Extraction Optimization and Valorization of the Cornelian Cherry Fruits Extracts: Evidence on Antioxidant Activity and Food Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Material
2.1.2. Chemicals
2.2. Cornelian Cherry Extraction Processes
2.2.1. Conventional Extraction (CE) Experiments
2.2.2. Ultrasound-Assisted Extraction (UAE)
2.3. Jelly Candy Formulation
2.4. Analytical Methods
2.4.1. Total Polyphenol Content (TPC)
2.4.2. Total Flavonoid Content (TFC)
2.4.3. Total Antioxidant Activity (TAA)
2.4.4. Vitamin C Content
2.4.5. Inhibitory Activity against Metabolically Important Enzymes
2.4.6. Textural Analysis of Jelly Candies
2.4.7. Color Measurement
2.5. Statistical Analysis Optimization Procedure
3. Results
3.1. Influence of the Conventional Extraction Parameters on the TPC, TFC, and TAA of the Extracts
3.2. UAE Parameters Influence on the TPC, TFC and TAA
3.3. Optimization and Validation of Extraction Conditions
3.4. Inhibitory Activity against Metabolically Important Enzymes
3.5. Vitamin C Content of the Cornelian Cherry Extracts and Jelly Candies
3.6. Textural and Color Analysis of Jelly Food
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, M.J.; Oliveira, M.; Neves, V.; Ovelheiro, A.; Pereira, C.G.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Coupling sea lavender (Limonium algarvense Erben) and green tea (Camellia sinensis (L.) Kuntze) to produce an innovative herbal beverage with enhanced enzymatic inhibitory properties. S. Afr. J. Bot. 2019, 120, 87–94. [Google Scholar] [CrossRef]
- Radbeh, Z.; Asefi, N.; Hamishehkar, H.; Roufegarinejad, L.; Pezeshki, A. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (cornelian cherry) bioactive compounds. Biomed. Pharmacother. 2020, 125, 109906. [Google Scholar] [CrossRef]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef] [PubMed]
- Mattera, R.; Molnar, T.; Struwe, L. Cornus× elwinortonii and Cornus× rutgersensis (Cornaceae), new names for two artificially produced hybrids of big-bracted dogwoods. PhytoKeys 2015, 55, 93–111. [Google Scholar] [CrossRef]
- Deng, S.; West, B.J.; Jensen, C.J. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit. J. Anal. Methods Chem. 2013, 2013, 710972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikaili, P.; Koohirostamkolaei, M.; Babaeimarzangou, S.S.; Aghajanshakeri, S.; Moloudizargari, M.; Gamchi, N.S.; Toloomoghaddam, S. Therapeutic uses and pharmacological effects of Cornus mas: A review. J. Pharm. Biomed. Sci. 2013, 35, 1732–1738. [Google Scholar]
- Ahmadipour, S.H.; Vakili, M.; Ahmadipour, S. Phytotherapy for children’s nocturnal enuresis. J. Med. Biomed. Sci. 2018, 6, 23–29. [Google Scholar] [CrossRef]
- Shamsi, F.; Asgari, S.; Rafieian-Kopaei, M.; Kazemi, S.; Adelnia, A. Effects of Cornus mas L. on blood glucose, insulin and histopathology of pancreas in alloxan-induced diabetic rats. J. Isfahan Med. Sch. 2011, 29, 929–938. [Google Scholar]
- Sozański, T.; Kucharska, A.Z.; Szumny, A.; Magdalan, J.; Bielska, K.; Merwid-Ląd, A.; Woźniak, A.; Dzimira, S.; Piórecki, N.; Trocha, M. The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. Phytomedicine 2014, 21, 1774–1784. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Kramarova, D.; Jurikova, T. Selected cultivars of cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010, 9, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Pawlowska, A.M.; Camangi, F.; Braca, A. Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem. 2010, 119, 1257–1261. [Google Scholar] [CrossRef] [Green Version]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Ersoy, N.; Bagci, Y.; Gok, V. Antioxidant properties of 12 cornelian cherry fruit types (Cornus mas L.) selected from Turkey. Sci. Res. Essays 2011, 6, 98–102. [Google Scholar] [CrossRef]
