of CV, these SVM models show very
consistent results in detecting G. boninense infection in oil palm seedlings. For quadratic
SVM, the CV score for accuracy and sensitivity was below 10%. In terms of specificity, the
CV score between 10% and 20% was considered as reasonable consistency. Unfortunately,
cubic SVM had a CV score above 25% which was considered extremely high, indicating a
lack of consistency.

Table 7. Mean (x) and standard deviation (s) and coefficients of variations (CV) for accuracy, sensitivity, and specificity of
each SVM model.

Scheme 94

Accuracy Sensitivity Specificity

Mean, x
(%)

Standard
Deviation, s

CV
(%)

Mean, x
(%)

Standard
Deviation, s

CV
(%)

Mean, x
(%)

Standard
Deviation, s

CV
(%)

Linear 94.62 0.16 0.17 93.10 2.53 2.72 96.10 2.01 2.09
Quadratic 85.62 5.44 6.36 88.92 6.48 7.29 82.36 11.48 13.94

Cubic 48.74 12.83 26.34 45.26 18.99 41.97 52.22 10.92 20.91
Fine

Gaussian 94.60 0.22 0.24 92.80 2.23 2.40 96.02 2.19 2.28

Medium
Gaussian 94.56 0.33 0.35 92.08 3.22 3.49 96.36 2.60 2.70

Coarse Gaussian 94.64 0.35 0.37 92.10 3.21 3.49 96.48 2.87 2.98

Overall, the linear SVM model has the lowest score of CV for accuracy and specificity,
and second lowest score of CV for sensitivity. The linear SVM also obtained a high score
for accuracy, sensitivity, and specificity with scores above 90%. Since the linear SVM had
the lowest CV score, it shows that the reduced number of wavelengths for the linear SVM
did not affect the consistency of the model to detect G. boninense infection. Even when
the number of wavelengths was reduced to 1, the linear SVM with an optimal kernel
size of 0.0174 still had an excellent accuracy (94.80%), sensitivity (97.60%), specificity
(92.50%), and AUC (0.95). Therefore, the linear SVM with a dataset taken from 934 nm
was identified as the best model for detection. It can accurately identify both infected and
healthy seedlings. The model also improved the classification accuracy obtained by [26]
that used nine wavelengths for detection by 1.80%.

While the linear SVM demonstrated the leading execution capability, the cubic SVM
demonstrated in the other direction. Scatterplots of the datasets before and after the
classification process are shown in Figure 3. Figure 3b shows the Linear SVM managed
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to separate the overlapping original dataset (Figure 3a) into healthy and infected classes
properly. For the cubic SVM, the model flexibility was medium. As shown in Figure 3c,
the cubic SVM model classification process did not properly separate the two classes since
there was still much of the data overlapping after the classification process which thus
indicated low model performance. Therefore, in this research, it shows that the model
with a simple linear separation is more suitable to separate healthy and infected seedlings
compared to fitting into the shape of a cubic function.
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3.1.2. Dataset 2: Vegetation Index (VI)

As shown in Figure 4, the highest separation gap of the average reflectance between
healthy and infected plants for the red region was obtained at wavelength number 630 nm
with 0.61%. For NIR region, wavelength number 934 nm was selected to be used to develop
the NDVI since it was identified as the band with the highest separation gap of average
reflectance value between healthy and infected seedlings.
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As shown in Table 8, the accuracy scores obtained from both the vegetation index (SR
and NDVI) were compared to identify which vegetation indices were better at detecting
G. boninense infection in oil palm seedlings. For SR, the highest accuracy was obtained from
the Linear SVM with 57.3%. Meanwhile, cubic SVM obtained the lowest accuracy at 47.6%.
In terms of sensitivity, the coarse Gaussian SVM had the highest score (97.8%) in correctly
identifying infected seedlings as infected. However, it has the lowest specificity (4.3%).
Therefore, most of the healthy seedlings were identified as infected. Meanwhile, cubic
SVM had a better performance in identifying the healthy seedlings correctly with 65.6%
specificity. Overall, the linear SVM could balance its performance in detecting infected
and healthy seedlings. It obtained the highest score of AUC with 0.59. The NDVI has
demonstrated similar trends of model performance for accuracy, sensitivity, specificity,
and AUC. It obtained the same highest accuracy score as SR, which was from the linear
SVM. Therefore, the classification results show that a simple linear separation between two
classes would be more suitable to classify between infected and healthy seedlings.

Table 8. Performance of SVM models using SR and NDVI datasets.

