# Magnetically-Induced Pressure Generation in Magnetorheological Fluids under the Influence of Magnetic Fields

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

^{3}.

## 3. Results

#### 3.1. Simulation Results

#### 3.2. Experiment Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

AWG | American Wire Gauge |

DC | Direct Current |

FEMM | Finite Element Method Magnetics |

MCU | Microcontroller Unit |

MRFs | Magnetorheological Fluids |

PVC | Polyvinyl Chloride |

## References

- Utami, D.; Ubaidillah; Mazlan, S.A.; Imaduddin, F.; Nordin, N.A.; Bahiuddin, I.; Abdul Aziz, S.A.; Mohamad, N.; Choi, S.-B. Material Characterization of a Magnetorheological Fluid Subjected to Long-Term Operation in Damper. Materials
**2018**, 11, 2195. [Google Scholar] [CrossRef] [Green Version] - Imaduddin, F.; Mazlan, S.; Zamzuri, H. A design and modelling review of rotary magnetorheological damper. Mater. Des.
**2013**, 51, 575–591. [Google Scholar] [CrossRef] - Bahiuddin, I.; Mazlan, S.A.; Shapiai, M.I.; Choi, S.-B.; Imaduddin, F.; Rahman, M.A.A.; Ariff, M.H.M. A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method. Sens. Actuators A Phys.
**2018**, 281, 209–221. [Google Scholar] [CrossRef] - Ubaidillah; Hudha, K.; Akmar, F.; Kadir, A. Modelling, characterisation and force tracking control of a magnetorheological damper under harmonic excitation. Int. J. Model. Identif. Control
**2011**, 13, 9–21. [Google Scholar] [CrossRef] [Green Version] - Ubaidillah; Lenggana, B.; Son, L.; Imaduddin, F.; Widodo, P.; Harjana, H.; Doewes, R. A new magnetorheological fluids damper for unmanned aerial vehicles. J. Adv. Res. Fluid Mech. Therm.
**2020**, 73, 35–45. [Google Scholar] [CrossRef] - Imaduddin, F.; Mazlan, S.A.; Ubaidillah; Idris, M.H.; Bahiuddin, I. Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy. J. King Saud Univ.-Sci.
**2017**, 29, 468–477. [Google Scholar] [CrossRef] - Gadekar, P.; Kanthale, V.S.; Khaire, N.D. Magnetorheological Fluid and its Applications. Int. J. Curr. Eng. Technol.
**2017**, 7, 32–37. [Google Scholar] - Idris, M.H.; Imaduddin, F.; Ubaidillah; Mazlan, S.A.; Choi, S.-B. A concentric design of a bypass magnetorheological fluid damper with a serpentine flux valve. Actuators
**2020**, 9, 16. [Google Scholar] [CrossRef] [Green Version] - Milecki, A.; Hauke, M. Application of magnetorheological fluid in industrial shock absorbers. Mech. Syst. Signal Process.
**2012**, 28, 528–541. [Google Scholar] [CrossRef] - Hu, G.; Wu, L.; Li, L. Torque characteristics analysis of a magnetorheological brake with double brake disc. Actuators
**2021**, 10, 23. [Google Scholar] [CrossRef] - Nya’Ubit, I.R.; Priyandoko, G.; Imaduddin, F.; Adiputra, D.; Ubaidillah. Torque characterization of t-shaped magnetorheological brake featuring serpentine magnetic flux. J. Adv. Res. Fluid Mech. Therm.
**2020**, 78, 85–97. [Google Scholar] - Latha, H.; Pantangi, U.S.; Seetharamaiah, N. Design and manufacturing aspects of magneto-rheological fluid (mrf) clutch. Mater. Today Proc.
**2017**, 4, 1525–1534. [Google Scholar] [CrossRef] - Jamalpour, R.; Nekooei, M.; Moghadam, A. Seismic response reduction of steel mrf using sma equipped innovated low-damage column foundation connection. Civ. Eng. J.
**2017**, 3, 1–14. [Google Scholar] [CrossRef] [Green Version] - Dyke, S.J.; Spencer, B.F.; Sain, M.K.; Carlson, J.D. Seismic Response Reduction Using Magnetorheological Dampers. IFAC Proc. Vol.
**1996**, 29, 5530–5535. [Google Scholar] [CrossRef] - Satria, R.R.; Ubaidillah, U.; Imaduddin, F. Analytical approach of a pure flow mode serpentine path rotary magnetorheological damper. Actuators
**2020**, 9, 56. [Google Scholar] [CrossRef] - Abd Fatah, A.Y.; Mazlan, S.; Koga, T.; Zamzuri, H.; Imaduddin, F. Design of magnetorheological valve using serpentine flux path method. Int. J. Appl. Electromagn. Mech.
**2016**, 50, 29–44. [Google Scholar] [CrossRef] - Sarkar, C.; Hirani, H.; Sasane, A. Magnetorheological smart automotive engine mount. Int. J. Curr. Eng. Technol.
**2015**, 5, 419–428. [Google Scholar] - Zeinali, M.; Mazlan, S.A.; Choi, S.-B.; Imaduddin, F.; Hamdan, L.H. Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper. Smart Mater. Struct.
**2016**, 25, 055010. [Google Scholar] [CrossRef] - Sapinski, B. Simulation of an MR squeeze-mode damper for an automotive engine mount. In Proceedings of the 17th International Carpathian Control Conference (ICCC), IEEExplore, High Tatras, Slovakia, 29 May–1 June 2016; pp. 641–644. [Google Scholar]
- Yildirim, G.; Genc, S. Experimental study on heat transfer of the magnetorheological fluids. Smart Mater. Struct.