- Juranović Cindrić, I.; Zeiner, M.; Krpetić, M.; Stingeder, G. ICP-AES determination of minor and major elements in Cornelian cherry (Cornus mas L.) after microwave assisted digestion. Microchem. J. 2012, 105, 72–76. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Enachi, E.; Stănciuc, N.; Aprodu, I. Optimization of ultrasound assisted extraction of phenolic compounds from cornelian cherry fruits using response surface methodology. CyTA-J. Food 2019, 17, 814–823. [Google Scholar] [CrossRef]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chem. 2020, 319, 126515. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Benito-Román, Ó.; Alonso, E.; Cocero, M.J. Ultrasound-assisted extraction of β-glucans from barley. LWT-Food Sci. Technol. 2013, 50, 57–63. [Google Scholar] [CrossRef]
- Ran, X.-L.; Zhang, M.; Wang, Y.; Adhikari, B. Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: A review. Crit. Rev. Food Sci. Nutr. 2017, 59, 450–461. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- de Avelar, M.H.M.; Efraim, P. Alginate/pectin cold-set gelation as a potential sustainable method for jelly candy production. LWT 2020, 123, 109119. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Effect of thermal treatment on phenolic compounds from plum (Prunus domestica) extracts—A kinetic study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- Kaur, S.; Mondal, P. Study of Total Phenolic and Flavonoid Content, Antioxidant Activity and Antimicrobial Properties of Medicinal Plants. J. Microbiol. Exp. 2014, 1, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Oancea, A.-M.; Aprodu, I.; Ghinea, I.O.; Barbu, V.; Ioniţă, E.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. A bottom-up approach for encapsulation of sour cherries anthocyanins by using β-lactoglobulin as matrices. J. Food Eng. 2017, 210, 83–90. [Google Scholar] [CrossRef]
- Spínola, V.; Mendes, B.; Câmara, J.S.; Castilho, P.C. Effect of time and temperature on vitamin C stability in horticultural extracts. UHPLC-PDA vs iodometric titration as analytical methods. LWT-Food Sci. Technol. 2013, 50, 489–495. [Google Scholar] [CrossRef]
- Costamagna, M.; Zampini, I.; Alberto, M.; Cuello, S.; Torres, S.; Pérez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Golos, B.R.; Ninic, J.I.; Bijelic, S.M.; Popovic, B.M. Physicochemical Fruit Characteristics of Cornelian Cherry (Cornus mas L.) Genotypes from Serbia. HortScience 2011, 46, 849–853. [Google Scholar]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef]
- Apel, C.; Lyng, J.G.; Papoutsis, K.; Harrison, S.M.; Brunton, N.P. Screening the effect of different extraction methods (ultrasound-assisted extraction and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimisation of the extraction conditions using chemometric tools. Food Bioprod. Process. 2020, 119, 277–286. [Google Scholar] [CrossRef]
- Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2017, 219, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes (Allium cepa cv. Horcal): Effect of Temperature and Solvent Properties. Antioxidants 2020, 9, 1233. [Google Scholar] [CrossRef] [PubMed]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Freeze-dried extract from onion (Allium cepa cv. Horcal) skin wastes: Extraction intensification and flavonoids identification. Food Bioprod. Process. 2021, 130, 92–105. [Google Scholar] [CrossRef]
- Heleno, S.A.; Diz, P.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 2016, 197, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 2017, 10, S1145–S1157. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, I.G.; Maran, J.P.; Ilakya, S.; Anitha, S.L.; Sabarima, S.P.; Priya, B. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 2017, 34, 525–530. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Process. Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 2016, 29, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Brás, T.; Paulino, A.F.C.; Neves, L.A.; Crespo, J.G.; Duarte, M.F. Ultrasound assisted extraction of cynaropicrin from Cynara cardunculus leaves: Optimization using the response surface methodology and the effect of pulse mode. Ind. Crop. Prod. 2020, 150, 112395. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.N.; Trandafir, I.; Cornescu, F. Antioxidant Capacity, Total Phenols, Total Flavonoids and Colour Component of Cornelian Cherry (Cornus mas L.) Wild Genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, K.U.; Ercisli, S.; Zengin, Y.; Sengul, M.; Kafkas, E.Y. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem. 2009, 114, 408–412. [Google Scholar] [CrossRef]
- Cornescu, F.-C.; Cosmulescu, S.N. Morphological and Biochemical Characteristics of Fruits of Different Cornelian Cherry (Cornus mas L.) Genotypes from Spontaneous Flora. Not. Sci. Biol. 2017, 9, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Chandra, A.; Singh, R.K.; Tewari, L. Antioxidative potential of herbal hypoglycemic agents in diabetes—An overview. SFRR Ind. Bull. 2004, 3, 24–26. [Google Scholar]
- Kesari, A.N.; Kesari, S.; Singh, S.K.; Gupta, R.K.; Watal, G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J. Ethnopharmacol. 2007, 112, 305–311. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory poten-tial against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozturkcan, S.A. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Kostecka, M.; Szot, I.; Czernecki, T.; Szot, P. Vitamin C content of new ecotypes of cornelian cherry (Cornus mas L.) determined by various analytical methods. Acta Sci. Pol. Hortorum Cultus 2017, 16, 53–61. [Google Scholar] [CrossRef]
- Szot, I.; Lipa, T.; Sosnowska, B. Evaluation of yield and fruit quality of several ecotypes of cornelian cherry (Cornus mas L.) in polish condiotions. Acta Sci. Pol. Hortorum Cultus 2019, 18, 141–150. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of anthocyanin as a color indi-cator in gelatin films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- de Moura, S.C.; Berling, C.L.; Garcia, A.O.; Queiroz, M.B.; Alvim, I.D.; Hubinger, M.D. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Res. Int. 2019, 121, 542–552. [Google Scholar] [CrossRef]
Independent Variables | Response Variables | |||||
---|---|---|---|---|---|---|
Sample Code | T (°C) | t (min) | EtOH (%) | TPC (mg GAE/g dw) | TFC (mg QE/g dw) | TAA (mg TE/g dw) |
C1 | 50 | 30 | 60 | 26.68 ± 0.52 | 1.40 ± 0.01 | 28.6 ± 1.5 |
C2 | 40 | 15 | 100 | 2.51 ± 0.10 | 0.23 ± 0.02 | 5.23 ± 0.38 |