Model Type
Accuracy (%) Sensitivity (%) Specificity (%) Area Under Curve (AUC)

SR NDVI SR NDVI SR NDVI SR NDVI

Linear SVM 57.3 57.3 88.9 77.2 16.5 31.5 0.59 0.58
Quadratic SVM 48.8 52.4 48.9 51.9 48.7 53.0 0.49 0.51

Cubic SVM 47.6 47.3 33.6 35.3 65.6 62.7 0.48 0.50
Fine Gaussian SVM 53.5 54.6 81.7 82.2 17.2 19.0 0.53 0.54

Medium Gaussian SVM 56.5 56.7 93.1 95.3 9.3 6.8 0.54 0.56
Coarse Gaussian SVM 57.0 56.5 97.8 99.4 4.3 1.1 0.55 0.54

4. Discussion

Previous studies have indicated that some specific regions/wavelengths can provide
significantly superior discrimination power than others [56–58]. Changes in reflectance in
the visible (VIS) regions (400–700 nm) are mainly determined by pigment concentration
and photosynthesis efficiency, while near-infrared (NIR, 700–1100 nm) regions are strongly
influenced by the leaf internal structure. The VIS region provides information based on
color and texture, while the NIR region principally involves N-H, C-H, and O-H bonds.
These bonds contain information concerning the chemical elements, structures, and states
of the molecules. For early asymptomatic disease detection, the NIR region is the primary
interest as NIR can obtain information on the interior tissues, while VIS can only obtain
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exterior information which is invisible at the early stage of infection [59]. This finding
was not only in agreement with a previous study conducted for BSR disease at mature
oil palm tree [50] but also to other diseases such as in identifying cotton canopy infected
with Verticillium wilt [60], apple scab disease caused by Venturia inaequalis [61], and corn
kernels infected by fungi [62]. According to [63,64], NIR region could detect the presence
of functional groups of CH3, CN, N-H, C=N, and C-O-C in the G. boninense tissue sample.
Several functional groups can also be identified such as CH3, N-H, and C=H [65]. Therefore,
NIR is more precise and sensitive to detect the G. boninense infection compared to VIS.
Spectral data in the NIR region represents significant differences between classes of samples
compared to the VIS region [26,50].

Both vegetation indices produced a single value calculated by transforming the obser-
vations from the red and NIR spectral bands. This single value was used to enhance the
presence of vegetation features and thus helped to distinguish them from the other objects
present in the image. The simple ratio (SR) is the simplest VI which is a faster way to
distinguish green leaves from other objects. The spectral signature of healthy leaves reflects
very low reflectance in the red region but a relatively higher reflectance in the NIR region.
SR is sensitive to the chlorophyll content and was developed for estimating photosynthetic
pigment concentrations in leaves [66]. Meanwhile, NDVI applications discovered that if
chlorophyll production was reduced by biotics (e.g., insect damage, disease), there would
be increased red reflection and a reduced NDVI value [67,68]. NDVI measurement is
significantly and usefully correlated with SPAD (Soil and Plant Analysis Development)
values. The SPAD values express the relative sums of chlorophyll in crop leaves and have
been established in several studies [69–71]. The studies mainly focused on chlorophyll
measurement, which estimated the crop relative chlorophyll content by averaging all the
values of one point SPAD measured more than once. In this research, it was found that the
accuracy of detection using NDVI was low. This condition tallies with the SPAD values
calculated for the samples. The chlorophyll content of healthy and infected seedlings
indicated by the SPAD values were almost similar as well as statistically insignificantly
different when tested using a Mann–Whitney U test with p = 0.573.

Therefore, in this research, the reduced accuracy of SR and NDVI were most likely
obtained due to the lack of physical symptoms in the infected seedlings as shown in
Figure 2. This finding was supported by the work done by [39] for mature oil palm trees,
where there was low accuracy in detecting infected palms with no symptoms at the palm
canopy although there was a rotting process taking place in the basal stem. Furthermore,
according to [72], the VIS region is only useful for visual analysis. Therefore, it is not useful
to detect the early stage of infection where there are no visible symptoms of infection. This
could be the reason why the additional red wavelength in the SR and NDVI did not help to
improve the accuracy of detection.

Early detection of G. boninense is vital to prevent the spread of the disease. For future
work, the method developed in this research could be implemented in an open environment
or a real nursery to confirm its reliability for field application. Furthermore, the application
of an Internet of Things for G. boninense can be applied so that the status of the seedlings
can be automatically remotely monitored. As a result, the infection could be controlled in a
fast manner without totally depending on the workers in the field. Next, research could
also be implemented for different types of oil palm varieties to test its tolerance towards
G. boninense infection and its effects on spectral reflectance.

5. Conclusions

G. boninense infection can be detected at an early stage even when no physical signs
are present by using SVM with the optimal number of wavelengths. For single-band
reflectance, models developed using a linear kernel demonstrated the best performance
among other kernels since it obtained a low CV score which has thus shown a high
consistency in the results and excellent scores in accuracy, sensitivity, and specificity with
the percentage value above 90%, respectively. Linear SVM, which was developed using
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single-band reflectance frequencies taken from 934 nm, was identified as the best model
for detection since it demonstrated a high score in accuracy (94.80%), sensitivity (97.60%),
specificity (92.50%), and AUC (0.95). The linear SVM also performing well when using SR
and NDVI as datasets among the other ML models. However, both models only obtained
57.30% accuracy. This research has also demonstrated that in the early stage of G. boninense
infection, where the exterior information is invisible, selection of a single-band reflection
from the NIR regions should be used as a dataset due to its capability to obtain information
from the interior tissue. It is also shown that a simple linear separation between two classes
is more suitable to classify between infected and healthy seedlings. The findings of this
research could provide a huge contribution to the oil palm industry since it could help
prevent the spread of the disease by successfully detecting the asymptomatic infection
which cannot be done by manual inspection through human vision. Better management
could produce higher yield and improve the sustainability of palm oil production which
would thus protect the environment and communities in palm oil-producing regions.
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