**2013**, 22, 085001. [Google Scholar] [CrossRef] - Adiputra, D.; Rahman, M.A.A.; Bahiuddin, I.; Ubaidillah; Imaduddin, F.; Nazmi, N. Sensor number optimization using neural network for ankle foot orthosis equipped with magnetorheological brake. Open Eng.
**2021**, 11, 91–101. [Google Scholar] [CrossRef] - Bhavsar, P.; Unune, D.R. Magnetorheological Polishing Tool for Nano-Finishing of Biomaterials. In Proceedings of the 10th International Conference on Precesion, Meso, Micro and Nano Engineering, Chennai, India, 7–9 December 2017; pp. 6–10. [Google Scholar]
- Purnomo, E.D.; Ubaidillah; Imaduddin, F.; Yahya, I.; Mazlan, S. Preliminary experimental evaluation of a novel loudspeaker featuring magnetorheological fluid surround absorber. Indones. J. Electr. Eng. Comput.
**2020**, 17, 922–928. [Google Scholar] [CrossRef] [Green Version] - Dyana Kumara, K.A.; Ubaidillah, U.; Priyandoko, I.Y.G.; Wibowo, W. Magnetostatic Simulation in a Novel Magnetorheological Elastomer Based Loudspeaker Surround. In Proceedings of the 2019 6th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia, 18–21 November 2019; pp. 295–299. [Google Scholar]
- Ahamed, R.; Choi, S.-B.; Ferdaus, M.M. A state of art on magneto-rheological materials and their potential applications. J. Intell. Mater. Syst. Struct.
**2018**, 29, 2051–2095. [Google Scholar] [CrossRef] - Rahman, M.; Chao, O.; Julai, S.; Ferdaus, M.M.; Ahamed, R. A review of advances in magnetorheological dampers: Their design optimization and applications. J. Zhejiang Univ. Sci. A
**2017**, 18, 991–1010. [Google Scholar] [CrossRef] - de Vicente, J.; Klingenberg, D.J.; Hidalgo-Alvarez, R. Magnetorheological fluids: A review. Soft Matter
**2011**, 7, 3701–3710. [Google Scholar] [CrossRef] - Ostadfar, A. Chapter 1—Fluid Mechanics and Biofluids Principles. In Biofluid Mechanics; Ostadfar, A., Ed.; Academic Press: London, UK, 2016; pp. 1–60. [Google Scholar]
- Vijayaraghavan, G.K.; Sundaravalli, S. Pressure and Pressure Measuring Devices. In Fluid Mechanics and Machinery; Lakshmi Publications: Chennai, India, 2018; ISBN 978-93-831030-8-9. [Google Scholar]
- Ubaidillah; Wirawan, J.W.; Lenggana, B.W.; Purnomo, E.D.; Widyarso, W.; Mazlan, S.A. Design and Performance Analysis of Magnetorheological Valve for Upside-Down Damper. J. Adv. Res. Fluid Mech. Therm.
**2019**, 63, 164–173. [Google Scholar] - Yatchev, I.; Gueorgiev, V.; Ivanov, R.; Hinov, K. Simulation of the dynamic behaviour of a permanent magnet linear actuator. Facta Univ.-Ser. Electron. Energy
**2010**, 23, 37–43. [Google Scholar] [CrossRef] [Green Version] - Białek, M.; Nowak, P.; Lindner, T.; Wyrwał, D. FEMM Examination of the Gripper with Magnetorheological Cushion. In Proceedings of the 2020 International Conference Mechatronic Systems and Materials (MSM), Bialystok, Poland, 1–3 July 2020; pp. 1–5. [Google Scholar]
- Ubaidillah; Lenggana, B.W. Finite Element Magnetic Method for Magnetorheological Based Actuators. In Finite Element Methods and Their Applications; IntechOpen: London, UK, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Freescale Semiconductors Inc. Technical Data Sheet: MPXV5010DP, 0 to 10 kPa, Differential, Gauge, and Absolute, Integrated, Pressure Sensors; Freescale Semiconductors Inc.: Austin, TX, USA, 2012. [Google Scholar]
- Volpato, O. Thermal Modeling of Heated Injectors; SAE Technical Papers 2011-36-0087; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors
**2012**, 12, 7207–7258. [Google Scholar] [CrossRef]