C3 | 50 | 30 | 100 | 1.80 ± 0.18 | 0.10 ± 0.01 | 4.65 ± 1.16 |
C4 | 40 | 45 | 100 | 1.97 ± 0.09 | 0.38 ± 0.04 | 4.13 ± 0.34 |
C5 | 40 | 45 | 60 | 22.67 ± 1.34 | 1.39 ± 0.00 | 24.89 ± 0.51 |
C6 | 50 | 15 | 80 | 19.1 ± 0.3 | 1.29 ± 0.03 | 24.25 ± 0.98 |
C7 | 30 | 30 | 60 | 27.62 ± 0.36 | 1.61 ± 0.01 | 28.8 ± 1.0 |
C8 | 40 | 15 | 60 | 29.27 ± 1.09 | 1.53 ± 0.02 | 29.83 ± 0.85 |
C9 | 30 | 15 | 80 | 20.9 ± 0.2 | 1.23 ± 0.08 | 22.16 ± 0.57 |
C10 | 30 | 45 | 80 | 17.38 ± 0.76 | 1.10 ± 0.10 | 21.17 ± 0.01 |
C11 | 50 | 45 | 80 | 12.58 ± 0.58 | 1.30 ± 0.06 | 16.51 ± 1.10 |
C12 | 30 | 30 | 100 | 1.05 ± 0.08 | 0.28 ± 0.03 | 2.61 ± 0.51 |
C13 | 40 | 30 | 80 | 9.73 ± 0.16 | 1.05 ± 0.01 | 12.83 ± 1.43 |
C14 | 40 | 30 | 80 | 9.52 ± 0.09 | 1.15 ± 0.08 | 12.33 ± 0.27 |
C15 | 40 | 30 | 80 | 9.74 ± 0.12 | 1.08 ± 0.07 | 12.60 ± 0.90 |
Variables | TPC (mg GAE/g dw) | TFC (mg QE/g dw) | TAA (mg TE/g dw) | |||
---|---|---|---|---|---|---|
F-Ratio | p-Value | F-Ratio | p-Value | F-Ratio | p-Value | |
X1: Temperature | 3.55 | 0.1184 | 0.15 | 0.7129 | 0.05 | 0.8275 |
X2: time | 22.23 | 0.0053 | 0.10 | 0.7621 | 21.59 | 0.0056 |
X3: Ethanol | 738.6 | 0.0000 | 206.54 | 0.0000 | 902.40 | 0.0000 |
X12 | 36.0 | 0.0018 | 0.63 | 0.4626 | 53.93 | 0.0007 |
X22 | 32.83 | 0.0023 | 1.83 | 0.2308 | 50.35 | 0.0009 |
X32 | 0.91 | 0.3843 | 22.04 | 0.0054 | 1.46 | 0.2808 |
X1 X2 | 1.31 | 0.3050 | 0.33 | 0.5899 | 9.02 | 0.0300 |
X1 X3 | 0.43 | 0.5413 | 0.01 | 0.9190 | 0.99 | 0.3648 |
X2 X3 | 5.54 | 0.0652 | 1.42 | 0.2867 | 2.92 | 0.1483 |
R2 adjusted for D.F. | 0.9833 | 0.9416 | 0.9866 | |||
R2 | 0.9941 | 0.9791 | 0.9952 | |||
Durbin–Watson statistic | 2.74 (p = 0.844) | 2.88 (p = 0.919) | 2.56 (p = 0.701) |
Run Order | Independent Variables | Response Variables | Energy Delivered (kJ/g) | ||||
---|---|---|---|---|---|---|---|
Amplitude (%) | Sonication Mode (-) | t (min) | TPC (mg GAE/g dw) | TFC (mg QE/g dw) | TAA (mg TE/g dw) | ||
U1 | 40 | 0.5 | 10 | 29.05 ± 2.12 | 2.18 ± 0.12 | 26.6 ± 0.5 | 1.913 |
U2 | 80 | 0.5 | 10 | 25.15 ± 1.40 | 1.95 ± 0.06 | 25.88 ± 0.48 | 8.275 |
U3 | 40 | 1 | 10 | 26.77 ± 0.53 | 2.04 ± 0.05 | 21.68 ± 0.49 | 3.679 |
U4 | 80 | 1 | 10 | 23.54 ± 2.01 | 2.23 ± 0.26 | 19.22 ± 0.64 | 10.443 |
U5 | 40 | 0.75 | 5 | 28.92 ± 5.97 | 3.31 ± 0.42 | 20.37 ± 0.51 | 1.397 |
U6 | 80 | 0.75 | 5 | 26.3 ± 1.3 | 2.67 ± 0.14 | 21.47 ± 0.04 | 4.368 |
U7 | 40 | 0.75 | 15 | 30.1 ± 0.8 | 1.77 ± 0.04 | 23.66 ± 1.17 | 4.445 |
U8 | 80 | 0.75 | 15 | 22.89 ± 0.37 | 1.45 ± 0.14 | 21.33 ± 0.26 | 12.257 |
U9 | 60 | 0.5 | 5 | 30.26 ± 1.21 | 1.96 ± 0.04 | 23.33 ± 1.24 | 2.825 |
U10 | 60 | 1 | 5 | 32.42 ± 1.13 | 2.10 ± 0.40 | 25.4 ± 0.7 | 2.893 |
U11 | 60 | 0.5 | 15 | 25.29 ± 1.05 | 2.08 ± 0.02 | 22.11 ± 1.09 | 8.553 |
U12 | 60 | 1 | 15 | 28.28 ± 0.80 | 1.51 ± 0.25 | 24.02 ± 0.08 | 8.043 |
U13 | 60 | 0.75 | 10 | 31.10 ± 0.13 | 2.81 ± 0.19 | 21.48 ± 0.61 | 7.268 |
U14 | 60 | 0.75 | 10 | 32.76 ± 3.74 | 2.91 ± 0.23 | 21.98 ± 0.94 | 7.066 |
U15 | 60 | 0.75 | 10 | 31.44 ± 0.49 | 2.27 ± 0.33 | 21.16 ± 0.10 | 6.765 |
U16 | 100 | 1 | 15 | 24.03 ± 1.45 | 1.67 ± 0.13 | 25.81 ± 0.34 | 16.686 |
U17 | 100 | 1 | 5 | 24.93 ± 4.81 | 1.72 ± 0.14 | 22.41 ± 0.91 | 5.971 |
Variables | TPC (mg GAE/g dw) | TFC (mg QE/g dw) | TAA (mg TE/g dw) | |||
---|---|---|---|---|---|---|
F-Ratio | p-Value | F-Ratio | p-Value | F-Ratio | P-Value | |
X1: Amplitude | 1.61 | 0.2457 | 0.73 | 0.4218 | 0.21 | 0.6590 |