**Figure 6.**(

**a**) Results of the FEMM software simulation (current input = 1 A); (

**b**) The observation line that was used in the simulation.

**Figure 7.**A graph of the correlation between current and magnetic flux density in the FEMM software simulation.

Current Input (A) | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 |
---|---|---|---|---|---|---|---|---|

∆P_{min} (Pa) | 13.06 | 58.98 | 129.17 | 244.49 | 496.04 | 679.79 | 867.36 | 835.50 |

∆P_{max} (Pa) | 18.39 | 65.91 | 155.64 | 292.53 | 533.77 | 739.02 | 942.50 | 1020.01 |

∆P_{avg} (Pa) | 15.53 | 62.80 | 144.77 | 267.80 | 517.16 | 709.20 | 904.64 | 918.55 |

∆P_{median} (Pa) | 15.34 | 63.16 | 147.14 | 267.09 | 519.42 | 708.99 | 904.34 | 909.34 |

Std Deviation | 2.68 | 3.12 | 11.52 | 21.29 | 15.63 | 25.85 | 38.37 | 78.84 |

**Note**: ∆P

_{min}is the minimum pressure change that occurs during magnetization at the observation cycle at each given current, ∆P

_{max}is the maximum pressure change that occurs during magnetization at the observation cycle at each given current, ∆P

_{avg}is the average pressure change that occurs during magnetization at the observation cycle, Std Deviation is the standard deviation of the measured pressure.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Widodo, P.J.; Budiana, E.P.; Ubaidillah, U.; Imaduddin, F.
Magnetically-Induced Pressure Generation in Magnetorheological Fluids under the Influence of Magnetic Fields. *Appl. Sci.* **2021**, *11*, 9807.
https://doi.org/10.3390/app11219807

**AMA Style**

Widodo PJ, Budiana EP, Ubaidillah U, Imaduddin F.
Magnetically-Induced Pressure Generation in Magnetorheological Fluids under the Influence of Magnetic Fields. *Applied Sciences*. 2021; 11(21):9807.
https://doi.org/10.3390/app11219807

**Chicago/Turabian Style**

Widodo, Purwadi Joko, Eko Prasetya Budiana, Ubaidillah Ubaidillah, and Fitrian Imaduddin.
2021. "Magnetically-Induced Pressure Generation in Magnetorheological Fluids under the Influence of Magnetic Fields" *Applied Sciences* 11, no. 21: 9807.
https://doi.org/10.3390/app11219807