X2: Cycle | 0.01 | 0.9440 | 0.05 | 0.8283 | 1.00 | 0.3516 |
X3: Time | 1.03 | 0.3433 | 7.56 | 0.0285 | 0.12 | 0.7383 |
X12 | 0.01 | 0.9382 | 0.16 | 0.7048 | 0.40 | 0.5455 |
X22 | 0.06 | 0.8164 | 5.15 | 0.0576 | 2.54 | 0.1553 |
X32 | 0.39 | 0.5533 | 1.69 | 0.2352 | 0.10 | 0.7628 |
X1 X2 | 0.21 | 0.6575 | 0.16 | 0.7048 | 0.01 | 0.9260 |
X1 X3 | 0.72 | 0.4239 | 1.83 | 0.2182 | 0.00 | 0.9607 |
X2 X3 | 0.01 | 0.9281 | 0.44 | 0.5265 | 0.13 | 0.7312 |
R2 adjusted for d.f. | 0.00 | 0.3856 | 0.00 | |||
R2 | 0.4299 | 0. 7312 | 0.3923 | |||
Durbin–Watson statistic | 1.53 (p = 0.07) | 1.61 (p = 0.10) | 2.05 (p = 0.33) |
Response | Predicted Value | Lower 95% Limit | Upper 95% Limit | Desirability | Experimental Values | CV (%) | Error (%) |
---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | 34.7 | 30.8 | 38.6 | 0.9789 | 33.1 ± 1.9 | 5.81 | 4.60 |
TFC (mg QE/g dw) | 1.70 | 1.33 | 2.1 | 1.65 ± 0.07 | 4.20 | 2.11 | |
TAA (mg Trolox/g dw) | 34.0 | 30.6 | 37.4 | 33.2 ± 0.5 | 1.60 | 2.04 |
Textural Parameter | ||||||
---|---|---|---|---|---|---|
Sample Code * | Firmness (N) | Adhesiveness (mJ) | Cohesiveness (-) | Springiness (mm) | Gumminess (N) | Chewiness (mJ) |
GM | 2.4 ± 0.4 | 0.02 ± 0.006 | 0.89 ± 0.01 | 4.56 ± 0.07 | 2.1 ± 0.3 | 9.7 ± 1.7 |
GEC | 1.33 ± 0.17 | 0.02 ± 0.007 | 0.90 ± 0.03 | 4.59 ± 0.11 | 1.20 ± 0.12 | 5.5 ± 0.4 |
AM | 7.4 ± 0.8 | 0.07 ± 0.00 | 0.07 ± 0.01 | 1.7 ± 0.2 | 0.48 ± 0.04 | 0.81 ± 0.16 |
AEC | 5.2 ± 1.5 | 0.07 ± 0.12 | 0.08 ± 0.02 | 1.5 ± 0.2 | 0.37 ± 0.07 | 0.56 ± 0.18 |
Color Parameter | ||||||
---|---|---|---|---|---|---|
Sample Code * | L* | a* | b* | C* | H* | ΔE |
GM | 79.76 ± 0.14 | 0.21 ± 0.03 | 3.63 ± 0.11 | 3.6 ± 0.1 | 1.51 ± 0.01 | 79.85 ± 0.13 |
GEC | 45.1 ± 0.4 | 18.3 ± 0.5 | 17.9 ± 0.4 | 25.6 ± 0.6 | 0.77 ± 0.01 | 51.9 ± 0.6 |
AM | 46.74 ± 0.07 | 14.14 ± 0.04 | 3.50 ± 0.01 | 14.57 ± 0.03 | 0.24 ± 0.00 | 48.96 ± 0.06 |
AEC | 36.33 ± 0.09 | 22.33 ± 0.02 | 8.59 ± 0.06 | 23.93 ± 0.04 | 0.37 ± 0.00 | 43.50 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enache, I.M.; Benito-Román, Ó.; Coman, G.; Vizireanu, C.; Stănciuc, N.; Andronoiu, D.G.; Mihalcea, L.; Sanz, M.T. Extraction Optimization and Valorization of the Cornelian Cherry Fruits Extracts: Evidence on Antioxidant Activity and Food Applications. Appl. Sci. 2021, 11, 10729. https://doi.org/10.3390/app112210729
Enache IM, Benito-Román Ó, Coman G, Vizireanu C, Stănciuc N, Andronoiu DG, Mihalcea L, Sanz MT. Extraction Optimization and Valorization of the Cornelian Cherry Fruits Extracts: Evidence on Antioxidant Activity and Food Applications. Applied Sciences. 2021; 11(22):10729. https://doi.org/10.3390/app112210729
Chicago/Turabian StyleEnache, Iuliana Maria, Óscar Benito-Román, Gigi Coman, Camelia Vizireanu, Nicoleta Stănciuc, Doina Georgeta Andronoiu, Liliana Mihalcea, and Maria Teresa Sanz. 2021. "Extraction Optimization and Valorization of the Cornelian Cherry Fruits Extracts: Evidence on Antioxidant Activity and Food Applications" Applied Sciences 11, no. 22: 10729. https://doi.org/10.3390/app112210729
APA StyleEnache, I. M., Benito-Román, Ó., Coman, G., Vizireanu, C., Stănciuc, N., Andronoiu, D. G., Mihalcea, L., & Sanz, M. T. (2021). Extraction Optimization and Valorization of the Cornelian Cherry Fruits Extracts: Evidence on Antioxidant Activity and Food Applications. Applied Sciences, 11(22), 10729. https://doi.org/10.3390/app112210729